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CONSTRAINTS ON LENGTH AND ANGLE

Ken-ichi Kanatanix

Department of Computer Science, Gunam University, Kiryu, Gunma 376, Japan

Given a perspective projection of line segments on the image plane, the constraints on
their 3D positions and orientations are derived on the assumption that their true lengths or
the true angles they make are known. The approach here is first to transform images of line
segments to the center of the image plane as if the camera were rotated to aim at them. The 3D
information extracted in this canonical position is then transformed back to the original con-
figuration. Examples are given, by using real images, for 3D recovery of a rectangular corner

and a corner with two right angles.



1. INTRODUCTION

Humans can easily estimate the 3D position
and orientation of an object in a scene by
vision alone. The most fundamental assumption
tacitly made by humans seems to be the con-
stancy of size: we know the true shape and size
of many familiar objects such as a man,
gnd a house, and, seeing these familiar ob-
jects, we can easily and fairly accurately
reconstruct the 3D world around us from our 2D
visual perception.

The same principle applies to computer
vision. If the true shape and size of an object
are known and its projection image is given,
the geometry of projection gives rise to mathe-
matical:relations ~or constraints. on the 3D
position and orientation of the object. The 3D
position and orientation can be uniquely deter-
mined if a sufficient number of constraints are
available from various sources of information.

However, these constraints often have very
complicated forms if the projection is perspec-
tive,-even if the object is a very simple one
such as a line segment and a planar face. This
is due to the geometrical inhomogencity of  the
image plane: the extent of perspective distor-
tion is different from position to position.
Under orthographic projection, the image plane
is geometrically homogeneous and we can freely
translate a projected image to an arbitrary
position on the image plane. The process of 3D
recovery is not affected except for the
corresponding translation of the object in the
scene. Under perspective projection, however,
we cannot arbitrarily translate the projected
image.

But must we always analyze a perspectively
projected image in that position? Can we not
move it, in some way, to another position on
the image plane so that analysis becomes easy?
These questions lead us to the following obser-
vations of human perception. When a human finds
a familiar object in the field of view, he
rotates his eye or head so that the image of
the object in question comes to the center of
the field of view. Invoking the knowledge about
the true shape and size of the object, and ap-
plying the assumption of constancy of size, he
estimates the 3D position and orientation of
the object. Then, recalling the angle of eye or
head rotation, he interprets the 3D information
in reference to his body.

This human reaction can be simulated by cam-
era image analysis in the following way. Sup-
pose the camera is rotated around an arbitrary
axis by an arbitrary angle with the center of
its lens fixed. As a result, a different image
is seen on the image plane. However, since a
point on the image plane actually corresponds
to a ray starting from the lens center, occlu-
sion is not affected. If the angle of camera
rotation is known, the original image can be
recovered as long as the effect of the image
boundary is not involved. Thus, the image
transformation due to camera rotation does not
require any knowledye about the 3D scene and
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Fig. 1 Perspective projection as a camera
model . ‘ .

hence can be computcd;vthe camera need not be
actually rotated. :

The above consideration implies- the follow-
ing fact: An object image can be moved into an
arbitrary position on the inage plane by ap-
plying the transformation corresponding to cam-
era rotation. The geometrical properties of
this transformation, especially its invariants,
vere extensively studied by Kanatani <4,6,7>
from the viewpoint of group representation
theory, especially irreducible representations
of the 3D rotation group SO(3).

Consequently, we can move an observed image
in  to ' a -canonical position where analysis
becomes easy. The 3D constraints obtained there
are then transformed back into the original
configuration. This technique was also applied
to the analysis of shape from-texture by Kana-
tani and Chou <8>. Evidently, the image origin
is a prime candidate for the canonical posi-
tion. We will show that for angle clues we only
need to consider orthographic projection if the
vertex is located at the image origin.

Even if the object image is moved into the
canonical position, :the 8D interpretation may
not be unique. In such a case, humans invoke an
appropriate hypolthesis and solve the problem
uniquely. The underlying mechanism of human
hypothesizing is under study by many resear-
chers, and although a definite conclusion has
not yet been reached, it is observed ‘that
humans assume the “simplest” configuration in
some sense. This process is also simulated for
geometrical reasoning of computer vision.

In this paper, we study the constraints on
the 3D positions and orientations of line seg-
ments, assuming that their true lengths and the
angles they make are known. The use of
"simplifying hypothesis” to restrict the ambi-
guity are also discussed.

The constraints involving angles have been
studied by many researchers. The solution is
not unique in general, and a frequently assumed
"simplifying hypothesis” is what is called "the



rectangularity hypothesis. Many man-made ob-
jects such as buildings, machine parts and fur-
niture have rectangular corners. Besides, the
assumption of rectangularity is regarded as
very natural from the viewpoint of human per-
ception (cf. Barnmard <1>).

Kanade <3> analyzed rectangular corner
images with regard to interpretation of
polyhedron drawing under orthographic projec-
tion. However, since he chose the gradient com-
ponents p, q of the face defined by two edges
(probably motivated by the gradient space of
Huffman <1>, the resulting equations vere very
complicated, and the solution was obtained only
by a numerical or graphical scheme. Later,
Kanatani <5> chose the orientation angles of
edges as unknowns and derived explicit analyti-
cal formulae.

Attempts to handle perspective projection
vas made by Barnard <1>. His approach is very
straightforward, but the solution can be ob-
tained only by numerical iterations even for a
rectangular .corner. Shakunaga and Kaneko <9
also analyzed angle clues under perspective
projection, following the formulation of Huff-
man <2> and Kanade <3>. Although these ap-
proaches can treat a wider class of problems,
e.g., lines that do not necessarily meet in the
scene, the formulations are very much compli-
cated.

In this paper, we will show that the solu-
tion for a rectangular corner can be obtained
in very simple analytical terms if we use the
image transformation corresponding to camera
rotation. Examples are shown by using real
images.

2. CAMERA ROTATION TRANSFORMATION

The camera image can be thought of as the
projection onto an image plane located at
distance f from the viewpoint O; a point P in
the scene is projected onto the intersection of
the image plane with the ray connecting the
point P and the viewpoint 0. The viewpoint O
corresponds to the center of the camera lens,
and the distance f equals the focal length of
the camera lens if the object is very far away,
so that for simplicity we call f the focal len-
gth although correction is necessary if the ob-
Jject is near the camera.

Let us choose an XYZ-coordinate system such
that the viewpoint O is at the origin and the
Z-axis coincides with the camera optical axis.
Let Z = f be the image plane, and take an xy-
coordinate system so that the x- and y-axes are
parallel to the X- and Y-axes (Fig. 1). A point
(X, Y, Z) in the scene is projected onto point
(x, y) on the image plane whose image coordi-
nates x, y are given by
x=fX/Z, u=fY/Z. @.1)

Consider a camera rotation around the
viewpoint O (i.e., the center of the camera
lens) and the induced transformation of the
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Fig. 2 Point (a, b) on the image defines unit
vector . 1 which starts from the viewpoint O and
points toward it.

image. Suppose the camera is rotated by rota-
tion matrix R (orthogonal matrix with determi-
nant 1). As a result, the point seen at (x, v)
now moves to point (x’, y') given by - the fol-
lowing theorenm.

Theorem 1. The image transformation induced by
camera rotation R = (ry; ) is given by

s TUTHT2 Y TS . _Ttex+rputrsef
rizatraytrsf’ T riaxerzsyrrsssf

@.2)

Proof. A rotation of the camera by R is equiva-
lent to the rotation of the scene in the oppo—
site sense. If the scene is rotated by R! (=
R"), where T denotes transpose. point X, Y, Z)
moves to point (X', , Z') given by

X’ T T2 T3 X
Y |=| ri2 ro2 r32 Y |. 2.3)
z rig o3 Tz L Z
This point is projected to (x’, uy') on the
image plane, where x° = fX'/Z' and y' = fY'/Z'.

Combining this with egs. (2.1), we obtain eqgs.

2.2).

" It should be emphasized that the image
transformation due to camera rotation does not
require any knowledge about the scene. The
transformation has an inverse, which is ob-
tained by interchanging R and R'. The trans-
formations of the form of eq. (2.2) form a sub-
group of the 2D projective transformation
group. In the following, we assume that the
image plane is sufficiently large compared with
the progected image of the object we are

vieving.

3. STANDARD ROTATION AND TRANSFORMATION

1 Strictly speaking, as the camera rotates, a
nev part comes into view and some part goes
out of view even if the image plane is infin-
itely large. In this paper, we do not con-
sider this effect, assuming that the angle of
camera rotation is not so large so that the
object we are viewing is always in the field
of view. For a mathematically rigorous treat-
ment, see Kanatani <7>.



Consider a camera rotation which maps point
(a, b) to the origin (0, 0) on the image plane.
The rotation is not unique; we can add a rota-
tion of an arbitrary angle (the swing) around
the Z-axis. The 3D unit vector starting from
the viewpoint O pointing toward the point (a,
b) on the image plane is given by

1= a b _ [ ) )
(:\/a2+b2+f2 N @b f2 " NP +b% 4 f? ) @.1

(Fig. 2) This vector makes angle

Q=tan™! (Ja?+b2 /1) 3.2)

with the unit vector k = (0, 0, 1) along the
Z-axis. The unit vector normal to both 1 and k
is given by

o kxl
TlEx T

b
/e ,'\/a‘;wz ,0). 3.3)

If the camera is rotated around vector n
=(my, n2, n3) by angle Q screwwise, the point
(a, b) is mapped to (0, 0) on the image plane.
The corresponding rotation matrix is given by

E F L
R@b)=| F G Iz

=l -l I3

3.4)

(cf. Kanatani <7>), vhere we put 1 = (11, 2,
l3) and i

p=Clatd®  p_abls-1) o _bllstd?

T db? AT AT @5

Hence, from Theorem 1, the transformation
induced on the image plane is given by

v_g Ex+Fy-1L1f . _p Fx+Gu-1laf
T burlsd” ¥ T Loy b7 ©.6)
We call the rotation R(a,b) the standard rota-

tion to map point (a, b) onto the image origin
(0, 0), and the transformation of eqs. (3.6),
vhich we denote by T(p) » the standard trans-
formation with respect to point (a, b). Its in-
verse Ty is given by

__pEx’+Fy’+Lf
= fll:c’+l2y'—l3f’ y= f

Fx'+Gy +lof

Lx'+lay - 13f" - 8.7

The standard rotation can be regarded as a
rotation which does not contain rotations
around the Z-axis (i.e., the swing is zero).
This is similar to the rotations of the eye or
the head: they rotate upward, downward,
rightward and leftward, but not around the line
of sight.

If we take the limit f — o of infinitely
large focal length, i.e., in the limit of ort-
hographic projection, we simply obtain xz' = x -
a, y' = y - b, namely the translation to move
point (a, b) onto the image origin (0, 0).
Thus, the standard transformation T(b) of egs.
(3.8) is a natural extension of image transla-
tion under orthographic projection, and hence
it can play the role of image translation under
perspective projection.
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Fig. 3 A half line starting from point (a, b)
having orientation ¢ is mapped by the standard
transformation T(.p) onto a half line starting
from the image origin having orientation ¢.

4. TRANSFORMATION OF LINES

A line on the image plane is written in the
form '
Ax+By+C=0. “4.1)
Here, ' the ratio of A, B, C alone has a
geometrical meaning; A, B, C and cA, cB, cC for
a non-zero scalar c¢ define one and the same
line.? In order to emphasize this fact, let us
write A:B:C to express a line.

If transformation (2.2) is applied, line
(4.1) is mapped into another line
A’ x+B y+C =0. 4.2)
The line A" :B":C’ is given by the following
theorem.

Theorem 2. A line A:B:C on the image plane is
transformed by camera rotation R into line

A+ B+r3iC/f ¢ ri2A+reBreC/f

D F(rizA+rzsB)+rasC. 4.3)

Proof. In view of eq. (2.1), eq. (4.1) is writ-
ten as A(fX/Z) + B(fY/Z) + C = 0, or
X

L A B C/f1| Y|=0.
V4
From eq. (2.3), we find that A, B, C/f are

transformed as a vector, i.e.,

A’ T r21 131 A
B |=| ri2 r2 32 B |,
c/f ria res r3 AL C/Sf

from which eq. (4.3) is obtained.

4.4)

4.5)

2 This means that A, B, C are the homogencous
coordincales of the line of eq. (4.1). If we
regard the xy-image plane with the line of
infinity added as a 2D projective space, and
use homogeneous coordinales to describe
points on it, treatment of points becomes
completely dual to treatment of lines.
However, we do not use this projective
geometry because we are interested in appli-
cations to real images; in practice the xy-
inhomogeneous coordinates is most convenient.



A line passing through point (a, b) is writ-
ten as
A(x-a)+B(y-b)=0, 4.86)
or A:B:-(Aa+Bb). If the camera rotation R is
the standard rotation R(a,b), the corresponding
standard transformation T, on the image
plane maps this -line into a line of the form
A'c + B'y =0or A":B":0. From eq. (4.3), ve
obtain

A’ _ (fE+aly)A+ (JF+bl)B
B’ (fF+al2)A+(fG+blz B’

4.7)

Consider a half-line starting from a point
on the image plane. Define its orientation to
be the angle ¢ (0 = ¢ <2r ) made from the
positive direction of the x-axis measured in
the positive sense (i.e., toward the positive
direction of the y-axis) (Fig. 3). From the
relation

A/B=-tangp, 4.8)

and eq. (4.7), we obtain the following result:

Theorem 3, A half-line of orientation ¢ start-
ing from point (a, b) is mapped by the standard
transformation T, p) into a line starting from
the image origin whose orientation ¢ is given
as follows.%:

Se—tan™! (fE+aly )tanp- (fF+bly)
¢ (fFvalz)tanp— (JG+b 1)
Since tan™' is a two-ualued function, there are

two . values for ¢, and the one nearer to ¢ is
chosen.

4.9)

Corollary. A half-line of orientation ¢ start-
ing from the image origin is mapped by the in-
verse standard transformation Tp™ into a
line starting from point (a, b) whose orienta-
tion ¢ is given by
o-tan--SCbL2 Ytang+ (fF+bl;)
(fF+alz)tanp+ (FE+aly)’

Again, the one nearer to ¢ is chosen.

(4.10)

4

5. CONSTRAINT ON LENGTH

Consider a line segment with endpoints (agp,
bp), (a1, by) on the image plane, and let Py,
Pi be the corresponding endpoints in the scene.
Assuming that the true 3D length of line seg-
ment PPy is known to be 1, consider the

3 Although eq. (4.9) is sufficient for theoret-
ical purposes, it is not desirable for actual
numerical computation, since we have tanp —
oo when ¢ — w/2. One way to avoid this is to
use eq. 4.9) for 0 = o < /4, 3r/4 = ¢
< br/4, Tn/4 < ¢ < 21, and to use othervise

1 (FF+alz)- (fG+blg )cotep
(fE+aly)~(fF+bl )cotyp’

which 1is equivalent to eq. (4.9). Similar con-
sideration applies to eq. (4.10) as well.

4 Recall that we assume the rotation is not
very large.

p=—cot”
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Fig. 4 .The projection of line segment PyP;and
the mapping by the standard rotation R (agby ) .

resulting constraint. If the standard trans-
formation T b, 1S applied, point (ag, bp) is
mapped onto the image origin. Let (a1’, b1 ') be
the point onto which point (a;, by) is mapped
by eq. (3.6). Let ¢, 0 = ¢ < 27, be the orien-
tation of the line segment starting from the
image origin (Fig. 4(a)).

Let r be the distance of point Py from the
viewpoint 0, and let 8, 0 < 6 < =n/2, be the
angle of the line segment PoPy measured from
the line of sight. The standard transformation
T(ap.by) Maps point Py onto point (0, 0, r) and
point P; onto

(lsinfcose, lsinOsing, r+lcosO) o.1)
(Fig. 4(b)). Let a, 0 = «a < /2, be the angle
of OP; measured from the Z-axis. From Fig.
4(b), angle a is

a=tan™ W/ﬁ

By the law of sines of trigonometry, the
distance r is expressed in terms of 6 by

®%.2)

r=Ilsin{0-a)/sina, b.3)
and hence one degree of freedom is constrained
about the positions of these two points; they
are expressed in terms of one parameter 0.

Consider to constrain the remaining degree
of freedom by invoking a simplifying hypothe-
sis. A reasonable one may be that the line seg-
ment is perpendicular to the ray connecting the
viewpoint and the point in question. In the
canonical position, this means 6 = =n/2. Under
this hypothesis, a unique value for r is given
from eq. (5.3) in the form

r=fl/afa;"%+b "2 .

6. CONSTRAINT ON ANGLE

(5.4)

Suppose we are viewing, on the image plane,
two half lines starting from point {a, b), and
let @1, g2, 0 = ¢, ¢2 < 21 be their orienta-
tions. Assume that the angle made by the
corresponding half lines L;, Lz in the scene is
known to be a. If the standard transformation
T(.b) is applied, the images of L;, Lz start
from the image origin, having orientations ¢,



2 given by eq. (4.9) of Theorem 3 (Fig. 5(b)).

Let 6y, 02, 0 =< 0, 62 < m, be the unknown

angle of Li, Ly measured from the Z-axis. Then,
the unit vector along them are given by
ni=(sin0;cosp;, sinB;sing;, cosl;), ®.1)
for i =1, 2 (Fig. 5()). The condition that
they make angle a is ny-np = cosa, or
sinBsinfzcos (p1 -2 )+ cosfcos0z=cosa. 6.2)
Hence, one degree of freedom is constrained.
For example, 0; can be expressed in terms of 02
and vice versa. The orientations of L;, L2 @n
the original position are prescribeg_ by unit
vectors n; = R{a,b)ny, nz = R(a,b)np, respec-
tively.

If we want to constrain the remaining one
degree of freedom by invoking a simplifying
hypothesis, a natural one is 0, = 6. Under
this hypothesis, angle 0, (= 62) is either 6y
or © - By, where

Bo=cos™! [S052-cos @1—g2)
1-cos (p1~¢2)

The two solutions are mirror images of each
other with respect to a mirror perpendicular to
the line of sight.

6.3)

An important fact about angle constraints is
that in the canonical position distinction
between perspective and orthographic disap-
pears; the interpretation of the 3D line orien-
tation does not involve depth or the distance
from the viewer at all. However, this fact does
not seem to have been widely recognized and
utilized in image understanding.

7. INTERPRETATION OF A RECTANGULAR CORNER

Consider a rectangular corner having three
mutually perpendicular edges. Many familiar ob-
jects, especially manufactured objects such as
buildings, furniture and machine parts, have
rectangular corners. Hence, the study of the
rectangularity constraint is of practical im-
portance. In addition, it is often argued that
humans invoke this rectangularity hypothesis
when no prior knowledge about the true angle is
obtained (cf. Barnard <1>).

To this problem, Kanatani <5> gave an
analytical solution under orthographic projec-
tion. Since that perspective projection reduces
to orthographic projection in the canonical
position as far as orientation is concerned,
Kanatani’s solution can be directly applied to
perspectively projected images as well.

Consider three edges starting from the image
origin, having orientations ¢;, it =1, 2, 3.
let 6;, i =1, 2, 3, be the angles of the
corresponding edges in the scene measured from
the Z-axis. From equations of the form of eq.
(6.2) with a = 0, we obtain the condition of
rectangularity in the form

X z L
VAP
@,5) 6, 2
Xy
7] f
()
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0
= XY
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Fig. 5 The projection of two half lines Ly, L2
and -the mapping by the standard transformation
T@pb) -

tan0;tan0;=-1/cos (¢;-9;j ), (7.1)
wvhere (i,j) = (1,2), @,8), (B.1). If all three
edges are assumed to go away from the viever,
i.e., 0= 8y, 82, 63 < ©/2, we obtain, mul-
tiplication of both sides of the three equa-
tions?(7.1) yields

tan0 tan0ztanf;

=a/~1/cos (p1-¢2 )cos (#2-3 )cos (@3-¢1) . (7.2)

From eqs. (7.1) and (7.2), we obtain

g =tan”! —cos(ge-¢s)
cos (91 -¢z )cos (g3-¢1 )

62=tan"A// —cos(esme) (7.3)
cos (@293 )cos (p1-¢2)

03=tan™! J —cos(p1—¢2) ,
cos (p3-¢1 )cos (¢2-¢3)

If edge i goes toward the viewer, i.e., =n/2

< 0; <m, then 8; computed above is replaced by
T - 0;, i.e., by the mirror image.

In deciding which edges go away from or
toward the viewer, we must distinguish two con-
figurations. One is the fork (or 'Y' ), vwhere
all pair of edges make angles larger than n/2
on the image plane (Fig. 6(a)). In this case,
we can check that the three edges either all go
avay from the viewer or all come toward the
viewer, and these two interpretations are the
mirror images of each other. The other confi-
guration is the arrow, where one pair of edges
makes an angle larger than /2 and the other
pairs make angles less than n/2 (Fig. 6(b)).
Then, it can be checked that either the side
edges go toward the viewer and the central edge
away from the viewer, or the side edges go away
from the viewer and the central edge toward the
viewer, and the two interpretations are the
mirror images of each other. It can also be
checked that these two configurations, i.e.,
the fork and the arrow, exhaust images of rec-
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Fig. 6 (a) A fork and (b) an arrow.

tangular corner.5

Once the orientations n;, i =1, 2, 3, of
the three edges are determined in this canoni-
cal position, their orientations in the origi-
nal position are given by n; = R(a,b)n;, i =1,
2, 3. Thus, we can conclude

Theorem 4, Under perspective projection, the 3D
orientation of a rectangular corner can be
determined uniquely from its projection except
for the mirror image with respect to a mirror
perpendicular to the ray connecting the
viewpoint and the vertex.

8. EXAMPLES

Consider the building of Fig. 7. The focal
length is f = 28mm. The image coordinates of
the upper-right vertex are (10.0Omm, 7.9mm), and
the orientations of the three edges are ¢ =
110°, @2 = 168°, ¢@3 = 224°. If we apply the
standard transformation given by eq. (4.9) of
Theorem 3, we obtain ¢ = 11.5°, ¢ = 165.4°,
o = 224.6° (Fig. 8).

Suppose we know that the three edges are
mutually perpendicular. The configuration is an
arrow. Applying eqs. (7.3), we obtain 0; =
56.1°, 02 = 131.3°, 03 = 593.8°, if we assume
that edge 2 goes away from the viewer and edges
1 and 3 comes toward the viewer. (Othervise, we
obtain the mirror image as well.)

From eq. (6.1), the corresponding unit vec-
tors become

_ [-0.8057 _ [-0.7277 _ [ -0.6167
= 0.772 |, no={ 0.190 |, n3=| ~0.6086 |.

| 0.557 | -0.660 | 0.503 |
From n; = R10.0,79m;, i = 1, 2, 3, the

orientations in the original position are given
by

[ -0.141 7 [ ~0.909 ] [ -0.3927]
n=f 0.902 |, nz=| .0.045 |, n3=| -0.429 |.
L 0.408 | | -0.414 | | 0.814

Fig. 9O shows the "top view" (orthographic pro-
Jection onto the YZ-plane) and the "side view”
(orthographic projection onto the ZX-plane).®

5 Here, we do no consider the degenerate case
vhere two edges are projected onto the same
line (i.e., 'L* or 'T’ ), assuming that the
object is in general position.

6 The position of the vertex is taken arbi-
trarily.

The upper-right
carner has three mutually perpendicular edges.

Fig. 7 Image of a building.

X

2

Fig. 8 The standard transformation applied to
the three edges in Fig. 7.
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Fig. 9 The top view and the side view of Fig.

7.

Consider the object in Fig. 10. The focal
length is f = 28mm. The image coordinates of
the upper-right vertex are (9.0mm, 11.1mm), and
the orientations of the three edges are ¢ =
183°, ¢ = 193°, @3 = 257°. If we apply the
standard transformation given by eq. (4.9) of
Theorem 3, we obtain ¢ = 160.8°, ¢ = 189.7°,
o3 = 259.7° (Fig. 11).

Suppose we know that edges 1 and 2 make
angle 60°, edges 2 and 3 make angle 90°, and
edges 3 and 1 make angle 90°. Then, we obtain
three equations of the form of eq. (6.2). If



image. The three edges of the

Fig. 10 Object
upper-right corner make angles of 60°, 90°, and
Q0° .

tvo angles are 90°, analytical solutions are
obtained.” We obtain 6, = 72.1°, 6; = 125.5°,
03 =64.3°, if we assume that edge 2 comes
toward the viewer and edges 1 and 3 go away
from the viewer. (Otherwise, we obtain the mir-
ror image as well.) This is the only existing
solution (except for mirror image).

From eq. (6.1), the corresponding unit vec-
tors become

_ '-0.899] _ [—0.803 _ [ -0.161
ny=| 0.313 |, np= —0.138} , n3=[ -0.887].
| 0.307 -0.580 0.433
From n; = R®.0,11.1)m;, i1 = 1, 2, 3, the

orientations in the original position are given
by
[ -0.789 -0.927 0.017
n=| 0.449 |, np=| -0.291 {, n3=[ -0.667 |.
| 0.420 -0.239 0.745
Fig. 12 shows the "top view" (orthographic pro-

jection onto the YZ-plane) and the "side view”
(orthographic projection onto the ZX-plane).®
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