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NOISE ROBUST 3D RECOVERY FROM OPTICAL FLOW
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A nev scheme is presented to recover the 3D shapes of polyhedra from optical flow. The ef-
fect of noise is minimized by exploiting the fact that the object is a polyhedron. First, the
gradients of the faces are taken as unknowns, which assures planarity of the reconstructed
faces and also enables us to use Kanatani's analytical solution directly. Then, a 2.5D sketch
in the sense of Marr is obtained. However, a consistent polyhedron cannot be reconstructed
from it due to incompatibility of face adjacency if error is present. In this paper, a variant
of Sugihara's optimization technique based on the polyhedron adjacency structure is applied.
As a result, the 3D shape can be reconstructed with sufficient accuracy for practical pur-
poses. An example is shown by using real images.
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1. INTRODUCTION

Reconstructing the 3D shape of an object mov—
ing rigidly in a scene from a sequence of camera
images is known as the shape-from-motion pro—
blem. Since humans apparently have such ability,
this problem has long attracted psychologists.
The first extensive study from the viewpoint of
artificial intelligence was done by Ullman <1>
in relation to human visual perception, and his
formulation has given a dominant influence over
subsequent studies of computer vision.

The first step is correspondence detection,
namely identification of feature points of the
object, say particular vertices or prominent
surface markings, in each image frame. If the
feature points are moving rigidly in the scene
as a whole, mathematical analysis shows that
their 3D positions are determined from the image
coordinates of these feature points (up to some
degree of indeterminacy depending on the number
of feature points and the number of image
frames.

Later, more systematic approaches were ex-
plored <2, 3. It turned out, however, that all
these mathematical schemes are very sensitive to
noise, and computed sclutions are too inaccurate
for practical use. There even exist very pessim-
istic views that noise vulnerability is inherent
to the problem itself and there can not exist
stable schemes at all. Are they really true?

Granted that the problem becomes inevitably
unstable in general (i.e., for feature points in
general position), a stable solution may be ob-
tained if we make use of some knowledge about
the object. Suppose the object is a polyhedron,
and its vertices are chosen as feature points.
If an existing scheme is applied directly in the
presence of noise, the computed 3D positions of
vertices adjacent to a face may not necessarily
be coplanar. But we know that the object is a
polyhedron and that they must be coplanar. Can
we exploit this fact in some way?

One way to incorporate this knowledge is to
choose, as unknowns, not the positions of ver-
tices but the gradients of the object faces. As
a result, computed solutions necessarily have
planar faces. The advantage is not limited to
this: analytical closed solution is known for
planar surfaces in instantaneous motion <4 — T>.
In this paper, we use the results of Kanatani
<7>.

The knowledge of the gradients of all visible
faces results in a 2.8D sketch (Marr <8>).
However, if these gradient values are not exact,
we may not be able to reconstruct a polyhedron
which is correctly projected onto the observed
image and yet whose faces exactly have the spe-
cified gradient values. In this paper, we obtain
a consistent polyhedron whose faces have gra-
dient values closest to the specified values on
the auerage by applying Sugihara’s optimization
<g, 10>.

Sugihara <10> analyzed line drawings of
polyhedra in detail and completely classified

Z=pPX+QqQy+Z

Fig. 1 A camera image can be modeled as perspec—
tive projection from a viewpoint ©, 0, =),
where xy-plane is the image plane.
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indeterminacies in interpretation. He presented
a general combinatoric procedure to find the de-
gree of freecdom with which arbitrary values can
be assigned without violating the condition that
the object is a polyhedron correctly projected
onto the observed image. He proposed least
square optimization to determine the remaining
independent indeterminate values from various
other sources of information (e.g., light re-
flectance, texture density, etc.).

However, Sugihara’'s scheme as proposed is a
non-linear optimization, and the convergence is
not guaranteed. This is because his scheme is
defined in general terms. In this paper, we show
that if we have a 2.BD skelch, i.e., estimate
gradient values of the (visible) faces, the pro-
blem reduces to a set of simultaneous linear
equations: no iterations and no worry about con-
vergence. This procedure predicts a consistent
polyhedron correctly projected onto the observed
image. Hence, if the solution is not exact, it
is useful in many practical situations, since it
has no inconsistencies. We demonstrate this by
an example, using real images.

2. OPTICAL FLOW OF A PLANAR FACE

Take an xyz-coordinate system in the scene,
and regard the xy-plane as the image plane. A
camera image can be modeled as perspective pro-
jection from a viewpoint (0, O, —-f) on the nega-
tive side of the z-axis (Fig. 1). The position
of the viewpoint corresponds to the center of
the lens, and the distance f between the image
plane and the viewpoint is regarded as the focal
length of lens.! A point (X, Y, Z) in the scene
is projected onto the intersection of the image
plane with the ray connecting the point and the
viewpoint. Its image coordinates (x, y) are

long as the object is far
some

1 This is exact as
away. If the object is near the camera,
correction is necessary.
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given as follows:2

x=fX/(f+Z), @1

y=fY/ (f+Z).

Suppose a polyhedron is moving in the scene,
and let =z =px + qu + r be the equation of one
particular face. Parameters p, q designate the
gradient of the face. Let us call r the depth of
the face.

An instantaneous rigid motion is resolved
into translation (a, b, c¢) at an arbitrarily
fixed reference point and rotation (w;, we, -w3)
around it (i.e., with (a, wp, w3) as the axis
orientation and m12+a>22+co32 (rad/sec) as the
angular velocity around it). Let (0, O, r), the
intersection of the face (or its extension) with
the =z-axis, be the reference point. It is shown
that the velocities of points on the face pro-
duces on the image plane the following optical
flow:

u=uy+Ax+By+ (Ex+Fy ),

v=yp+Cx+Dy+ (Ex+Fyy. @.2)
Here, the coefficients, which we call the flow
parameters, are given as follows <7>:
fa I
U f+r’ Uo—f+r’
—peo— PLEC = o —aa— &
A Pw2 fir » B qa2—w3 f'H"’
=_ _pb = qe . d0+C
C=-pw;+u3 For D=-qu Fir
=1 (ot PE 0 R 3
f(w2+f+r), F: f< (‘”+f+r>’ 2.3)

Suppose the face in question has four cor-
ners, and let (x;, y;), 1 = 1, .y 4, be their
image coordinates. If we measure the velocities
Wi, v;), i =1, .» 4, at these points, the
flow parameters uy, wy, A4, B, C, D, E, F are
determined, from eqs. (2.2), by solving the fol-
lowing simultaneous linear equations:

M1 Xy 2 iy ] U
1 2w vz (| o
1 3 u3 x? x3u3 A
1 LR x’ wu || B
1  ow mw v c
1 2 Y xeyr uf D
1 X3 W x3u3 P E
L 1 o ow mu oy LT
uy
uz
ug
im
= @.4)
)
3
Uy

2 The limit f — o of an infinite focal length
corresponds to orthographic projection.

The determinant of the above matrix, which is

equal to
I xoow 1 x2 w2
T zzyp| |1 a3u3
1 x3 y3 1 x4 uy
1 x3 y3 Tz oy
1 24w F O TR VT 2.5)
1 2w T 22y

does not vanish unless three among the four
points are collinear. Hence, if no three corners
are collinear, the flow parameters are uniquely
determined from the velocities at four corners.

If the face has more than four corners, where
velocities are observed, we can determine the
flow parameters more accurately, say by the

least-square method.

In the following, we assume that any
(visible) corner vertex of the object is adja-
cent to at least one face which has four corners
or moré. The purpose of this paper is to show
that estimation accuracy can be increased by
taking advantage of polyhedron consistency. cons-
traints. As the number of corners of a face in-
creases, the constraints become more and more
strong, and hence estimation accuracy is ex-
pected to increase.

3. ANALYTICAL 3D RECOVERY OF FACES

Suppose the flow parameters uy, vy, A, B, C,
D, E, F are determined for each face by the pro-
cedure in the previous section. Then, the rota-
tion and the gradient of the face are determined
by solving egs. (2.3) vith known values of uy,
vw, A, B, C, D, E, F. The solution is given in
analytical forms <4 - 7>, Here, we follow Kana-
tani <7>.

First, compute the following quantities.3
T=A+D, R=C-B,
L=E-uo/f 31 F-v/f).

Here, i is the imaginary unit, so that Uy, S, L
are complex numbers in general.

S=(A-D)+1 (B+C), @.1)

It can be proved that the following cubic
equation has three real roots in general <7>:

X3+TX2+‘—11(T2— IS12- 1 L12)x

+L®Re (L28) -TIL12)=0, @3.2)
denotes the absolute value of a com-
plex number, and Re(-) , Im(-) the real part
and ' the imaginary part, respectively. Let a be
the middle of the three real roots of eq. (3.2).

Here, | - |

3 These quantities are derived as inwariants
with respect to coordinate rotation on the
image plane according to group representation
theory, cf. Kanatani <24> for details.
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The gradient components p, @ and the the rota-
tion velocities wi, w2, w3 are given as follows

<7>:
p=2laRe (L+A/12-4aS) ,
g Tn (L /17405 ,
<o1=——12-Im (LF N/ [%-4aS) ——‘}—",
wp=iRe (LF /1*-40S) +

m3=12Ri In (L*/12-408) .

Here, * denotes complex conjugate, and one par-
ticular branch is chosen for the complex square
root <7>.

Egs. (3.3) show that there exist two sets of
solutions. However, since the rotation veloci-
ties @, wp, w3 are common to all the faces, ve
can pick up only the true solutions if two or
more faces are observed. In the presence of
noise, however, we need a clustering technique
in the three-dimensional parameter space of i,
@2, @3 .

3.3)

Thus, the gradient of each face is uniquely
determined. However, we should note that the
computed gradient values may not be exact. Even
if the observed images are precise and exact
measurement is possible, the “velocity” must be
approximated by the "displacement’ (divided by
the time lapse), which may not be regarded as an
instantaneous velocity no matter how short the
time interval is. Besides, noise on images and
error in measurements are usually inevitable. As
a result, the computed gradient values may not
be able to define a consistent polyhedron. We
consider this problem in detail in the next sec-
tion.

4., 3D RECONSTRUCTION FROM A 2.5D SKETCH

Consider an object image. Suppose preprocess-—
ings such as edge detection, segmentation and
object boundary detection are already done,
resulting in a line drawing of the object. Let
us call such a line drawing a 2.5D sketch if the
gradient of (or equivalently the normal vector
to) the object surface is estimated at each
point according to Marr <8> (Fig. 2).

Estimation of the surface gradient can be
done in many ways, and the use of optical flow
(i.e. shape from motion) is one of them. Other
attempts frequently made include observation of
surface texture (i.e. shape from texture), meas-
uring distortion of texture elements <11> or
texture density <12> and measurement of light
reflectance (i.e. shape from shading <13>. Pro-
jection of regular patterns onto the object sur-

4 We assume that a is not zero. If it happens to
be zero, another set of formulae must be used.
See Kanatani <7> for details.

Fig. 2 If estimates of the surface gradients or
the surface - normal vectors of the object are
given, the image is called a 2.5D Sketch (Marr
<8>).

2. MKEONEE L RER~ tVOREMNEL SN
TV EEBAE F2.5DR 5 » F 1 LWL (Harr <B>) .

face is another possibility <14>.

Now, a 2.5D sketch can be regarded as a
polyhedron image; the image domain can be decom-
posed, according to the estimated gradient
values, into small polygonal regions (or planar
patches) in such a way that the gradient is
almost the same in each of them. (If the object
is a polyhedron, its faces themselves are planar
patches), Theoretically, the 3D object shape can
be reconstructed by by connecting these planar
patches one by one in the scene according to the
specified orientations in such a way that each
of them is projected onto the corresponding
region on the image plane. However, if the esti-
mated gradient values are not accurate, the
reconstructed object shape depends on the order
of patch there may arise incompatibility of face
adjacency; two faces may not meet with a common
boundary (Fig. 3). Since most techniques of sur-
face gradient measurement almost invariably in-
troduce noise and error, we cannot always obtain
the 3D shape of the object from a given 2.5D
sketch.

The above consideration can be rephrazed as
follows: Being a polyhedron is a strong cons—
traint, and its faces cannot be assigned the
gradient walues arbitrarily. Implications of
this fact were studied in detail by Sugihara <9,
10> as a corollary of his algebraic description
of constraints on polyhedron images, and he pro-
posed to obtain, starting from a given 2.5D
sketch, a polyhedron which satisfies necessary
constraints and yet has face gradient values
closest to the estimated values on the average.
His method goes as follows.

Given a polyhedron image, the adjacency
structure must be determined. Let V;, 1 =
1, ., n, be the vertices and F,, « =1, ...,
m, be the faces. The adjacency structure is spe-
cified by a set of adjacency pairs (Fe, Vi)
(meaning that point V; is adjacent to face F,).
The first thing to do is check if the adjacency

structure is regular or not. If it is non-
regular, the ad jacency pairs are
"overspecification” and 3D reconstruction is

possible only for special cases <10>. The neces-
sary and sufficient condition for regularity is®

~4~



VEMBIFI 2R (F)+4, “4.1)
for any subset § of the m faces
{Fela=1,...,m} , such that ¥ = 2. Here,
IF! is the number of faces in subset F, V@)

is the number of vertices adjacent to at least
one of the faces in subset ¥, and R(F ) is the
number of adjacency pairs involving the faces in
subset ¥ <10>. If eq. (4.1) is not satisfied, we
ignore some (minimal number of ) adjacency pairs
so that the adjacency structure becomes regular,

If the adjacency structure is regular, it can
be shown that the degree of freedom the rank is
r=n+m-1, “4.2)
vhere | is the number of adjacency pairs, mean-
ing that we can assign at most r arbitrary
values to the positions of the vertices and gra-
dients of the faces <10>. In other words, if we
choose an appropriate set of r variables (or
basis), the polyhedron is uniquely reconstructed
and the positions of its vertices and the gra-
dients of ‘its faces are expressed in terms of
these r variables.

Sugihara <9, 10> proposed to use these inde-
pendent variables for optimization, searching
the r dimensional space for values for which the
corresponding polyhedron best fits additional
requirements resulted from other sources of in-
formation (e.g., shape from texture or shape
from shading). However, this is a non-linear op-
timization, requiring iterative search, and con-
vergence is not guaranteed. In the following, we
show that the optimization reduces to a set of
simultaneous linear equations, so that an opti-
mal solution can be obtained without any itera-
tions.

Sugihara first described his formulation
under orthographic projection and then suggested
a way to reduce perspective projection to ortho-
graphic projection. However, his formalism under
perspective projection is not convenient in our
setting, i.e., optimization of a 2.5D sketch, In
the following, we present a convenient formula-
tion for perspective projection.

5. OPTIMIZATION OF A 2.5D SKEICH

Let Vit Xi, i, Z:), i =1, ..., n, be the
3D positions of the vertices of the polyhedron
under consideration, and let Fo: z = peX + quu +
ra» « = 1, ..., m, be the equations of its
faces. The condition that vertex Vi is adjacent
to face F, is expressed by

Z; =puxi+QaYi+ra . 6.1)

The image coordinates (xi, u;) are related to
the 3D coordinates (X;, Y; Zi),i=1, ..., n,

corresponding point is given by eqs. (2.i).

5 This result is true unless the corresponding
polyhedron has an exceptional structure (e.g.,
three faces sharing a common edge). For
details, see Sugihara <10>.

Fig. 3 The 3D shape cannot be reconstructed due
to the incompatibility of face adjacency.

R3. BoBBOREAC L O. MERAMNTERL,

we introduce a new quantity defined by
2.1), and

Now,
zy = fZ; /(f+Z; ) in analogy of egs.
use

2.6 -
Wz YRz

instead of X;, Yis Z; .
Xis Yi,s Z;, we obtain

£fYi

z,--fffz‘i , 5.2)

Solving egs. (5.2) for

Tz fu Iz
X‘_f—zi’ Y; = Z; =i ®.3)
Substituting eqs. (5.3) into eq. (5.1), we ob-
tain
o IPa . fQa . fre
Z‘_f+r¢x‘+f+ray‘+f+rq' ®.4)

Next, we define the following new quantities:

iy % L
Pojir Qg Repe. ®.5)
They are non-dimensional quantities. The inverse
of egqs. (6.5) is
_ Py _ _ IR,
ptx“1 R, B q«—l"Ra s ra"‘_Ru . (.6)
Thus, eq. (6.1) is equivalently rewritten, from
eq. (5.4), as
Z;=PaXi+Quli +fRy . B.7)
Since x;, wyi, i=1, ..., n, are the known

image coordinates of the vertices, their 3D
positions are determined by eqs. ®.3) if z;, i
=1, ..., n, are known. Consequently, Zi, 1=
1, ..., n, can be taken as unknowns about the 3D
vertex positions. On the other hand, P, Q,, Ry
a = 1, ..., m can be regarded as unknowns,
equivalent to py, gy, rq, for the faces. Thus,
ve obtain | (= the number of adjacency pairs)
equations of the form of eq. (5.7), which are
the only constraints on 3D reconstruction. (We
can assume that the adjacency structure is
already regular by the argument in the previous

section. )

For optimal 3D reconstruction, let us use the
least square method, minimizing

J%};:wa ( Pa—Po )2+ (Qu— )2 » 5.8)
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where Dy, Q. are the estimated gradient compo-
nents of face F,, and w, is the weight of face
F,. If egs. (5.6) are substituted, eq. (5.8)
becomes

Ay, ey 5 Ree )
Jopdiun (20 (Pt boa— )

+ Qo+ GuRa— G )?) (5.9)

Now, if face F, has large depth ry, the gra-
dient estimation may not be so accurate, and
hence a small weight wq should be assigned. At
the same time, if p, and q, have very large mag-
nitudes, the measurement may be inaccurate, and
hence a small weight w, should be assigned. In
view of these considerations, it seems appropri-
ate to choose, as the weight,

S U 5.10
Wy ;;fIEZ§(f+ra) . (5.10)

The problem is optimization of J constrained
by eqs. (6.7) for all adjacency pairs (Pi, Fo).
Hence, by introducing Lagrangean multipliers Aq;
corresponding to all existing adjacency pairs
®P;, Fy), the problem is converted to uncons-
trained optimization of

n

Elmriar (Pet BB @t Gk

+ 2 Aai (Podi+Qui +fRai ). G.11)

Taking derivatives with respect to Py, Qqé Ry s

and z;, we obtain the following equations.
Pa+ﬁaR&+Zi B2+ hai =P =1, .0m, (5.12)
Qa+?zuRa+ZiZ B2+ 82 Wikai=Ges a=1,....m, (5.13)
(5.14)

Z(ﬁuxi+aayi‘f)Aai:0’ a=1,...,m,
1

Y Aai=0, i=1,...,n. 5.15)
a

Here, the summations range over existing adja-
cency pairs. Egs. (5.12) - (56.15) together with

eqs. (5.7) provide n + 3m + 1 equations for un-
knowns z; (1 =1, ..., n)ys Pos Qs Rar (@ =
1, ..., m), and the 1 Lagrange multipliers Ay .

However, since a 2.5D sketch, by definition,
defines only the object shape, and the absolute
distance from the viewer cannot be determined,
we must give, as input, the value of Z; (and
hence of z; ) of one particular vertex, removing
the corresponding equation from egs. (5.15).

Thus, the optimization of a 2.5D sketch can
be done without any iterations; all we need is
to solve a set of simultaneous linear equations.
Once a solution for z;, 1 =1, ..., n, is ob-
tained, the 3D positions X;, Y;, Z;), i =
1, ..., n, of the vertices are recovered by egs.

6 Eq. (5.14} is obtained by differentiating eq.
(®.11) with respect to R,, and substituting
eqs. (5.12) and (5.13).

(a)

®)

Fig. 4 Two consecutive images of an object.

4. Bl 2 ROYKER,
5.8).7
6. EXAMPLE
Consider the two images of Fig. 4. Let us

label the vertices and the faces as shown in
Fig. 5. The adjacency structure is given by ad-
Jjacency pairs

(Flvvl>v (FI»V4)) (FI’VS)v (FI:V’]), (FlyVS),
F2,V3), (F2,Va), Fa,Vs), (F2.Vs),
Fz,V1), (F3,V2), (F3,V3), (Fz3,Va),
(F47V1)y <F4.yV2>) (F4’V8>r (F4’V9)'

We can easily check that the condition (4.1) is
satisfied, so that the adjacency structure is
regular. Consequently, the degree of freedom is
four, and hence the object can be reconstructed
in terms of four basis variables. However, we do
not select any basis variables; we apply the op-
timization process to all the variables as shown
below.

First, we measured the 2D positions (x;, Vu;)
of the vertices on Fig. 4 and obtained the
displacements of the vertices shown in Fig. 6.
In this experiment, no precise calibration was

7 Sugihara <9, 10> also added inequality cons-
traints which indicate that some vertices
should be nearer to the viewer than others.
Here, we can add some appropriate inequality
constraints, too.
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done, so that the focal length f may contain a
few percent error and the above measured values
may contain about 10 percent error. Moreover, we
approximated the theoretically instantaneous
velocities by the observed finite displacements,
which contains considerable amount of error.

We can obtain the flow parameters of the
faces by regarding the displacements as instant-
aneous velocities (taking the time lapse between
the two images as unit time), and applying eq.
(2.4). The gradient of each face can be computed
from egqs. (B.1) - (8.3). First, two gradients
and two rotation velocities are obtained for
each face, but the common rotation velocity is
easily identified, though the value is somewhat
different from face to face. We discarded, for
each rotation velocity components, two extreme
values (i.e., the maximum and the minimum) and
took average of the rest. Assuming that this av-
erage gives the correct rotation velocity, we
recomputed the gradient of each face by using
the fourth and the fifth of egs. (2.3).

Applying the optimization of the previous
section, we obtain the 3D coordinates of the
vertices. Fig. 7 shows the “"top view’
(orthographic projection onto the yz-plane) and
the ’“side view” (orthographic projection onto
the zx-plane. In spite of the presence of noise
and inaccuracy of the estimated gradient values,
the final result is fairly correct. Many experi-
ments with synthetic data show that we can
reconstruct the 3D object shape with sufficient
accuracy for many practical applications if the
motion is not infinitesimal, (as long as it is
small and confined within a certain range).

7. CONCLUDING REMARKS

¥We have shown a new method to reconstruct 3D
object shape from motion in the presence of
noise, assuming that the object is a polyhedron.
The process consists of three stages. First,
given two consecutive images, we compute the
"flow parameters” of each face from the vertex-
to-vertex correspondences. Then, the "gradient”
of each face is computed by Kanatani’'s analyti-
cal formulae <7>. Finally, from thus obtained
"2.5D sketch”, the 3D shape is reconstructed by
optimization. The last stage is performed by
solving a set of simultaneous “linear” equa-
tions. A fairly reasonable object shape is
reconstructed in spite of noise and error in-
volved in observation and measurement. We demon-
strated this by an example, using real images.

The optimization technique presented here is
also useful in many problems other than "shape
from motion”; it can be applied whenever the
surface gradient can be estimated by some means.
In many 3D recovery problems from light reflec-
tance and photometric stereo, it is assumed that
the object has a smooth surface (e.g., spherical
or cylindrical), and the projection is ortho-
graphic. Then, the image domain is decomposed
into many small meshes and the 3D shape is

reconstructed by employing an appropriate
smoothness constraint saying that changes
between meshes are very small (e.g., minimiza-

v, Vs

Fig. 5 The adjacency structure of the line draw-
ing of the object in Fig. 4.

5. H4oWkowEmolsgs,

Fig. 6 Displacements (optical flow) of the ver-
tices of the object in Fig. 4.

B6. R4oBkoBAOBHCF 75 o070 -"),

Fig. 7 The "top view” (orthographic projection
onto the yz-plane) and "side view” (orthographic
projection onto the =zx-plane) of the object
reconstructed from the optical flow of Fig. 6.

B7. 60757 s harva—hoBERLEMED LH
H (yzEA~OFFHEE) sLCHER (xBE~0RTRE),

tion of Laplacian), cf. <13>. However, appropri-
ateness of a particular smoothness constraint
cannot be checked a priori, and the method does
not work well if the decomposition is very
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coarse, if the object has corners and edges, or
if the projection is perspective. Our method
works well in such cases.

Although a 2.5D sketch is capable of deter-
mining the object shape only up to a scale fac-
tor, the reconstructed shape can be used for
identification (Which of the assumed models does
it correspond to?) and classification (Which of
the assumed categories does it belong to?). In
such a circumstance, the optimization technique
presented in this paper is very useful.

There still remain some problems to be solved
which we did not consider in this paper. One is
the detection of optical flow, i.e., finding the
correspondences between feature points. Many
schemes have been tested for this purpose <15 -
18>, but this is a very difficult task. Recen-—
tly, schemes of 3D recovery from motion without
requiring the correspondence have also been pro-
posed <19 - 21>.

Another is the technique of accurate camera
calibration; since the shape-from-motion problem
is sensitive to noise, accuracy must be pursued
in every stage of the process if we apply the
optimization in the final stage. Necessity of
accurate calibration has been strongly recog-
nized recently <22, 23>.
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