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Abstract: We report the preliminary result of our research including a multi-filtering approach
based on the gradient scheme to extracting optical flow field of rigid motion. An overdetermined
linear system containing several linear equations — equations of constraint lines like that of Horn &
Schunck [Horn ’81] — about two components of flow vector at a location in image are constructed
according to the responses of several spatial filters with different orientations. Two components
are then calculated by applying least squares method to the overdetermined linear system. The
main characteristics of our approach are the estimation of confidence measure corresponding to
each flow vector which can be used as a kind of initial evidence of discontinuities in flow field (or
say, motion boundaries), and accuracy of extracted flow field near high-textured region without

any regularization processing, etc.

1 Introduction

Development of approaches to analyzing 2-D rigid motion
from a sequence of images is an important research field
in computer vision. Ability of analyzing motion is nec-
essary for recovering 3-D information about objects and
environment which be loosen during projection. Over
more than one decade many researchers have reported
their results. A survey about these pioneers’ contribu-
tions to the development of rigid 2-D motion analyzing
approaches can be found in [Aggarwal '88]. Here we dis-
cuss a gradient-scheme-based approach to the analysis of
2-D apparent motion in image sequence caused by the
3-D relative motion between observer (sensor) and rigid
objects in environment.

Within almost all approaches to extracting optical
flow field based on gradient scheme, like those of [Horn 81,
Nagel ’83, Schunck 89], an assumption called intensity
constraint is preferred which assumes that intensity val-
ues of projection of same point in environment will be
similar between consecutive image frames. Here we de-
note the intensity at location (z,y) of the image at time

t by I(z,y,t). Intensity constraint can be described as
I(z,y,t) = I(z 4+ Az,y + Ay, t + At). 1)

In the gradient scheme, by assuming I{z,y, ) is differen-
tiable with respect to z, y, and t, and both of Az, Ay,
and At are significantly small, Eq.(1) can be expanded
to

Lu+Lyv+1 =0 (2)

where I, and I, denote the partial derivatives of intensity
with respect to = and y, respectively, and v = dz/dt,
v=dy/ dt denote the horizontal and vertical components
of 2-D flow vector u(z,y) = (u,v)?. It is well known that
this Eq.(2) gives a constraint line in u — v space.

From Eq.(2), only normal velocity component paral-
lel to gradient vector can be determined, while tangential
velocity component perpendicular to gradient vector re-
mained unsolvable. Marr & Ullman [Marr ’81] called this
the aperture problem because a moving edge seen through
a circular aperture seems to be moving normal to itself,
while the transverse component of the velocity is not per-
ceived. In order to solve the aperture problem, it is nec-
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essary to introduce the smoothness constraint which as-
sumes that the flow vectors vary smoothly within a small
spatial neighborhood region [Horn ’81] or on a contour
[Hildreth ’84]. This constraint has also the effect of prop-
agating the flow vectors extracted near corner points to’
the homogeneous regions of intensity. Horn & Schunck
[Horn ’81] expressed the constraint with a stabilizer of
first order. Yuille & Grzywacz expended this constraint
by expressing it with a summation of stabilizer items in-
cluding not only lower order but also higher order ones
[Yuille 89]. It is well known that the main drawback of
the smoothness constraint proposed by Horn & Schunck
and Yuille & Grzywacz is the indiscriminate smoothing
effects both within homogeneous flow regions and at lo-
cations near discontinuities in optical flow field.

We present an approach to extracting optical flow field
of rigid motion with a kind of gradient scheme. Classi-
cal assumptions in optical flow estimation with gradient
scheme like those of intensity and smoothness constraints
are also used, and flow vector at a location in image is es-
timated from the outputs of multiple sets of filters which
serve as the observing windows. Some details about our
approach will be described below.

2 The Basic Idea

2.1 Overdetermined Linear System

In our approach, a new sequence of images f;(z,y,t) is
created by convolving original sequence of images I(z,y,t)
with a spatial filter F(z,y)

fi(z’y7t) = I(z,y,t)*F,-(m,y) (3)

where * denotes a convolution. We assume that the in-
tensity constraint like that of Eq.(1) will not be violated
in fi(z,y,t). This constraint is rewritten as

filz,y,t) = filz + Az,y + Ay, t + At). (4)
A constraint line equation
fizu + fiyv + fl't =0 (5)

can be obtained from Eq.(4) like that of Eq.(2). On
the other hand, we can create another sequence of im-
ages with a spatial filter F;(z,y) which is different from
Fi(z,y), and also assume that the intensity constraint like
that of Eq.(1) will not be violated. Therefore, another
constraint line can also be obtained. The flow vector
u = (u,v)7T at location (z,y) in original image I(z,y,t)
can be calculated by solving simultaneous equations of
these two constraint lines.

Due to the calculation of convolution expressed in
Eq.(3), Eq.(4) holds only when all pixels within the do-
mains of filters F(z,y) and Fj(z,y) have the similar ve-
locity. This is a kind of smoothness constraint expressed

implicitly like that of Heeger’s [Heeger ’87]. It is evident
that if filters overlap motion boundaries, Eq.(4) would be
violated and the estimation of flow vector would become
erroneous.

Srinivasan presented a generalized gradient scheme in
which six filters — partial derivated versions of two dif-
ferent spatial-temporal filters with respect to z, y, and
t — are used to extract optical flow field [Srinivasan ’90].
His idea is based on using two filters to generate two con-
straint lines and solving simultaneous equations to calcu-
late two components u and v of flow vector. A drawback
of the approach proposed by Srinivasan is its impossibility
for estimating the degree of how calculated vector fits the
observed image data, while this degree plays important
roles at the stages of discontinuity detection, segmenta-
tion of flow field, and regularization process, etc.

Instead of calculating flow vector from only two lin-
ear equations, approach proposed here calculates vector
at each location from an overdetermined linear system
which contains more than two equations of constraint
lines. Classical least squares method is usually used to
solve the system. It is well known in the theory of data
modeling that a covariance matrix corresponding to esti-
mated parameters (components of flow vector here) can
be obtained from the overdetermined system. We can get
a confidence measure according to the covariance matrix
as the rating value of estimated flow vector at each loca-
tion.

2.2 Multi-Orientation Filtering

As described above, a filter can generate a constraint line
at each location in image. In order to obtain an overde-
termined linear system containing several constraint lines
for the estimation of flow vector and its confidence mea-
sure, more than two filters are necessary. Furthermore,
differences between slopes of constraint lines generated by
filters should be as large as possible. Ideally, all of these
lines will intersect at a single point within u — v space.
When processing real image, however, it is difficult, if
not impossible, to expect accurate intersection at a point
due to several sources of noise. At this situation, least
squares method can be used to obtain unique solutions
about two components of flow vector. A merit of using
multiple filters is that solution’s rating value, which can
serve as confidence measure, will be obtained based on
the residuals between least-squared solutions and several
constraint lines. This measure will play important roles
at the stages of detection of discontinuities, segmentation
of flow field, regularization processing, etc.

Srinivasan described a constraint on the selection of
two spatio-temporal filters which simply limits the filters
to be different only. Here we append an additional con-
straint to filters as that they should be able to create a
set of constraint lines as that of Eq.(5)’s so that at lo-
cations near discontinuities within high-textured regions
the residuals will become significantly large.
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Usually, the orientation-selective spatial filters will sat-
isfy the constraint of filters described above. Orientation-
selective filter can serve as a kind of observing window
through which “normal” component of flow vector par-
allel to the “gradient vector” measured by that filters is
observable. Near a corner point, normal components ob-
served by several window are compatible, means that the
summation of squared residuals is small. At locations
near discontinuities within high-textured regions, nor-
mal components observed by several window become no
longer compatible, means that the summation of squared
residuals will become larger.

Another merit of using multiple orientation-selective
spatial filters come from the reason of that the geometry
of real image is so complex that it is impossible to pre-
dict such image features as orientations of edges and the
neighbor region of a pixel, etc. We define the “optimal”
filters for a point as those ones by which more than one
reliable normal components (constraint lines) with differ-
ent directions (slopes) could be obtained. For instance,
for a corner point composed of two edges, the optimal
filters will be two ones each of which orientation is com-
pletely the same as the directions of edges. Because of the
difficulties in predicting which filters can be used as opti-
mal observing windows, flow vector can not be estimated
accurately with only two filters of fixed orientations un-
der almost all situations. Therefore, it is necessary to use
a set of filters with several different orientations.

As a summary of this section, we would like to claim
that multiple filters with different orientations are nec-
essary for the detection of motion boundary and the ac-
curate estimation of flow vector. In the next section, we
describe some computational details about how the esti-
mation of flow vector field can be obtained from output
of multiple filters.

3 Computational Details

3.1 Solution with WLS Method

Aset L={L,,n=1,...,N} of constraint lines
Lot fasu+ fayv + fur = 0

can be obtained from the output of a set of N (N > 2)
filters of different orientations with same size. These lines
can be used to construct an overdetermined system for
solving two components u and v of flow vector u. In this
section, we simply describe the estimation of flow vector
by applying the WLS — Weighted Least Squares — method
to overdetermined system.

Solving the overdetermined system with least squares
method is equivalent to find a solution @ = (@, )7 which
minimizes the weighted summation of squared residuals.
This problem can be expressed as

N
find a solution @ which minimizes J = Y w,rZ (6)
n=1
where r? denotes the squared residual of constraint line
L, defined as
7,2 _ (fnrﬂ + fny'v + fnt)2

» foe+ 12y ’
and w, denotes the relative weight of L, within £ which
can be calculated as a function of intensity contrast C,
as follows

Cﬂ
Wy = —Z:N-—ci-, where C" = '\)fr%z-l—f,%y

i=1

(™

There are several methods to solve Eq.(6). In our ap-
proach, we select the SVD - Singular Value Decomposi-
tion — method for the least-squares solution. Some details
about the SVD method can be found in [Press ’86)]. Al-
though the SVD method requires a higher cost of calcu-
lation, it has several persuasive characteristics : (i) This
method can diagnosis the singularity of overdetermined
system, and (ii) In some cases, it can give the correct
solution even though the system is nearly singular.

There are three kinds of solutions for flow vector ob-
tained from overdetermined system as: {a} Reliable Solu-
tion - If the overdetermined system is not singular, (vari-
ation of gradient directions is significant within observing
windows,) the estimated flow vector will be reliable. This
case occurs near corner points or high-textured region;
{b} Normal Component Solution - If the overdetermined
system is singular or near singular, only normal compo-
nent of flow vector can be estimated. This case occurs
when a straight edge is longer than the size of filters and
there is not any texture near the edge; and {c} Unreli-
able/Unsolvable Solution — The flow vector can not be
calculated if the spatial gradient is zero. Or the flow
vector will become erroneous if spatial gradient is nearly
zero. This case will occur in the homogeneous regions,
and the solutions of flow vectors in these regions are am-
biguous.

We use the CN - condition number — of overdeter-
mined system to identify the cases of {a} and {b}. A def-
inition of condition number can be found in [Kearney '87],
and the method to calculate it with SVD can be found in
[Press 86]. The CN will be large if the set of constraint
lines is nearly singular, and will become infinite when it
is singular. Therefore, the identification of estimated vec-
tor can be performed by limiting the value of CN. The
third case {c} can simply be identified by thresholding
the intensity contrast.

3.2 Confidence Measurement

Calculations of the covariance matrix and confidence mea-
sure of the estimated flow vector @ are very important for
the estimation of optical flow fields. Covariance matrix
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has been used in incremental estimation [Matthies 89,
Singh ’91], and confidence measure can be used as a kind
of weight assigned to estimated flow vector when smooth-
ing process is performed. Anandan [Anandan ’89] and
Singh [Singh 90] used this kind of measures in their stages
of regularization. In our approach, as described in Sec. 2
and Sec. 2.2, the confidence measure is specially impor-
tant for the initial prediction of discontinuities in optical
flow field.

In our approach, we simply apply the typical method
of error analysis excluded the assumption about Gaus-
sian distribution. The weighted summation of squared
residuals € and a matrix D are defined as

N
dn d
=3 2 D= 11 @1z

where w, and r2 are whose described in Section 3.1, and
d;; are represented as

N N
dyy = Z wnf:z i d22 = Z wnf:y )
n=1 n=1

N
diy dy = Z wnfnzfny'
n=1
From e and matrix D, covariance matrix of & can be
calculated as

. dyy —dy
Cov = —__( —dyy dn ) ®)

Confidence measure R is determined as the inverse of
larger eigenvalue of matrix Cov. This kind of determi-
nation of confidence measure is reasonable because it is
evident from Eq.(8) that R will be large only when the e
is small, and determinant of matrix D is large. Larger ¢
will appear mainly near motion boundaries, and smaller
determinant of matrix D will appear at where aperture
problem occurs. All of these two situations would drop
down the value of confidence measure R.

From the definition of R we can see that this measure
can be used as an initial prediction of discontinuity in
flow field. It can also be used as a kind of weight value
during smoothing (regularization) stage.

4 Implementation

In our implementation, we select the spatial orientation-
selective Gaussian filters as those described above. This
selection is preferred based on that: (1) Gaussian filters
have the averaging effect and therefore noise in observed
intensity of original image can be eliminated, (2) They
are low-pass filters and therefore can be used to eliminate
high frequency component at step edge, and (3) They
can serve as observing windows through which informa-
tion about motion can be obtained, and information is
weighted inversely with respect to distance from center
of window.

In Fig.1, a set of orientation-selective filters with eight
different orientations are shown in brightness.

5 Experimental Result

In this section we show two experimental results applied
our approach to sequences of symmetry images. The first
frame in original consecutive images of first example is
shown in Fig.2(a). “Background” in symmetry image
is a sine grating plate added with random noise. “Ob-
ject region” shown in center is a real image of magazine.
“Background” is shifted to left by one pixel, and “Object
region” to right-down direction by one pixel in horizon-
tal and vertical axis, respectively. Extracted optical flow
field containing “Reliable Solutions” is shown in Fig.2(b),
and “Normal Component Solutions” is shown in Fig.2(c).
Inverse values of confidence measures is shown in bright-
ness in Fig.2(d).

Consecutive images used in the second example are
the same as the first one, but image motions of “Back-
ground” and “Object region” are different. In the second
example, “Background” remains stationary, while “Ob-
ject region” is rotated within the image plane between
two frames of onsecutive images. Extracted optical flow
field containing “Reliable Solutions” is shown in Fig.3(a),
and “Normal Component Solutions” is shown in Fig.3(b).

Figure 1: A set of eight filters shown in brightness.
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Figure 2: The first experimental result (see text).

Inverse values of confidence measures is shown in bright-
ness in Fig.3(c).

From these two experimental results we can see that
(1) At motion boundaries the inverse values of confidence
measures become larger comparing to other locations,
and (2) Although the regularization processing was not
performed, the estimated optical flow field is accurate ex-
cept at that locations near discontinuities.

6 Discussion

In our preliminary result of research, there is not yet
any type of regularization processing. Only normal vec-
tors can be extracted at the locations lying on extended
straight lines, and flow vectors at the locations within
homogeneous regions of intensity are still remained un-
solvable. It is necessary for us to develop a method of reg-
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ularization for the purpose of propagating the “Reliable
Solutions” extracted near corner points to those locations
lying on extended straight lines and within homogeneous
regions.

Poggio et. al. presented a generalized theory for the
regularization problem in several computer vision tasks
[Poggio ’85]. Yuille & Grzywacz presented their motion
coherence theory for solving that problem in the extrac-
tion of optical flow field [Yuille *89]. Applying these the-
ories to regularizing optical flow field generated by a rel-
ative motion between sensor and a continuous 3-D sur-
face whose projection to sensor occupies the whole image
plane, flow field will become smooth and therefore well-

L L g s

If the 3-D surface is not continuous, however,
discontinuities will occur in flow field, and theories pro-
posed by Poggio et. al. and Yuille & Grzywacz etc. will
no longer valid for the solution of ill-posed problem.

posed.

Several researchers have proposed their approaches to
solving the ill-posed problem with discontinuity treat-
ment. Adiv proposed an approach to segment optical
flow field by assuming that the optical flow field is gen-
erated by several 3-D patches and then estimating the
motion parameters of patches with Hough transforma-
tion from a given noisy flow field [Adiv '85). Hartley
[Hartley ’85] segmented flow field with the method of
pyramid linking. Thompson et. al. [Thompson '85] de-
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Figure 3: The second experimental result (see text).
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tected discontinuities by applying the zero-crossing prin-
ciple to their sparse displacement field extracted with the
method of [Barnard ’80]. Schunck [Schunck ’89)] also used
the same idea to segment dense flow field. Murray & Bux-
ton [Murray '87] applied the methods of stochastic an-
nealing and “line process” proposed by Geman & Geman
[Geman 84] to a given optical flow field. Spoerri & Ull-
man described their histogramic approaches to detecting
discontinuities [Spoerri ’87]. Dengler [Dengler *91] and
Darrell & Pentland [Darrell *91] proposed their methods
respectively for the segmentation of flow fields based on
the MDL criterion. Hutchinson et. al. applied the deter-
ministic annealing and “line process” to optical flow field
[Hutchinson ’88]. Peng & Medioni [Peng ’88] proposed an
approach which be able to predict and detect occlusion
and disocclusion based on the image motion estimation
method presented by Bolles et. al. [Bolles ’87).

There are several limitation in approaches described
above. The main limitation in stochastic and determin-
istic annealing methods, and also in methods using MDL
criterion, is their higher computational cost. Limitation
in the zero-crossing methods is, e.g., their accuracy on
locating motion boundary. Approach of pyramid linking
needs a prior knowledge about the number of objects (re-
gions) with different motion parameters.

We have described in Sec. 3.2 that near the disconti-
nuities, the confidence measures will become lower. This
decreases of confidence measures can be used to predict
the evidences of discontinuities in optical flow fields. For
instance, a comstraint could be preferred in the stage
of discontinuity detection which assumes that the de-
tected discontinuities should appear near that locations
having lower values of confidence measures. We believe
that introducing confidence measures to the processing of
boundary detection will affect the accuracy and efficiency
of detection.

7 Conclusion

We have proposed an approach to extracting optical flow
field with gradient scheme. Characteristics of our ap-
proach are, e.g., (1) Beside the motion boundaries, con-
fidence measures of estimated vectors will decrease com-
pared to those inside the region with almost constant ve-
locity. This relative comparison of confidence measures
can be utilized to detect boundaries; (2) With this ap-
proach, flow vector can be estimated accurately at that
location where the variance of intensity gradients ob-
served through a surrounding window is significant; and
(3) Orientation-selective Gaussian filters are utilized as
observing windows with which the errors coming from
sensor, digitizing process, and intensity differentiation,
etc., can be deduced. They can also serve as kinds of win-

dows by which information under observing is weighted
inversely with respect to the distance to window center.

We will put the emphasis of our future work on the
regularization of optical flow field and low level vision
task of effective detection of motion boundaries with lower
computational cost.
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