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Abstract The Karhunen-Loéve (K-L) subspace is a subspace which provides the best approximation for a stochastic
signal under the condition that its dimension is fixed. The K-L subspace has been successfully used in the data compression
in communication and the subspace method in pattern recognition. The K-L subspace, however, does not consider a noise
in communication and a noise and other patterns in pattern recognition. Therefore, its noise suppression is not sufficient
in communication and it gives a wrong recognition result for patterns which are similar to each other.

In order to solve this problem, we propose a concept of the relative K-L operator. The relative K-L operator minimizes
the sum of the mean square error between the original signal and the approximated signal and the mean square error caused
by noise under the condition that the dimension of its range is fixed. We provide the conditions under which the relative
K-L operator exists. We also provide its general form.
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1 Introduction

The Karhunen-Loéve (K-L) subspace is a subspace which
provides the best approximation for a stochastic signal un-
der the condition that its dimension is fixed [1]-[7]. The
K-L subspace has been successfully used for many pur-
poses. In the field of communication, it is used for data
compression [2]. In the field of pattern recognition, it is
used in the subspace method [4].

Let X be an N-dimensional Hilbert space. Let (-,-)
and || - || be the inner product and the norm in H, re-
spectively. Let f be a stochastic variable in H. Let Ey
be the ensemble average for f. Let Ps be the orthogonal
projection operator onto a subspace S. Finally, let M be
an integer such that A/ < N.

A subspace S is said to be the M-dimensional K-L
subspace if and only if it maximizes

Eql|Psf|I* 1)

under the condition that the dimension of § is equal to
M [6], [7].

For a pair of elements f and g in H, the Schatten
product f ® g, which is an operator in H, is defined as

(f@gh=(h9)f 2)

with any element h € H [11]. The correlation operator R
with respect to f is defined as

R=E/(f&]) ®3)

Let A; be eigenvalues of R such that Ay > Ay > A3 >
-+ > An. Let u; be the eigenelement of R corresponding
to A;. We can choose {u;}/¥; so that it is an orthonormal
base in H. If an eigenvalue is degenerate, a correspond-
ing eigenelement is not unique. Let A be the set of sets
{u;}¥, such that u; is a eigenelement corresponding to A;
and {%;}, is an orthonormal base in H. A subspace S
becomes the M-dimensional K-L subspace if and only if
S is spanned by the first M elements u; (i = 1,2,---, M)
with some set of eigenelements in A [6], [7].

The K-L subspace, however, does not consider a noise
in communication and a noise and other patterns in pat-
tern recognition. Therefore, its noise suppression is not
sufficient in communication and it gives a wrong recogni-
tion result for patterns which are similar to each other. In
this paper, we shall consider an extra stochastic variable
n. This n may be a noise or an extra signal. In this paper,
n is called a noise.

Historically, such a problem has been first discussed in
[8]. It based on an extension of the evaluation function(1).
Let Ps ¢ be an oblique projection operator onto a subspace
8 along a subspace £. We wish to maximize Ey||Ps.c f||%
while we wish to minimize E,||Ps cn||?. One way to satisfy
these two demands at the same time is maximaizing the

following ratio:
Ey||Pscf|*
3 4
B\ Ps cnl|

Indeed, the article[8] solved this maximization problem.
However, this definition has the following problems. Since
& is allowed to be any complementary subspace of £ which

is determined by this evaluation, eq.(4) is not a good eval-
uation in the sense that Psf must provide an approxi-
mation of f. If no eigenvalue is degenerate, then it follows
that dim & = 1. Furthermore, if no eigenvalue is degener-
ate, then the problem maximizing eq.(4) under the condi-
tion that dim& = M (M > 2) has no solution. This does
not agree with our intuition in that sense.

The K-L subspace can be characterized in a different
way from eq.(1) as follows. Let B be a linear operator in
H. Consider the following problem that B minimizes

Egllf - BfII%, (5)

under the condition that the dimension of the range of B
is equal to M. If the range of R is equal to H, then it
follows that

B=Ps, (6)

with an M-dimensional K-L subspace S. If the range of
R is not equal to #, eq.(6) does not necessarily holds. But
it always follows that

E¢|Bfll = Eyl|Ps fI|". (7

This characterization leads to a new approach to our
problem. In the case of eq.(4), we wish to maximize one
part in it and to minimize the other, so that the ratio is
used. On the other hand, when we use eq.(5), we wish to
minimize both eq.(5) and E,||Bn|?, so that we consider
that the sum of them is minimized. Now, we propose a
concept of the relative Karhunen-Loéve (K-L) operator.
The relative K-L operator B minimizes the sum of the
mean square error between the original signal and the ap-
proximated signal and the mean square error caused by
the noise:

J[B] = Efllf — Bf|| + Eu|| Bn| ®)

under the condition that the dimension of the range of B
is fixed.

We provide the conditions under which the relative K-
L operator exists. We also provide its general form.

In Section 2, we provide a mathematical preliminaries.
In Section 3, we provide the relative K-L operator. In
Section 4, we prove the result of Section 3. )

2 Mathematical preliminaries

The following notations and terminologies are used in this
paper.

Let A* be the adjoint operator of an operator A. Let
R(A) and N(A) be the range and the null space of an
operator A, respectively. For any operator A there exists
a unique operator Af [12], [13] such that

AATA = A4, (9)
Ataat = At (10)
(A4 = AAl, (11)
(ATAy = AlA (12)

The operator A' is called the Moore-Penrose generalized
inverse of A.



A self-adjoint operator A in  is said to be a nonneg-
ative definite operator if and only if (Az,z) > 0 for every
z € H. It is denoted by A > 0. For any operator A > 0
there exists a unique operator A2 such that A/2 > 0
and

AVRANE = 4, (13)
It follows that
(A2 = (A2, (14)

Let @ be a correlation operator with respect to a noise

ensemble which is defined as

Q=E,(n®n). (15)

Let tr[A] be the trace of an operator A. Let [|A4[}; be
the Schmidt norm of an operator 4 [11]. Tt follows that

4113 = t2[AA"]. (16)

For an orthonormal base {¢;}¥,, it follows that

1411z = ; g 17)

Let dimS be the dimension of a subspace S. Let
min(M, N) be the smaller value of integers M or N.

3 Relative K-L operator

Definition 1. Let M be an integer such that M < N.
An operator B is said to be a relative Karhunen-Logve
(K-L) operator of degree M if and only if B minimizes .J
in eq.(8) subject to dim R(B) = M.

In order to obtain the relative K-L operator, we shall
introduce some operators and eigenelements.

We define U as

U=R+Q. (18)
Lemma 5 in [9] yields that

N{U) = N(R)NN(Q), (19)
R(U) = R(R)+R(Q). (20)
We define operators B; and C, as
B, = RU', (21)
G = RUYA, (22)

respectively.

Let K be dimR(R). Let L be dimR(U). Eq.(20)
yields that X' < L. Since U = U* and R((UY?)1) = R(U),
eq.(19) yields that R(C;) = R(R), so that it follows that

dim R(C)) = K. (23)

A singular value decomposition of Cy can be given as
N

C1 =Y (v 0m), (24)
i=1

where Ay > A3 > A3 > -+ > Ay > 0, and {w;}, and
{v;}L, are orthonormal bases in H. It follows that
Clu,; = /\,"Ut‘, (25)
Civi = Au. (26)

Eq.(23) yields that A; > 0 fori < K and A; =0 for i > K.
When some of ); are equal to each other, the singular
value decomposition is not unique. Let A be the set of
sets {ui,v;}L; such that they satisfy eq.(24) and {u;},
and {v;}X, are orthonormal bases in H. Now, we shall
provide the relative K-L operator of degree M.

Theorem 1. The relative K-L operator of degree M
exists if and only if N — L > M — K. An operator B is a
relative K-L operator of degree M if and only if

B =By +W(I - UU"), (27)
where
M ——
By =Y X(vi ® (U2)Hy,) (28)
=1

with a set {u;,v;})L, in A and an arbitrary operator W
such that dim R(B) = M.

Note that the sum eq.(28) is truncated after M terms.

Since almost all signals f are contained in R(R) [10], it
is sufficient to approximate signals only in R(R). Hence,
it is usually assumed that R(B) C R(R), so that it follows
that M < K. In this case, it follows that dim R(B,) = M,
so that the following corollary holds.

Corollary 1. If M < K, the relative K~L operator of
degree M exists. An operator B is a relative K-L operator
of degree M if and only if B is given by €q.(27) with a set
{wi,v:}L, in A and an arbitrary operator W such that
R(W) C R(By).

Corollary 1 implies that if M < K, we can use B, itself
as the relative K-L operator of degree M.

The proof of Theorem 1 yields Corollary 2.

Corollary 2. There exists an operator B which mini-
mizes J[B] in eq.(8) subject to dim R(B) < M. An oper-
ator B is such operator if and only if B is given by eq.(27)
with a set {u;, v}/, in A and an arbitrary operator W
such that dim R(B) < M.

The essential term of the relative K-L operator is Bj.
Because J[B] in eq.(8) is independent of W. W is used to
make dim R(B) be M.

In the case of the relative K-L operator, even if R(B)
and N(B) are given, we can not construct B. In this case,
not subspaces but an operator itself is important.

Assume that K = N. Corollaries 1 and 2 yield that
when we increase M, then J[B] in eq.(8) of corresponding
relative K-L operators decreases. However, in the case of
the relative K-L subspace defined by eq.(4), if no eigen-
value is degenerate, a subspace S whose dimension is equal
to one gives the maximum value of eq.(4). Therefore, the
definition of the relative K-L operator is more natural in
order to get an approximation of f.

Let f be the original signal. Let n be the additive
noise. We consider the case that only g = f + n can
be observed and f is approximated by Bg where B is an
operator such that dimR(B) = M. The mean square
error between f and Byg is given as

EyE,||f — Bgll*. (29)

Assume that f is independent of n and the average of noise
E.n is equal to 0. In this case eq.(29) is equal to (8), so
that all discussions above hold for this problem.



4 Proof of Theorem 1

In order to prove Theorem 1, we shall prepare the following
Lemma 1.

Lemma 1. Let M be an integer such that M < N.
An operator B minimizes

Ji[B] = ||B - Al (30)

subject to dim R(B) < M if and only if
M
B = Z)\i(v.'@ﬁf) (31)
with some singular value decomposition of A defined as

N
A=) N(vi@w), (32)
i=1
whereA12A22A32~~~2)\N_>_0.

Proof. Let K be dim R(A). K is the number of pos-
itive singular values ;.

When M > K, eq.(31) yields that B = A, so that
Lemma 1 holds. Therefore, we assume that M < K here-
after.

It follows that

ICz — yll = || Pricyy — yll (33)

for any operator C and any z, y in . Since {ud, is
an orthonormal base in H, eqs.(17) and (33) yield that for
any operator C

N
2 IEC = Auil®

i=1

N
= E ||Cu, - A,"U,‘HZ
i=1

llc— Al

N
> 3 I Prey(hwi) = Aol

=1
K
= Y 22| Preyui — uill®
=1
(34)

Since ); (i < K) are positive, the uniqueness of the
orthogonal projection yields the following relation. If an
operator B minimizes J; subject to dim R(B) = M, then
eq.(34) yields that

Bu,: = )‘iPR(B)vz‘ (35)

for all 7 < K since {u;}¥, is an orthonormal base in H.
Therefore, we consider the minimizing problem of

K
BBl = 3" M| Prpyvi — uil® (36)
=1

subject to dim R(B) < M. Since Pr(p) is an orthogonal
projection operator, it follows that

K K
VAEIEDIPLEDY X|| Prywill*. (37)

=1 i=1

Hence, J; becomes minimum if and only if

K
Ja[B] = 3 Al Presyuill? (38)
i=1
is maximum.
Since
0< |Prepyuill® < 1, (39)
and
K
Yo Prepyuill® < M, (40)

i=1

if B maximizes J3, then it follows that

1 if1<i<M
| Pregyvill = { 0 otherwise (1)

with {v;}X, a orthonormal base which satisfies a singular
value decomposition(32) of A.
Eq.(41) yields that

u fl1<i<M
Pr(pyvi = { 0 otherwise, (42)
so that eq.(35) yields that
)\i'Uz' if 1 S i S M
Bu; = { 0 otherwise. (43)

Therefore, eq.(31) holds.

We shall prove the converse. Assume that eq.(31)
holds. In this case, eq.(41) holds. For any operator C
such that dim R(C) = M egs.(34), (37), (39), (40), and
(41) yield that

K
C—AlE = Y NProywi —uill®

>
4=1
K K
= YN -2 NPyl
=1 =1
K
> YN
=M
K K
= =Y M Presyuill®.
i=1 =1
K
> 3 M Prpyvi —uill®
=1
= ||B - Al3, (44)

so that Lemma 1 holds. O
Now we shall prove Theorem 1.
Proof of Theorem 1.
Eqgs.(8), (3), and (15) yield that

JIB] = Eflf - B + E.|Bn|?
= Esu|(f - Bf)®(f - Bf)]
+Entr[Bn @ Bn]
= (I - B)E;(f @ TII - B)"
+tr[BE,(n @ T) B
= t1|(I — B)R(I - B)7]
+tr[BQB]. (45)



Eqs.(21) and (20) and R = R* yield that
B,U = BU'U = R. (46)

Since R* = R and U* = U, egs.(45) and (46) yield
that

J[B] = 4[BRB* - BR+RB"+ R+ BQB']

tf[BUB* — BUB; + ByUB* + R|.  (47)

We define J4[B] as
J4[B] = J[B] — J[Bi]. (48)
Eq.(47) yields that

Jy[B] = t1[BUB* - BUB} + BiUB* + R]
—~tr[B,UB; + R]
t2{(B — By)U(B — By)*]. (49)

It

Since U* = U, a general formula (4*A)t4* = A' yields
that
UtuY? = (Ui, (50)

Hence, egs.(21) and (22) yield that
BUY? = RUYUY? = RUY) = ¢,
so that
BUY? =¢y (51)
Eqgs.(49), (51), and (16) yield that
JB] = #[(B~ B)UY*{(B — B,)U"?}*
(B - ByU*2|3
| BUY — ¢4} (52)

Since J[By] is a constant value, J becomes minimum
if and ouly if Jy is minimum. Since dimR(B) = M, it
follows that

dim R(BUY?) < M. (53)

Since UY/2 = (U/?)*, egs.(22) and (24) yield that

NUYR) = N(U?))
= N
N(C)
C %AJw@E). (54)

i=1

N

First, we assume that there exists an operator B which
satisfies dim R(B) = M and

M
BUY? =% M\(vi®m) (55)
i=1

with a set {u;,v;}/; in A. In this case, egs.(52) and (53)
and Lemma 1 yield that the relative K-L operator exists
and an operator B is a relative K-L operator if and only
if B satisfies eq.(55) with a set {u;,v;}Y; in A. Eq.(54)
yields that eq.(55) always has a solution and the general
solution of eq.(55) is given by eq.(27) with an arbitrary
operator W. Therefore, in this case the relative K-L op-
erator exists and an operator B is a relative K-L operator
of degree M if and only if B is given by eq.(27) with a

set {u;, v;}X; in A and an arbitrary operator W such that
dim R(B) = M.
Now, we clarify that the case above holds if and only
if N-L>M- K. Eq.(28) yields that
dim R(B,) = min(K, M). (56)

Since I — UU' is an orthogonal projection operator onto
R(U)*, it follows that

dmR(I -UUY) =N~ L. (57)

Since N'(Bo) D N((UY)!) = N(U) and N(I — UUt) =
N(U)*, it follows that
N(Bo)t LN(I-UUNH (58)

If eq.(55) holds, eqs.(27), (56), (57), and (58) yield that
dim R(B) < min(K, M) + N — L. Therefore, if eq.(55)
and dim R(B) = M hold, it follows that N - L > M — K.
Conversely, if N — L > M — K holds, eqs.(27), (56), (57),
and (58) yield that there exists a W such that eq.(55) and
dimR(B) = M hold.

We assume that N — L < M — K. We shall prove that
there exists no relative K-L operator on degree M in this
case. Suppose that B is a relative K-L operator of degree
M. Since

B = PR(C1)B + (I - P‘R.(C1))B7 (59)
eq.(52) yields that

J4B] = ||Pr(c, BU'* - G4}
+I(I = Prc,)) BUY?| 3. (60)

Since dim N(UY?) = dim M(U) = N — L, it follows that
dim R(BUY?) > M — (N - L) > K. (61)

Eq.(61) yields that
dim R((I = Pr(cyy)BUY?) > 0, (62)

so that it follows that

(I = Pricy))BUY?||; > 0. (63)

Let us define an operator B; as
1
By = ProyB + 5(I = Pr(cy)B- (64)
Eqgs.(60) and (63) yield that

Ja[Ba] | Prcyy BUY? = C1[3

1
+3lI(7 = Prc,)) BUY?;

l| Pric,) BUY? — C1lf3
+( = Pric,)) BUY?|}
— LBl (65)

Eqgs.(64) and (21 — Pr(c,)) B2 = B yield that dim R(B) =
M. This contradicts that B is the relative K-L operator.
Therefore, if N— L < M — K, there exists no relative K-L
operator.

This completes the proof. O

A



5 Conclusion

We proposed the concept of the relative Karhunen-Logve
(K-L) operator. That is an operator which minimizes the
sum of the mean square error between the original signal
and the approximated signal and the mean square error
caused by noise under the condition that the dimension of
its range is fixed.

We provided a necessary and sufficient condition that
the relative K-L operator exists. We also provided its
general form.
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