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Abstract This paper addresses the problem of illumination planning for robust object recognition in structured
environments. Given a set of objects, the goal is to determine the illumination for which the objects are most
distinguishable in appearance from each other. For each object, a large number of images is automatically
obtained by varying pose and illumination. Images of all objects, together, constitute the planning image set.
The planning set is compressed using the Karhunen-Loeve transform to obtain a low-dimensional subspace. For
any given illumination, objects are represented as parametrized manifolds in the subspace. The minimum
distance between the manifolds of two objects represents the similarity between the objects in the correlation
sense. The optimal illumination is therefore one that maximizes the shortest distance between object manifolds.
Results produced by the illumination planner have been used to enhance the performance of an object recognition
system.
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Introduction

Research in the area of computer vision can be classified
into two broad categories. One involves the development of
passive vision systems for the analysis of unstructured en-
vironments, such as, outdoor scenes. The second is geared
towards the development of vision systems for structured en-
vironments, such as, industrial assembly lines. In the case
of structured environments, imaging and illumination pa-
rameters are often controllable. As a result, effective vision
sensors and algorithms can be developed to recover various
types of scene properties that would generally be impossible
to estimate in unstructured environments. In structured en-
vironments, vision systems are used to perform a variety of
tasks, such as, inspect manufactured parts, recognize objects
and sort them, or aid a robot in assembly operations. In each
of these cases, the illumination of the environment can be se-
lected to enhance the reliability and accuracy of the vision
system. Currently, illumination parameters are selected by
human operators using the trial and error approach. The
resulting illumination is seldom one that maximizes the per-
formance of the vision system.

Lately, automatic illumination planning has emerged as a
topic of research interest. Most of this work focuses on deter-
mining light source positions that maximize the detectability
of image features such as edges. ‘Cowan and Bergman [2] use
CAD (geometric) models of objects to compute source posi-
tions for which all brightness values in the image lie within
the sensor’s dynamic range. The positions, orientations,
and reflectance parameters of the objects are assumed to
be known. Using the same assumptions, Cowan and Nitzan
[3] compute source positions that ensure that the bright-
ness contrast at selected edges on objects exceeds a thresh-
old value. Recently, Yi et al. [11] used the Torrance and
Sparrow reflectance model to obtain accurate predictions of
the brightness of object points. Yi propagates errors due to
noise in image brightness to estimate errors in the positions
of edges. The planning problem then is to determine the
source direction that maximizes the accuracy of edge posi-
tions.

Addressing a different problem, Sakane et al. [9] deter-
mine optimal source directions for a photometric stereo sys-
tem. They use the accuracy of computed surface normals
and the range of computable normals as criteria for select-
ing the optimal source directions. Recently, Batchelor [1]
proposed an expert system that uses the knowledge of il-
lumination experts to suggest the best illumination for a
given vision application. The illumination plan proposed by
an expert is based on his/her experience and not a careful
theoretical analysis of the problem. Hence, the suggested
illumination is not guaranteed to be optimal.

In this paper, we present a novel approach to illumination
planning. There are several parameters that characterize il-
lumination, such as, source direction, source distance, source
size, and the spectral characteristics (color) of the source.
We describe the planning approach using source direction
and source color as the parameters of interest. In theory, as
well as practice, the same approach can be extended to in-
corporate other illumination parameters. Object appearance
is used as the criterion for finding the optimal illumination.
Given a set of objects, our goal is to determine the illumina-
tion that makes the objects maximally different from each

other in the correlation ' sense. Once the optimal illumina-
tion has been planned, its validity must be verified. For this,
we have used an object recognition system that identifies 3D
objects and computes their poses from brightness images [6].
Experiments using this system show that the planned illu-
mination produces the highest recognition rate. The paper
is concluded with a discussion on the merits and limitations
of the proposed method.

" Illumination Planning

In this section, we discuss the problem of finding optimal
illumination for recognition and pose estimation of a set of
objects. Our approach differs in two fundamental ways from
previous work on illumination planning. (a) We do not use
3D geometric (CAD) models or reflectance models of objects
during illumination plannirg. Our planning approach uses
raw 2D images of objects to determine the optimal illumi-
nation for correlation-based object recognition. (b) We do
not assume that the pose of each object is fixed and known
a-priori. First, we describe the planning of illumination di-
rection. Later, these results are extended to the planning of
illumination color. The planning system described here is
fully automated. .

Illumination and Object Appearance

The appearance of an object depends on its shape, it re-
flectance properties, its pose, and the illumination condi-
tions. The first two factors are intrinsic properties of the
object that do not vary. On the other hand, object pose
and illumination can vary substantially from one scene to
the next. In most machine vision applications, the pose of
the object is not within the control of the vision system; ob-
jects show up in the scene with arbitrary poses. That leaves
us with illumination. In structured environments, such as
industrial assembly lines, the illumination of the scene can
be controlled to provide the “best” images of the objects
of interest. Fig. 1 shows images of an object obtained us-
ing different illumination directions. These images illustrate
that object appearance is very sensitive to the direction of
illumination.

Figure 1: The effect of illumination direction on object ap-
pearance.

Though we have posed the planning problem as one of
finding the optimal source direction, the approach can also
be used to determine the optimal source position. In fact,
since the planning method uses 2D images and not 3D ob-
ject models, other source characteristics (such as, source size
and color) as well as sensor characteristics (such as, spectral

!Correlation, or template matching; remains one of the
most widely used recognition strategies in the industrial
arena. Finding optimal illumination for this task is therefore
a problem of significant practical relevance.




response and optical settings) can be incorporated into the
planning process. The only requirement is that these source
and sensor characteristics be varied during the image acqui-
sition stage of planning.

Planning Image Set

While constructing the planning image set we need to ensure
that all object images are of the same size. Each digitized
image is segmented into an object region and a background
region. The background is assigned zero brightness value
and the object region is re-sampled such that the larger of
its two dimensions fits the size we have selected for image
representation. The result is an image that is normalized
with respect to scale and thus invariant to the magnification
of the imaging system. This image is written as a vector X
by reading pixel values in a raster scan fashion:

)

The above vector represents an unprocessed brightness im-
age. Alternatively, processed images such as blurred images,
first derivatives, and second derivatives may be used. For
the purpose of developing the illumination planning method
we use raw brightness images, keeping in mind that the plan-
ning methodology is directly applicable to any other image
type.

We would like the illumination planning system to be un-
aflected by variations in the intensity of illumination or the
aperture of the imaging system. This can be achieved by nor-
malizing each image, such that, the total energy contained in
the image is unity. This brightness normalization transforms
each measured image X to a normalized image x, where x =
x/{ % I

We denote each normalized image as x,-,;(") where 7 is the
rotation or pose parameter, ! represents the illumination di-
rection, and p is the object number. The image set obtained
by varying the pose of an object for a given illumination
direction ! can be written as:

xX,® 2 { xl,x(P),x;,z(") ...... , xR_,(P) } 2)
where, R is the total number of discrete poses used for each
object. Let P be the total number of objects and L be the
total number of illumination directions. Then, the planning
image set for the entire set of objects is:

{X®, XM X @, X, X)L X))
®)
In our experiments, we have used a motorized turntable to
vary object pose. This gives us pose variations about a single
axis. We have used several light sources positioned in a plane
around the turntable. For each object, illumination direction
is automatically varied and for each illumination direction a
set of images is obtained by rotating the object. Fig.2 shows
some of the images in the set obtained by varying the pose
of the object in Fig. 1 for a given illumination direction.

Universal Eigenspace
Consecutive images in the planning image set are correlated
to a degree since pose and illumination variations between
these images are not large. Our objective is to take advan-
tage of this correlation and compress the large planning set
into low-dimensional representations of each object’s appear-
ance. A suitable compression technique is the Karhunen-
Loeve method [7] where the eigenvectors of an image set are

Figure 2: Image set for the object shown in Fig.1 obtained
by varying pose, for a given illumination direction.

computed and used as orthogonal basis functions for repre-
senting individual images. Though, in general, all eigenvec-
tors of an image set are required for perfect reconstruction
of any particular image, only a few eigenvectors are suffi-
cient for illumination planning. These eigenvectors are the
dimensions of a subspace® that we refer to as the universal
eigenspace.

First, the average c of all images in the planning set is
subtracted from each image in the set. The result is the
following image matriz:

I
Y = { Xl‘l(x) - C,
) ] (4)
Y is NxM, where M = RLP is the total number of images
in the planning set and N is the number of pixels in each
image. To compute eigenvectors of the image set we define
the covariance matriz:
QaYY” (5)
Qis N x N, clearly a very large matrix since a large number
of pixels constitute an image. The eigenvectors e; and the
corresponding eigenvalues A; of Q are to be computed by
solving the well-known eigenvector decomposition problem:

diei = Qe (6)

Though, all N eigenvectors of the planning image set are
needed to represent images exactly, only a small number
(k < N) of eigenvectors are generally sufficient for capturing
the primary appearance characteristics of the objects. These
k eigenvectors correspond to the largest k eigenvalues of Q
and constitute the universal eigenspace. An issue that has
yet to be addressed is the selection of k. One approach is
to select k such that the first k eigenvectors capture the
important appearance variations in the image set, that is:

E oy
Lip 5 7 ©
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where the threshold T; is close to, but less than, unity. The
denominator in the above expression equals the trace of the

2This subspace has previously been used in vision to clas-
sify handwriting [4] and human faces [10], as well as for
recognition and pose estimation of 3D. objects {6].



covariance matrix Q. For the objects we have used in our
experiments, universal eigenspaces with less than 10 dimen-
sions (k < 10) are found to be adequate. A property of the
ecigenspace that is fundamental to our planning methodology
is that it is the optimal subspace.for estimating the correla-
tion between images (see [7], [6]).

Computing the eigenvectors of a large matrix such as Q
can prove computationally very intensive. Efficient algo-
Eiﬁhms,for this are described in [7], [5] and summarized in
6]. -

Parametric Eigenspace Representation

Our objective is to obtain a measure of how well the set of
objects can be discriminated under illumination from each of
the source directions. The image set X.?) includes images
of the object p, obtained for different object poses r, while
it is illuminated by the source I. Each image x,.,,(”) in X,(”)
is projected to the universal eigenspace. This is done by
subtracting the average image ¢ from x,,(P), then finding
the dot product of the result with each of the k eigenvectors,
or dimensions, of the eigenspace. The result is a single point
2.7 in eigenspace: L

grd® = [er, €2,y ex ]t (x.00P) — ¢) (8)

By projecting all the planning samples in X.P), we obtain
a set of discrete points in the universal eigenspace. Pose
variation between any two consecutive images in X" is
small. As aresult, consecutive images are strongly correlated
and their projections in eigenspace are close to one another
3. The discrete points obtained by projecting all samples in
X{P can be assumed to lie on a manifold:

gl (61, 62, 85) (9)

where, 61, 02, and 03 are the three continuous rotation
parameters needed to describe pose in three-dimensional
space. The above manifold is referred to as the paramet-
ric eigenspace representalion; it is a compact representation
of the appearance of object p when illuminated by source I
In our experiments, we rotate the object about a single axis.
This variation in pose is sufficient for objects that have a fi-
nite number of stable configurations when placed on a planar
surface. Thus, the above manifold is reduced to a curve with
a single parameter: g/ (6, ). Fig.3 shows the parametrized
eigenspace representation of the object shown in Fig.1. The
eigenspace used is 8-dimensional and is computed using a
planning set that includes two object image sets. The figure
shows only three of the most significant dimensions of the
eigenspace since it is difficult to display and visualize higher-
dimensional spaces. For illumination planning, such a curve
is computed for each object, for each illumination direction.

Optimal Illumination Direction

Consider two objects, say p and ¢, from the set used to
compute the universal eigenspace. For each light source di-
rection I, we compute parametric curves for the two objects:

3This assumption holds well except when the object is
either highly specular or has high-frequency texture. In
such cases, an incremental pose variation can cause dramatic
changes in image brightness.

Figure 3: Curve obtained in universal eigenspace. by pro-
jecting the object image set shown in Fig.2.

&P (0,7 and g9 (6,(9)). Here, the parameters 8,(")
and 6;(%) represent rotations of objects p and q, tespectively.
The shortest euclidean distance between the two curves in
eigenspace is computed as: :

min 7
4P = 0,00 | g (6,) — g% () || (10)

The 6,¢") and 6,(?) values that produce the minimum dis-
tance dl(""’), correspond to -poses of the two objects for
which they appear most similar (in correlation) when illu-
minated by the source I. The illumination planning problem
is formulated as follows: Find the source direction I that
maximizes the minimum distance dl(”"' between the object
curves. This maz-min strategy gives us the safest illumina-~
tion direction for the worst case where the two objects have
poses for which they are most similar in appearance.

The above example includes only two objects. The maz-
min strategy is easily extended to a set of P objects. For
a given illumination direction I, we now have P curves in
the universal eigenspace. The minimum distance &,(P9 is
computed for all pairs of objects in the object set, resulting
in P? minimum distances, The minimum of all these dis-
tances, say di, represents th_e worst case for the entire object
set. The source direction ! that maximizes d; is then the
optimal source direction for the object set. Fig. 4 shows the
eigenspace curves of two objects used in the experiments, for
a particular illumination direction. The solid line segment
indicates the shortest distance bétween the two curves.

Optimal lumination Color

The above approach can also be used to plan other illumina-
tion parameters. Here, we show how illumination color can
be computed to render a set of objects minimally correlated
in appearance with each other. Many man-made objects
have regions with different spectral properties. For such ob-
jects, the spectral characteristics of the illumination can be
controlled to robustly identify them. The brightness at a
pixel in an image can be expressed as:

: = /s(A)h(A)i(A)dA (11)

where, X is the wavelength of light, s()) is the spectral re-
sponse of the sensor, () is the reflectance of the scene point




Figure 4: Parametric eigenspace curves of two different ob-
jects obtained for a given illumination direction. The short-
est distance (line segment) between the two curves represents
the worst case poses for which the objects appear most sim-
ilar in the correlation sense.

corresponding to the pixel, and i(A) is the spectral distribu-
tion of the illumination. If the objects are illuminated using
white light (i(A) = 1), the illumination color can, in effect,
be controlled using a filter with spectral response f() at the
sensor end. Then, the brightness measured by a pixel can
be written as:

T = / s(A) f(A) R{A) dA (12)
Thus, the image of an object under illumination f(A) can
be obtained by illuminating the object with white light and
using a filter with response f(A) in front of the sensor. Fig.
5 shows images of an object taken using three different filters
with responses r()), g(A), and b(X). These response func-
tions have their peaks close to the wavelengths that humans
perceive as “red,” “green,” and “blue.” It is interesting to
note that the brightness of some of the regions on the object
vary dramatically betwecn the three images.

(@}

Figure 5: Images of an object obtained using three color
filters under white light illumination: (a) red; (b) green; and
(c) blue. The use of filters at the sensor end is equivalent to
varying the color of the illumination.

) ©

The planning set in this case is obtained by varying the
pose of each object, for each filter f. Each image in the
planning set can be denoted as xr, ;") where r is the rota-
tion or pose parameter, f represents the filter or illumination
color, and p is the object number. In this case, the direction
of illumination is held constant. Once again, the universal
eigenspace is computed, and each image in the planning set
is projected to a point g, ;) in eigenspace. Again, consider

two objects, say p and ¢, from the set used to compute the
universal eigenspace. For each filter f, we compute paramet-
ric curves, g7 (6,(P) ) and g,{9(6,{9), for the two objects,
where 6, (") and 6,(9) are the poses of the objects. The short-
est distance between the two curves is computed as:

min

4D = 0,0, @ | /) (0,7) — g/ 019) | (13)
The 91(") and 91(") values that produce the minimum dis-
tance d;"""), correspond to poses of the two objects for
which they appear most similar when imaged through fil-
ter f. The optimal illumination color is determined by find-
ing the filter that maximizes the minimum distance d;{"%)
between the object curves. As in Section , the above opti-
mization is extensible to a set of P objects.

Note that we have treated the planning of source direc-
tion and source color as two.separate problems. It is possible
to simultaneously determine the optimal direction and color.
This is done by computing manifolds of objects in eigenspace
for each direction-color pair and finding the pair that maxi-
mizes the minimum distance between object manifolds.

Object Recognition

In this section, we describe an object recognition system
that is based on the parametric eigenspace representation.
We first presented this system in [6] where it was success-
fully demonstrated as a robust and efficient approach for
recognizing a variety of complex objects. In the experimen-
tation section, it is used to evaluate the performance of the
illumination planning method described above.

Consider an image of a scene that includes one or more
of the objects we have used to compute the universal
eigenspace. We assume that the objects are not occluded
by other objects in the scene when viewed from the sensor
direction, and that image regions corresponding to objects
have been segmented away from the scene image. These as-
sumptions are valid for a variety of industrial applications,
for instance, when manufactured parts pass by on an assem-
bly line and need- to be recognized.

The first step is to normalize the segmented image regions
with respect to scale and brightness as described in Section
. The normalization renders the recognition system invari-
ant to imaging optics (magnification* and aperture) and the
intensity of the illumination. An image region, after normal-
ization, is referred to as input image y.

For recognition, the average ¢ of the planning set used to
compute the universal eigenspace is subtracted from the in-
put image y. The resulting image is projected (as described
in-Section ) to the universal eigenspace to obtain a point z.
The recognition problem then is to find the object p whose
eigenspace representation (manifold in general, and curve in
our case) the point z lies on. Here, the source direction 1 is
known a-priori, and so are the object curves in the eigenspace
for the direction I. Due to factors such as image noise, aber-
rations in the imaging system, and digitization effects, the
point z may not lie exactly on an object curve. Therefore,
we find the object p that gives the minimum distance h(?)
between its curve g,(”) (81) and the point z:

WP =80 2 - g (61) 1] (19)

*The image projection model is assumed to be weak-

perspective; orthographic projection followed by scaling.



If AP is less than a small threshold value, we conclude that
the input image is of object p. The value of §; that corre-
sponds to h{P) represents the pose of the object in the scene.
Fig. 6(a) shows an input image of the object whose para-
metric curve was shown in Fig. 3. In Fig. 6(b), the input
image is mapped to eigenspace and is seen to lie close to the
parametric curve of the object.

(b)

Figure 6: (a) An input image. (b) The input image is
mapped to a point in eigenspace. The location of the point
determines the object and its pose in the input image.

Experiments

If an object’s geometry and reflectance are known a-priori,
its images under different poses and illumination conditions
can be synthesized using image rendering techniques such as
radiosity or ray tracing. Here, we have not assumed that
object models are available. Therefore, we need a mecha-
nism that automatically varies object pose and illumination
and generates image sets. Fig. 7 shows the setup we have
developed for illumination planning. The object is placed
on a motorized turntable and its pose is varied about a sin-
gle axis, namely, the axis of rotation of the turntable. The
turntable position is controlled via software and can be var-
ied with an accuracy of about 0.1 degrees. Most objects
have a finite number of stable configurations when placed
on a planar surface. For such objects, the turntable is ade-
quate as it can be used to vary pose for each of the object’s
stable configurations.

The objects are illuminated by the ambient lighting condi-
tions of the environment that do not vary during the acquisi-
tion of image sets. This ambient illumination is of relatively
low intensity. In addition, 8 incandescent light bulbs (100
Watts each) are used to illuminate the objects from different
directions. Of these only 6 sources were used since sources
1 and 8 generate strongly self-shadowed images of the ob-
jects. The light bulbs are uniformly distributed in a plane
around the turntable and the angle between adjacent light
bulbs is 30 degrees. These light sources are activated via
software. The planning problem is to find the optimal light
source among the six. We have also conducted experiments
on planning illumination color. In this case, the illumination
direction is fixed while three filters (red, green, and blue) are
sequentially used at the sensor. For each filter, image sets are
obtained for each object by varying pose. Images are sensed
using a 512x480 pixel CCD camera, and are digitized using
an Analogics frame-grabber board. '

The experiments were conducted using three pairs of ob-
jects. These objects are shown in Fig. 8. Object pairs A
and B were used for experiments on illumination direction
planning, while pair C was used for illumination color plan-
ning. In the case of direction planning, for each of the 6 light
sources, each object was placed on the turntable and images
were obtained for 45 different poses (6 degree rotations of the
turntable). For each of the object pairs, A and B, therefore,
a planning set with 720 images was obtained. Images are au-
tomatically segmented and normalized in scale and bright-
ness as described in Section . Each normalized image is
128128 pixels in size. 8-dimensional universal eigenspaces
were computed from the planning image sets.

The 45 pose images of each object, taken for each of the
light sources, are projected to the universal eigenspace to
get a set of discrete points. These points are interpolated
using a standard cubic spline interpolation algorithm [8] to
obtain a parametric curve. Fig. 9(a) shows the minimum
distance di{”"%) between the eigenspace curves of the two ob-
jects in pair A, plotted as a function of source number. Note
that poses of the two objects corresponding to the minimum
distance di{"? need not be among the ones present in the
planning image set. Since the curves are obtained by inter-
polation, the worst case poses may lie in between the discrete
poses used for planning. We see that source 6 (at 45 degrees)
is found to be optimal for object pair A. Fig. 9(b) shows
results for an object set that includes all objects in pairs A
and B. Here, all 720 images of the 4 objects were used to
compute the universal eigenspace and for each illumination
direction 4 appearances curves were computed. As seen from
Fig. 9(b), source 6 is optimal in this case also.

The optimal source direction determined by the illumi-
nation planner is meaningful only if it can be used to ac-
complish a vision task. We have used the correlation-based
recognition system presented in Section to verily the above
results. For each light source, 45 test images of each object
are used as inputs to the recognition system. All of these
test images are different from the ones used for illumination
planning; they correspond to object poses that lie in between
the poses used for planning.

We define recognition rate as the percentage of test images
for which the object in the image is correctly recognized and
the computed pose is within 6 degrees® of the actual pose.
Fig. 10(a) compares recognition rates produced by the op-
timal source 6 and the sub-optimal source 2, for object pair
A. To test the sensitivity of the optimal source, we added
white noise to the test images. The noise level is expressed in
decibels of signal to noise ratio; i.e. 10 log,, (S/N). Hence,
a noise level of -10 dB corresponds to noise that is 10 times
the signal. Note that the noise levels added to the test im-
ages are substantial. As noise increases, recognition rates
naturally deteriorate but the optimal source 6 consistently
produces higher recognition rates than source 2 (used as a
non-optimal source). Fig. 10(b) shows the validity of op-
timal source 6 for the set including all 4 objects. These
results demonstrate the robustness of the source selected by
the illumination planning method to image noise.

In Fig. 10(c), the effects of segmentation error on the
planning result are explored. Here, the object region is first

B This pose tolerance was selected arbitrarily. It is used to
ensure that the optimal source yields the highest accuracy
not only in object identification but also in pose estimation.
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segmented from each of the 720 test images and scale nor-
malized to fit a 128x128 pixel image, as described in Section .
Then segmentation errors are introduced in each normalized
image by shifting the object region in a randomly selected
direction (+z, —z, +y, or —y) by some percentage of the
image dimension (128 pixels). The resulting image emulates
one with segmentation error. In Fig. 10(d), the segmenta-
tion error, or percentage shift, is plotted along the horizontal
axis. As the segmentation error increases, recognition rate
deceases. However, the optimal source is seen to always pro-
duce higher recognition performance than the sub-optimal
source.

Figure 11 shows results on determining the optimal illu-
mination color for object pair C. We have used three filters
(red, green, and blue) to obtain the object image sets. The
planning system determined the green filter to be optimal.
Note that the green filter consistently produces the highest
recognition rate when image noise is increased.

Discussion

In structured environments, the performance of machine vi-
sion systems can be enhanced by controlling illumination.
" In this paper, we have presented a method for determining
illumination parameters that make a set of objects maxi-
mally different from each other in the correlation sense. The
proposed approach was shown to be effective in improving
the performance of a.correlation-based recognition system.
Such recognition systems are widely used in the industrial
domain for object identification and classification. The plan-
ning methodology presented here is not geared towards the
optimization of image features, a problem that has been in-
vestigated by other researchers [2], [11].

The planning technique uses samples of the objects of in-
terest and does not require that the geometry or reflectance
of the objects be known. An object could have complex geo-
metric features, varying reflectance properties, produce spec-
ular reflections, or even interreflections. Since illumination
planning is based on object appearance, none of the above ef-
fects need be analyzed in isolation. Further, the parametric
eigenspace representation enables us to determine an illu-
mination that is optimal when the poses of the objects are
unknown.

Several experiments were conducted for planning both
source direction as well as source color. In these experi-
ments, a single parameter was used to represent object pose
(rotation) for a given stable configuration. For certain ap-
plications, 3 degrees of freedom (DOF) may be needed to
describe object pose. In such cases, for any given illumi-
nation, object appearance is represented in eigenspace as
a 3 DOF manifold. This, of course, involves the acquisi-
tion of a larger number of object images for each ilumina-
tion. Further, illumination itself can be described using ad-
ditional parameters, including, source size, source distance,
and the number of sources. The proposed method can be
used to simultaneously optimize multiple parameters. The
only requirement is that these parameters be varied dur-
ing the acquisition of the planning image set. Clearly, for
multiple parameters, acquiring image sets, computing para-
metric eigenspaces, and determining the optimal parameter
values can be very time consuming. Therefore, the planning
method may prove impractical when more than three illu-

mination parameters need to be jointly optimized. A lesser

number of parameters, however, can be easily accommodated

since illumination planning is typically done off-line and only
once. :
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