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This paper defines a distance measure among the elements of the families of algebraic mani-
folds which are a generalization of the family of lines and the family of conics in the Euclidean
plane. The metric between manifolds is introduced by using one-to-one mapping between the
positive unit semi-sphere in the Euclidean space and a family of manifolds. Furthermore, by
using the proposed metric, I also construct a discrimination algorithm of manifolds. This al-
gorithm classifies curves by nearest-neighbor discrimination on the positive unit semi-sphere.
Moreover, the correspondence between curves and the positive unit semi-sphere leads that if
the accumulator space for curve detection by the Hough transform is equivalent to the positive
unit seml-sphere, one can define a distance in the accumulator space. This accumulator also
permits the Hough transform which detects both lines and conics.



1. Imtroduction

In computer vision, lines, conics, and planes are
fundamental data in the construction of objects from
measured images [1]. These data are categorized into
algebraic manifolds. Thus, for the discrimination of
fundamental data and for the estimation of accu-
racy of reconstructed data in computer vision, met-
rics among these algebraic manifolds are required.
Pattern recognition provides metrics for the discrim-
ination of planar figures and time-varying signals.
These discrimination methods are based on the the-
ory .of Hilbert space and vector space [2,3]. In the
Hilbert space framework of pattern recognition, a
pattern is dealt with as a point in space. This em-
bedding of patterns into Hilbert space is possible if
patterns are described as functions on an interval.
For instance, the Fourier descriptor of a curve is de-
termined as a set of Fourier coefficients of a function
of the length of arc of a curve[4]. Embedding of alge-
braic curves by using the Fourier descriptor is, how-
ever, inadequate because some algebraic curves have
infinite arc-lengths. Furthermore, an area between
two algebraic curves is sometimes infinite. Moreover,
some algebraic curves are multivalued functions on
the plane. Thus, for the discrimination of manifolds,
a new method is required for the embedding of these
data into Hilbert space and vector space.

Shapes which are extracted from scenes in the
early vision stage provide geometric information
such as positions of points, distances among points,
and angles between line segments. The protocol
from the early vision stage to the intermediate stage
is the symbolization through quantization of these
numerical raw data obtained in the early vision stage
since the intermediate stage manipulates symbolized
data. Vector quantization transforms numerical raw
data to a finite number of typical data. Thus, by as-
signing an individual symbol to each typical datum,
vector quantization is adopted as the protocol from
the early vision stage to the intermediate stage; that
is, one can transform geometric raw data to symbol
data. A set of generators, which is a set of typical
data, divides data space into a finite collection of dis-

junction sets. This procedure is called Voronoi tes-
sellation, and each disjunction set is called a Voronoi
region. Thus, any data in a Voronoi region are trans-
formed to the generator of the region by vector quan-
tization procedure. This quantizatin is called the
nearest-neighbor discrimination. However, to derive
a Voronoi tessellation and to achieve the nearest-
neighbor discrimination in a set of data, a distance
measure is required in a data space.

In classical projective geometry, the conics are
classified by using distributions of poles of their
canonical forms [5]. This classification focuses on

‘clarification of the properties of conics which are

invariant under affine transforms in the Euclidean
space. For instance, the classification differentiates
between parabolas and ellipses.” However, a dis-
tance measure among ellipses in an image is required.
Thus, the classical classification is inadequate for im-
age analysis because of the requirement that curves
be directly differentiated by using their forms ap-
pearing in images.

This paper defines the distance measure for mani-
folds such as lines, conics, planar curves, and planes.
First, by using basic results of projective geometry,
I construct one-to-one mapping between a family of
algebraic curves and points on the positive unit semi-
sphere. Second, by using spherical geometry, I define
the geodesic distance between two points as the dis-
tance between two algebraic curves. Furthermore,
as a generalization of the definition of the metrics, I
also introduce a metric for linear manifolds in higher-
dimensional Euclidean space. '

I also construct an algorithm for the nearest-
neighbor discrimination for lines, conics, planar
curves, and manifolds in higher-dimensional Eu-
clidean space since the correspondence permits ap-
plication of methods of pattern recognition to a fam-
ily of curves. The algorithm achieves discrimination
of elements by computing inner products of vectors
between data and generators on the semi-sphere.
The most important advantage of the algorithm is
that prior determination of discrimination surfaces
of Voronoi tessellation is not required. This differs




from the classical nearest-neighbor discrimination of
patterns which is based on the theory of Hilbert
space and statistics.

The correspondence between an algebraic curve
and a point in the parameter space, which is called
the accumulator space, is a fundamental idea for
the Hough transform for curve detection from a bi-
nary image [6]. one cannot, however, introduce any
higher-level operations, such as the discrimination,
classification and unification of data, in the accumu-
lator space because the classical accumulator space
does not posses any properties of vector space. On
the other hand, this paper shows that the accu-
mulator space should be topologically equivalent to
the positive unit semi-sphere in a higher-dimensional
Euclidean space. Thus, one can define a metric for
manifolds by using the metric in Euclidean space.
This metric in the new accumulator space penmts
cla.ssxﬂcatlon and unification of data in the accumu-
lator space [7].

Parametrization of Curves
Let R", n > 2 be n-dimensional Euclidéan space.
Furthermore, setting

2.

(1)

is the transpose of a

z= (31, z?:"'szn)T

as a vector of R®, where -7

vector, the inner product of vectors is defined by

eTy=3 = (2)
i=1
and the distance between @ and y by
lz—yl=/(z-9)"(2-v) 3)
Moreover, for m < n and @ € R™, by setting

'1xm’0)0)"'10)T1 (4)

= (31; T2y

2 € R™ is embedded in R™.

Let S™~! be the unit sphere of R" consisting of all
points @ with distance 1 from the origin. For n =1,
8% =[~1,1)]. Furthermore, the positive half-space is
defined by

®)

R} = {2}z, >0}, n2> 1.

Now, by setting

H ' =SR]}, n>1, (6)
the positive umt semi-sphere is defined by
srl= S"“2 UHFY, n2> 1. (7

In this paper, z, y, and z express arguments of
polynomials which take values on the real axis R,
and 2, y, and z express vectors of appropriate di-
mension of which elements are z, y, z and so on.
Furthermore, a, b, and c express coefficients of poly-
nomials and a, b, and ¢ express vectors of appro-
priate dimension of which elements are g, b, ¢ and
so on. I call 2 and a the argument vector and the
constant vector, respectively.

In the following, [ write POUSS (the POsxtlve Unit
Semi-Sphere) for S7~1. I also denote a polynomw.l
of z3, 23, *++, Ty a8 P(z)

In the remainder of this paper with the exception
of in section 7, to enable clear discussion I will deal
with curves in the two-dimensional Euclidean plane
R2

Let

P = {pl'(z: y)}?=l (8)

be a set of independent monomials of z and y and
let

A" ={a|a ={a}i,} 6

be a set of all n-tuple real numbers, where at least
one of g; is nonzero. Then, setting

= iai ni(z,9),

=1

P(z,y) (10)

a set

Co(P, A" = {(z, y)T |P(m) y) =0} (11)

defines a family of curves on the plane for @ € 4".
Here, the suffix 2 of C(P*, A") indicates a set of
algebraic curves of two real arguments.

For families of curves C;(P*, A™) and C,(P™, A™),
the following lemma holds.
[Lemma 1] For m < n, if P™ C P", the relation



C(P™, A™) C C(P, A™)

holds.
(Proof) By setting
A" ={ala;=0,1<i<n—m, a€A™},(13)

(12)

the relation

Co(P™, A™) = Co(P™, A™"). (14)
holds. Since

C(P™, A™™) C G(P, AM), (15)
I obtain the lemma. (Q.E.D.)

Now, I show some examples of a set of monomials
and algebraic curves defined by these monomials.

Ezample 1. If elements of P° are

n(z, ¥) =1, pa(z, v) = z,ps(z,9) =y,  (16)

I obtain
P(z, y) =0z +by+c. (17)

Then, C5(P%,.A%) determines the family of lines in
the Euclidean plane if one of a and b is not zero and
c>0.

Ezample 2. If elements of P° are

Pl(z) y) =1, pz(.'b‘, y) =2,
pa(z,9) =9, ple, y)=72% (18)
ps(z, y) = 2y, pe(z,9) = 4%,

I obtain

P(z, y) = az® + bzy + cy® + dz + ey + f. (19)

Then, Co(7*,.A%) determines the family of conics in
the Euclidean plane if at least one of a, b, and ¢, and
f are not zero.

Ezample 8. P which is defined by the monomials
of eq.(16) is a subset of P° which is defined by the
monomials of eq. (18). Thus, if at least one of a, b,
¢, d, and e is not zero, C(7%,.A®) defines the family
of all lines and conics.

" The following lemma holds.
[Lemma 2] An element of A™ corresponds to a point
in the n-dimensional vector space.

From lemma 2, I define a coefficient vector of

P(z, y) as

(20)

For a positive real value A, AP(z,y) = 0 and
—AP(z, y) = 0 define the same curve. Conversely,
once a point @ on S3~ is fixed, I can obtain a curve
of C3(P", A"). This leads to the following theorem.
[Theorem 1] There is one-to-one mapping between
(P, A) and ST

I write the correspondence between a family of
curves and POUSS and between a curve and a point
on POUSS as

R(G(P, A7) = S}

a= (ah a2, *°* )an)T‘

(21)
and
pl(c) =a, (22)

where ¢ € C3(P",A")) and a € ST, respectively.
The Hough transform determines a point on POUSS
from samples on a curve and detects curves by using
this one-to-one correspondence. Figure 1 illustrates
the correspondence between a line in the plane and
a point on S3.

From lemmas 1 and 2, theorem 1, and the property

sm=1 ¢ g1, (23)
for m < n, the following theorem holds.
[Theorem 2] For m < n, the relation

R(C2(P™, A™)) C R(Co(P", A™), (24)

holds if P™ C P".

3. Metrics of Curves

In this section, I define a metric among elements
of C3(P*, A") by using theorem 1 and properties of
the spherical geometry.

For vectors @ and b on S™~!,

d(a, b) = cos™(a”b) (25)

is the great-circle distance between a-and b which
coincides with the geodesic distance between a and b
on 57~ [5,8]. Thus, a metric between two algebrmc
curves ¢; and ¢; is defined by .

D(ey, ¢3) d(p(e1), plez2))
cos~(alay), .

I

(26)




“where p(¢1) = a; and p(e3) = as.
I, for |e] = 1 and ey} = 1,

€1Q, > 0, g]bn > 0 . (27)

hold, e;a/|a| and e;b/|b| are elements of S3~1. Thus,
for coefficient vectors @ and b which are not elements
of S771, I define the metric as

T
_ 4 €a'd ;
D(ey, ¢;3) = cos o] o

(28)

where ¢ = ¢;¢;.

Setting A; and a; to be appropriate fixed 2 x 2 real '

matrices and 2-dimensional constant vectors, respec-
tively, the even-order polynomials and the odd-order
polynomials are expressed by

n k
p2n(z,y) = E (H ZTA,'Z) ) (29)
k=1 \n=1 »
and
P (z,9)
w k ‘
Ta o). (nT n
_ kz=:1 {(r__l_]l:(a A.a) (akm)}, >1 (30)
(a-‘T”): n=0,
respectively, because
*(z,9) = [] o7 Ao (31
i=1
and
k
o) = (7 4m)) - efo) @)

contain all 2kth-order monomials and all (2k + 1)th-
order monomials, respectively. Thus, for positive
real numbers ¢ and f, lines and conics are expressed

by

1={(z,y)"|a"= + c = 0}, (33)
where a = (a,b)T s‘uch that ﬁ:;é o0, and

e ={(z,9)"1P(z,4) = 0}, (34)
where |

P(z,y) = 2T Az + bTz + f, (35)

for

b
a=|, v (36)
VA
and
b=(d,e)”. (37)

Here, I show some examples of the expressions of
the metrics among curves.

Ezample 4a. For a;c; # 0, by setting a; = (a;, —1)7,
lines in R? are expressed by

(38)

Now, the distance between two lines I; and I; is de-
fined by

L={(z,9)"ly= sz +c}.

e{a;a; + cic; + 1)

D({l;, 1;) = cos™? 39
(1) \/(a?+c?+'l)(a§+cf-+l) (39)

Ezample 4b. If lines are expressed by
I; = {(z,y)"|z cos 6; + ysinb; = r;}, (40)

where 0 < 6; < 27 and r; > 0, the distance between
two lines I; and I; is defined by

_1 cos(f; — 0;) + rir;

D(I;, 1) = cos . 41)
& JA+r)(1+12) (
Ezample 5. By setting
c(i, j) =
6((-45) Aj) + bnTbJ + flf)) (42)
VAR + 12 + )41 + 162 + £)
the distance among conics is defined by '
D(c;, ¢;) = cos™ (3, j). - (13)

For the notations of (A, A;) and || A;|, see appendix
A. : ‘

Ezample 6. The distance between a line .
1= {z|aTz +c =0}, (44)

and a conic



e={z|zTAz + b7z + f = 0}, (45)

is obtained by

Dfe, 1) = cos™! m(i, 5), (46)
where
m(i,§) = e(aTb +cf) (4)
VUALR + 1872 + f2)(laf? + ¢2)
4. Vector Quantization of Manifolds

For a set of finite points ¢ = {a;}; on S, a
set

V(a;) = {a|d(a,a;) < d(a,a;), i # j}

is called the Voronoi region of a;. FEach V(a;)
is a convex spherical polygon[5,8]. Here, if V(a:)
and V(a;) have common points, then these common
points lie on a common edge of the spherical poly-
gons V(a;) and V(a;). Furthermore, a collection of
sets which is defined by eq. (48) divides S7™! into
finite sets; that is, the relation

(48)

I
s = U v(a). (49)
=1
holds. This is called the Voronoi tessellation on
5771, For points @ and b on S771, since

d(a,b) = cos™(aTb) (50)

the followihg procedure derives a set of generators G
from a finite set D on S771.

Generator Generation
for a randomly selected point a € D,
a;:=a,G:={a}, D:=D\{a1}
i:=2,0<¢<m,
while D # § do
begin
for a randomly selected point @ € D
if ala < cos ¢, then a; := a, G := GU{a;},
else G:=G
D:=D\{a;},i:=i+1
end

The distance between two nearist generators a; and
a; which are produced by this algorithm is longer
then ¢. For a set of generators the following theorem
holds. ‘

[Theorem 3] By setting

Vij = @i — a;,

(51)

if og-a > 0 for a fixed 4, @ is a element of @ € V(a;).

Theorem 3 implies that the quantization of vectors
on S?~! through the nearest-neighbor discrimination
[2,3] is achieved by the transform @ from S7~! onto

G such that

Q(a)=a; if vfa >0, for i # . (52)
v,; is required only for ¢ > j because
Vi; = —0;. (53)

Consequently, the total number of v;; required for
the discrimination is N(N — 1)/2. The domain
complexity and the time complexity to compute
vla are equivalent to those of the inner product.
Thus, by setting the domain complexity and the
time complexity to be d; and {;, respectively, the
domain complexity and time complexity of the dis-
crimination of curves by Q are d; K N(N —1)/2 and

t; KTN(N — 1)/2 for K curves, respectivly.

5. Classification of Curves
Let four curves ¢;, ¢, €3, and ¢; be
e = {(z,9)7)z%y* - 2* =0}, (54)
2 = {(z,9)7s° +4* — 2% + 2 = 0}, (55)
cs = {(z,9)7)e* - 32y +4° =0}, (56)
and
s = {(z,9)7|s® - 22y + ¢° = 0}, (57)

respectively. Three curves ¢;, €3, and ¢ are alge-
braic curves of the third order, and curve ¢, is an
algebraic curve of the fifth order. Thus, according
to the theory of algebraic geometry, a set of curves
is classified into two classes as

{ch 2, €3, 64} = ‘{cly €2, 03} U{¢4}- (58)




However, forms of these curves lead to a separation

{e1, €2, €3, ¢4} = {e1, €2} U{es, €4} (59)

Figure 2 shows these four algebraic curves.
The coefficient vectors of four curves are elements
of 5%,

a = %(03,—1,0,1,1,0,0,0,05,0,05,0)T, (60)
a; = %(03,;-1,0,1,1,0,1,0,03,0,0‘,40)1, (61)
a3 = -\/1—1.6(03,0,—3,0,1,0,0,1,03,0,04,0)7',(62)
and

1
a4 = %(031 0; '—2) 0) 0’ 0’ 0) 0) 03, 11 04, l)T) (63)
where o, is defined by
0,=0,0,---,0 . (64)
N ot

n elements
Table 1 shows distances between pairs of these four
curves.
Now, by setting ¢ = /2, the procedure Generator
Generation yields

G = {ay,az}. (65)
This leads to the tessellation
Sin = V(ﬂ}) U V(a4). (66)

Moreover, since

Vi = (03, "]/\/5, 2/\/61 1/\/5: 1/'\/5;
01 0) 0: 03, —1/\/6) Oy, —1/‘/6)7‘! (67)

the relations

v],82> 0, v],a; < 0. (68)

hold. This mathematically leads to the separation
of eq. (59). Thus, the curve discrimination which is
discussed in the previous sections derives a natural
result for shape analysis directly based on forms ap-
pearing in images.

6. Classification of Lines
6.1. Metric of Planar Lines
Since the Euclidean motion is expressed by

y=Re+1t (69)

by using a rotation matrix R and a translation vec-
tor £, the distance between a line ! and its rotation
» is obtained by

[{R"a}"a + (aTt +c)]

D(,») =
&) V(e + (aTt + c)?)(|al? + ?)

(70)

Equation (70) implies the following theorem by set-
tingc=0and t=o. "

[Theorem 4] The distance between two lines which
pass through the origin is defined by the smallest
angle between them.

(Proof) For a rotation matrix

2= ).

it is sufficient to set 0 < § < 7 to express rotations
of lines in the Euclidean plane. Thus,

cosf, —sinf

sind, cos@ (1)

D(l,7) = cos™ cos ¥, (72)

holds. (Q.E.D.)
Example 4b also implies the following corollary.
[Corollary 4.1] If ¢ < 1, the distance between two
lines is approximated by the smallest angle between

them.

6.2. Vector Quantization of Planar Lines

Equation (70) implies that the rotation and the
translation transform @ to Ra and ¢ to (a7t + ¢),
respectively. On the positive semi-sphere, the rota-
tion and the translation transform a point along a
parallel of latitude and along a circle of longitude,
respectively. Figure 3 illustrates a motion of a point
on POUSS corresponding to the Euclidean motion of
a line in the plane. The motion of points on POUSS
caused by Euclidean motion suggests the quantiza-
tion of latitude and longitude for vector quantization
of a collection of lines.

By setting

O0=cp<ca<c< - <cy-1<cy =1, (73)

let intervals on the c-axis be



I =[ck-1, e}, 1Sk S M. (74)

Furthermore, for vector @ = (a,b,¢)T on 52, @ is
defined by -

(75)

_ ( a b O)T
TA\Var+ 0 Vet )
The set'N,’

N = {ala = (a,b,)7, c € I} (76)

is the north cap. Points in the north cap correspond
to lines which are far from the origin in the plane.
For a set of points {@;};,

Ej= {ald(w, T) < d(@, @), c € I;} (77)

where k # i and j < M — 1 define a collection of
sets which are encircled by two parallels of latitude
and two circles of longitude. Furthermore, if E;; and
E;j have common points, then these points lie in a
“common edge of E;; and E;j.. Moreover,

MM-1
si=(U EjHUN.

i=1;=1

(78)

Consequently, similarly to Voronoi tessellation, a
transform

E(a)=a;; if 3La@>0,fori#¢andcel; (79)
achieves the vector quantization of data, where I set

) .
aij = 5l +cin)e (80)
A sorting prdcedure achieves the discrimination of
lines by using parameter c.

6.3. Approximation of Accumulator Space
If cx—; is small, a truncated semi-sphere

C=SI\N (81)
is approximated by a cylinder[5,9]. Furthermore, one
can define a one-to-one mapping from points on the
surface of a cylinder to points in a rectangle by set-

ting

tan™! %, ifa#0
/2, ifa=0andb>0 -
3r/2, ifa=0andb<0

6= (82)

This permits expression of the accumulator space of
the Hough transform by a data structure which is
topologically equivalent to a rectangle. This prop-
erty mathematically clarifies that the classical accu-
mulator space approximates POUSS if one consider
lines which are distributed around the origin of the
plane. '

7. Generalization to Higher Dimensions

Let a; be unit vector in R"®. Then, a first-order
polynomial

P(2) = afz +apy, (83)
defines a plane
p;={=|F(z) =0} (84)

in R®. Thus, according to discussions in previous
sections, a distance between p; and p; is defined by

D(p, p,) ]
=cos™! <(afa; + af,+1af,+,} (85)
VL +(@hn)?) - (14 (@a)?)
If ai,, =0, p; passes through the origin of R" and
defines a linear subspace of R™. The angle between
p; and p; is defined by ‘

(p,0p; = gip {cos™(e];)}, (86)
€;ée; )

for unit vectors e; € p; and e; € p;. Consequently,

the relation

sip {cos(eTe;)} = cos™}(ab) (87)
AT .

holds. Therefore, the definition of the distance mea-
sure between manifolds coincides with the angles be-

tween two subspaces if the manifolds are subspaces.

8. Conclusions

I defined a metric among the elements of the fam-
ilies of algebraic manifolds which are a generaliza-
tion of lines and conics in the Buclidean plane. The




distance between manifolds is introduced by using
one-to-one mapping between the unit semi-sphere in
the Euclidean space and a family of manifolds. Fur-
thermore, by using the proposed metric, I proposed
a discrimination algorithm of manifolds. This algo-
rithm achieves the discrimination of curves through
nearest-neighbor discrimination on the unit semi-
sphere. Since S77! is a subspace of R", for the deter-
mination of generators, one can apply any method
developed for pattern recognition such as the princi-
pal component analysis.

Moreover, I clarified that a metric is defined in
the accumulator spaces if accumulator space for
curve detection is equivalent to the unit semi-sphere.
This accumulator also permits the Hough transform
which detects both lines and conics. Results of map
projections [9] allow the derivation of an approxi-
mate metric for the proposed metric on a rectangular
accumulator space which is appropriate for practical
implementation.

Part of this research was carried out under Grants-
in-Aid for research from the Ministry of Education,
Science, and Culture of Japan.
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Appendix A

For N x N real matrices A and B, the matrix
inner product is defined by

N N
(A; B) = Z zamn bmm

m=1n=1

where a,,, and b,,, are the mn-th elements of 4
and B, respectively. Furthermore, the matrix norm
is defined by

14l = (4, 4).

By setting that @; and b; are the i-th column vec-
tors of A and B, respectively, if I define vectors

a = (aT’a‘g’ °t ':ax)T
b (bfr bg» ) bqu")T,

the matrix inner product of 4 and B coincides with
the ordinary inner product of a and b in the N*-
dimensional real vector space.

Figure Legends

Figure.1 A line in the plane corresponds to a point
on the positive unit semi-sphere.

Figure.2 From up to bottom #° +y® — 32 = 0, 2° +
-2 +zy? =0,2° - 32y +¢° = 0, and z° — 2zy +
¥ =0. .

Figure.3 Rotation and translation of a line in the
Euclidean plane transform a point on the unit semi-
sphere along a parallel of latitude and along a circle
of longitude.



Table 1. Distances of Curves

D(ci, ;) ' ¢y c3 ¢4
< 0 7/6 | 1.387 | x/2
¢ /6 0 |1412| x/2
y I c3 1.387 | 1.412 0 0.685
<y xf2 | »/2 [0685] 0

Figure.l A Line and The Positive Unit Semi-
Sphere.
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Figure.3 Transformation on The Positive Unit *

Semi-Sphere. Figure.2 Four Algebraic Curves.




