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In computer vision, one of the ultimate purposes is the acquisition of geometric concepts of a 3-
dimensional world from measured data. As an expression intermediate between measured raw data
and geometric concepts, we need a representation of objects in computers because in a computer
we can only manipulate finite-precision numbers. In this paper, we construct discrete combinatorial
geometry from fundamental definitions of classical combinatorial geometry to manipulate geometric
data using only finite-precision numbers. Then, using new definitions we propose a new representation
of curves, surfaces and objects in computers. Furthermore, our new representation implies that the
boundary of a surface is curves and the boundary of an object is surfaces.



1 Introduction

In computer vision, one of the ultimate purposes is
the acquisition of geometric concepts of a 3-dimensional
world from measured data. As an expression interme-
diate between measured raw data and geometric con-
cepts, we need a representation of objects in comput-
ers. Computers express and calculate data using finite-
precision arithmetic. Thus, we need a method to ex-
press geometric objects in a computer memory using
only finite-precision data. Data expressed using finite-
precision arithmetic are equivalent to data expressed us-
ing only integers. This leads to the conclusion that geo-
metric data should be expressed mathematically on lat-
tice points in a 3-dimensional space. We call such geo-
metrical data produced from an object in 3-dimensional
world a discrete object because a space of lattice points
is a discrete space.

Some authors have studied the method to represent
discrete objects. Kong and Rosenfeld[1], Voss[2] and
Udupa[3] constructed a representation of a discrete ob-
Jject using the graph theory approach. A graph is related
to the data structure of a discrete object in a computer
memory, and nodes and vertices of a graph correspond
to pointers and addresses in a computer, respectively.
However, this approach did not consider topological and
geometric structures of discrete objects. Next, Herman
proposed a representation of a discrete object which pos-
sesses topological structures of an object[4]. A discrete
object is represented by a set of voxels, unit cubes, whose
centers are lattice points. Furthermore, a discrete sur-
face, a boundary of a discrete object, is represented by a
set of the faces of voxels which separate the object from
its surroundings. Therefore, discrete surfaces are not
sets of voxels. In 3-dimensional computer graphics, the
marching cube method is used to construct a surface of
an object by patching triangles whose points are deter-
mined by the locations of discrete points in a region [5).
However, this method sometimes generates unexpected
holes on surfaces. Recently, J. Frangon constructed a
discrete combinatorial surface(6]. He applied combina-
torial geometry in 3-dimensional Euclidean space to the
definition of a combinatorial manifold in a space of lat-
tice points.

In combinatorial geometry, simplex and complex are
the fundamental elements for the definitions of geomet-
ric properties of objects. An n-dimensional simplex is
an n-dimensional unit and an n-dimensional complex is
formed by combining n-dimensional simplexes. Further-
more, an n-dimensional complex forms n-dimensional
objects. Thus, a 1-dimensional curve is made up of sim-
plexes of dimension one or lower and a 2-dimensional

surface is made up of simplexes of dimension two or
lower. Then, Frangon defined a simplex under the condi-
tion that the points of a simplex must be lattice points.
However, he proved only the existence of simplexes of
lattice points, and did not derive any method for the
construction of simplexes.

Our method to represent a discrete object is simi-
lar to Francon’s method. We also apply combinatorial
geometry[7]. However, our condition with respect to
simplexes is stricter than that of Francon. Under our
condition, every point of a simplex must be located in
the neighborhood of other points of a simplex. Thus, the
number of simplexes which our method defines is fixed,
while it is infinite in Frangon’s method. Consequently,
we can form a discrete object, surface and curve by a
constructive method because we obtain the complete set
of simplexes.

The fact that the boundary of an object is a surface
and the boundary of a surface is a curve shows us the
importance of unified representation of discrete objects,
discrete surfaces and discrete curves. Then, this paper
introduces a new representation of not only discrete ob-
jects but also curves and surfaces, in the following steps.
In section 2, we give the definitions of a discrete space
and neighborhoods in the discrete space. In section 3,
we define discrete simplexes whose dimensions are from
0 to 3. In section 4, we introduce some definitions from
discrete combinatorial topology for use in following sec-
tions. In section 5, we define a discrete curve. In section
6, we define a discrete surface and prove that the bound-
ary of a discrete surface is a discrete curve. In section 7,
we define a discrete object and prove that the boundary
of a discrete object is a discrete surface.

2 Discrete Space

Let Z be the set of all integers. 23 is called a discrete
space. Here, Z3 is a subset of 3-dimensional Euclidean
space R3. In Z3 neighborhoods are defined as follows:
Definition 1 (neighborhood) Let = = (3,5,k) be a
point in Z3. Three kinds of neighborhoods of = are de-
fined by

Ne(z) ={(p.q,7) | (i —=p)*+ (G- ¢/ + (k- r)? <1,

pq,r €2}, (1)
Ma(e)={(p.e,7) | G-+ (G- q +(k-r)2 <2,
P q,r € Z} (2)
and
Nag(z) = {(p,q,7) | (i-p)*+ (5 —q¢)* + (k- r)* < 3,
pa,r€Z}. (3)



They are called 6-neighborhood, 18-neighborhood and 26-
neighborhood, respectively.

3 Discrete Simplex

Although the theory of simplexes is generally defined in
Euclidean space, we deal with topological properties in
Z3. Thus, in this section, we define a simplex in VAS
In Z3, if we choose two vertices, one of which is lo-
cated in the neighborhood of another, then the distance
between them is minimum. This is because we choose
vertices only on lattice points in Z3. The existence of
the minimum distance implies the existence of minimum
simplexes in Z3 whose vertices have the minimum dis-
tance. We call such minimum simplexes in Z3 discrete
simplexes, and hereafter abbreviate discrete simplex to
d-simplex. Simplexes have dimension from 0 to 3. We
define d-simplexes in order of increasing dimension. If
the dimension of a d-simplex is n, we denote it as n-d-
simplex.

Definition 2 (0-d-simplex) A 0-d-simplez is com-
posed of one vertez x in Z3 and represented by [z].

Definition 3 (1-d-simplex) A 1-d-simplez is com-
posed of two vertices xq,z, in Z3 and represented by
[®0, 1], where g € Npu(21) (m = 6,18, 26).

Since there are three kinds of neighborhoods in 73, three
kinds of 1-d-simplexes exist corresponding to their neigh-
borhoods. If we select 6-neighborhood as a neighbor-
hood in Z3, we obtain one 1-d-simplex. If we select
18-neighborhood, we obtain two 1-d-simplexes. If we
select 26-neighborhood, we obtain three 1-d-simplexes.
Here, we regard two d-simplexes as the same d-simplex
if we can transform one to the other by a congruence
transformation.

Before defining 2-d-simplexes, we define a region
which includes a vertex @ = (3,5,k) € Z3 and other
vertices as follows:

D(x)={(i+e,j+tenk+e)|e=00r1}. (4)
Definition 4 (2-d-simplex) A 2-d-simplez is com-
posed of n + 1 vertices o, &1,...,8n (R = 2 or 3) in
Z3 and represented by [xo,®1,...,2,]. 7+ 1 vertices
are determined by the following procedure 1.

procedure 1

1. Fix a vertex mo.

2. Select 1,3 in D(zo) where
z1 € Nu(zo)

and
z2 € Np(zo).

3. ¥ @3 € Npy(z1), we obtain [zo, @1, 22}, else, select
z3 in D(zo) where

x3 ¢ NM(EO)

and
T3 € Nm(zl) n Nm(z2))

then we obtain [zo, 1, z2, z3].

In the procedure mentioned above, m is 6, 18 or 26 which
represents the neighborhood in Z3.

A 2-d-simplex is a set of three or four vertices which
are located in the neighborhood of each other. If we se-
lect 6-neighborhood as a neighborhood in Z3, we obtain
one 2-d-simplex consisting of four vertices. If we select
18-neighborhood, we obtain one 2-d-simplex consisting
of four vertices and two 2-d-simplexes consisting of three
vertices. If we select 26-neighborhood, we obtain three
2-d-simplexes consisting of three vertices. Here, we re-
gard two d-simplexes as the same d-simplex if we can
transform one to another by a congruence transforma-
tion.

Definition 5 (3-d-simplex) A 3-d-simplez is com-
posed of n + 1 vertices @o,®1,...,2, (n = 3,4 or 8)
in 73 and determined by [®o,®1,...,%n). 4+ 1 vertices
are decided by the following procedure 2.

procedure 2

1. Fix a vertex zq.

2. Select a 2-d-simplex [®q,®1,...,®,] (s = 2 or 3)
in D(®o) which includes =o.
3. Determine a 2-d-simplex

(a(8)] = [@i, Biv1, Yigoys - - Wiyl (E=0or 1)

in D(w®g) which includes two vertices z;, z;y1 (i =
0,1,2,...,s) such that z;4; = =o. Two 2-d-
simplexes must satisfy the relation y;,) = y; +1(0)-

4. If y,-(o)(i = 0,1,...,s) indicates one -vertex,
we set Yyt = 0,1,...,5) to y and ob-
tain [@0,21,...,Z,,y], else, if we can define

[!Io(o)xyl(o)» <+ ¥y(0)] s a 2-d-simplex, we obtain
L0, T1;5 -« - &gy Yo(0)r Y1(0)s+ -2 y,(o)] .



In the procedure mentioned above, m is 6,18 or 26 which
represents the neighborhood in Z3.

A 3-d-simplex is a set of four, five or eight vertices
which are located in the neighborhood of each other. If
we select 6-neighborhood as a neighborhood in Z3, we
obtain one 2-d-simplex consisting of eight vertices. If
we select 18-neighborhood, we obtain two 2-d-simplexes
consisting of four vertices and one 2-d-simplex consisting
of five vertices. If we select 26-neighborhood, we obtain
five 2-d-simplexes consisting of four vertices. Here, we
regard two d-simplexes as the same d-simplex if we can
transform one to another by a congruence transforma-
tion.

Figure 1 shows n-d-simplexes(n = 0,1,2,3) of each
neighborhood.

4 Discrete Combinatorial Geome-
try

In this section we define a complex and some other
topological concepts in Z3. By embedding d-simplexes
in R3, we extend properties of classical combinatorial
topology to Z3.

Definition 6 (embedded d-simplex) Setting r-d-
simplez (r =0,1,... ,3) to be [®o,21,...,Tn), we embed
[0, 1, .-, &n] in Z3 to R3. An embedded d-simplez of
[@o,21,...,&n] is defined by

&l = {z|2 = E Az, E Ai=1,X>0}.
1=0 1=0
()

An embedded d-simplex |@g,®1,...,2,| is a convex
hull of vertices, ®g,®1,...,®n, without its boundary.
The vertices of an embedded d-simplex are not linear,
which is a significant difference between such a simplex
and ordinary simplexes. For the definition of a discrete
complex, the following definition is necessary.
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Definition 7 (face)

Among r + 1 vertices @g,@1,...,®, of an r-d-simplez
[®0,@1,...;®,), we choose s+1(s < n) vertices and con-
struct an s-d-stmplez consisting of these s + 1 vertices.
We call this s-d-simplez the s-face of [wo,1,...,&x).
The set of all faces of [®o,21,. .., %] is denoted by

face([zo,@1,. .., ®n]) = { [Zi(0)s Bi1)s - - > Bi()] |

zy=2; (02k2s,0252>r),s<r} (6)
If we select 6-neighborhood as a neighborhood in Z3, It
is clear that a 1-d-simplex has two 0-faces, a 2-d-simplex

has four O-faces and four 1-faces and a 3-d-simplex has
six 2-faces, twelve 1-faces and eight O-faces. If we select
the other neighborhood, the number of faces depends
on the neighborhood. Here, we define discrete complex,
d-complex, and related concepts.

Definition 8 (d-complex) A finite set K whose ele-
ments are d-simplezes in Z3 is called a d-complex, if the
following conditions are satisfied:

1. If[a) € K, face([a]) e K .
2. If[a1],[a2] € K and |ay]| N az| # 0, [a1] = [aa].

where [a] and |a| are a d-simplez and its embedded d-
stmplez, respectively. The dimension of K is equivalent
to the mazimum dimension of all d-simplezes which be-
long to K.

Definition 9 (pure d-complex) Anr-dimensional d-
complez K is pure if every s-d-simplez [a] (s < 1) in K
satisfies

[a] € face([3]),

where [b] is one of the r-d-simplezes in K.

(™

Definition 10 (connected d-complex) A d-complez
K is connected if two arbitrary elements [a],[b] define a
path

la1] = [a], [aa}, -.., [aa] = [8], (8)

where
[a..-] e K

and

la}n{ais1] # 0.

There are three kinds of neighborhoods in Z3, and the
shapes of d-simplexes depend on these neighborhoods.
Thus, the shape and the property of a d-complex also
depend on these neighborhoods because a d-complex is
formed by combining d-simplexes.

A d-complex is a combination of d-simplexes. In a
pure n-dimensional d-complex, d-simplexes of dimen-
sion less than n do not exist unless they belong to the
faces of some n-dimensional d-simplexes. In a connected
d-complex, d-simplexes are connected with each other.
These d-complexes depend on the arrangement of d-
simplexes in the d-complexes. Figure 2 illustrates the
process of generating 3-dimensional d-complexes. The
neighborhood in figure 2 is 26-neighborhood.

We define some further topological properties in Z3
using the definition of a d-complex.



Definition 11 (star) Let z be a vertez of ¢ d-complez
K. A star of ¢ with respect to K is defined by

o(z) = {la] | = € [a], [a] € K}. (9)

If we want emphasize the set K, we describe a star of ¢
with respect to K as o(z : K).

Definition 12 (outer star) An outer star is defined

by
lo(=)] = laleg(z)face([a])\o(z) . (10)

5 Discrete Curve

We define linear stars and semi-linear stars in Z3 us-
ing basic properties of combinatorial geometry. Further-
more, using these definitions we define discrete curves in
z3.

Definition 13 (linear star) If
Lol == 1i=12) ()

o(x) is linear.

Definition 14 (semi-linear star) If

lo(=)] = {[=:]},

o(z) is semi-linear.

(12)

Figure 3 illustrates the points of which stars are lin-
ear and semi-linear. The neighborhood of figure 3 is
6-neighborhood. These definitions leads to the following
definition of a 1-dimensional discrete curve.

Definition 15 (discrete curve) Let K be a connected
and pure 1-dimensional d-complez. If the star of ev-
ery vertez in K is linear or semi-linear, K is a discrete
curve.

It is clear that the star of a intersection point in a
curve is neither linear nor semi-linear. Thus, definition
15 implies that a discrete curve does not have any inter-
section points because the star of every point is linear
or semi-linear. The vertices of which star is semi-linear
correspond to end points of a discrete curve. Therefore,
we can define a discrete curve without boundary.

Definition 16 (discrete closed curve) Let K be a
discrete curve. If a set of vertices in K whose stars
are semi-linear is empty, K is a discrete closed curve.

Similarly, we can also define the boundary of a discrete
curve.

Definition 17 {(Boundary of discrete curve)
Let K be a discrete curve. A boundary of K 1is a set
of vertices whose stars are semi-linear.

The following theorem is derived from the above def-
initions.

Theorem 1 If a discrete curve K 1s not closed, a
boundary of K is

0K = {[z1], [z2]}- (13)
(proof) Since K is not closed, 0K is not empty. Assume
that K is a set of at least three 0-d-simplexes. All ele-
ments of §K are connected with each other through the
path of d-simplexes in K because K is connected. This
implies that there exist some vertices in K \ 0K such
that stars are not linear. However, this leads to contra-
diction because the star of every vertex in K is linear
or semi-linear. Thus, 0K is a set of two 0-d-simplexes.

(Q.E.D)

6 Discrete Surface

We define a discrete surface using the properties of stars.
Here, we define cyclic stars and semi-cyclic stars.

Definition 18 (cyclic star) If |o(x)] is a discrete
closed curve, o(z) is cyclic.

Definition 19 (semi-cyclic star) If |o(z)] is a dis-
crete curve which does not contain a closed curve, o(z)
is semi-cyclic.

Figure 4 illustrates the points of which stars are cyclic
or semi-cyclic. The neighborhood of figure 4 is 6-
neighborhood. These definitions lead to the definition
of a 2-dimensional discrete surface.

Definition 20 (discrete surface) Let K be a con-
nected and pure 2-dimensional d-complez. If the star
of every vertez in K is cyclic or semi-cyclic, K is a dis-
crete surface.

The vertices whose stars are cyclic correspond to inner
points of a discrete surface and the vertices whose stars
are semi-cyclic correspond to boundary points. There-
fore, a discrete surface does not intersect itself because
the star of every point is cyclic or semi-cyclic. Thus, we
can define a discrete surface without boundary. More-
over, we can also define the boundary of a discrete sur-
face.



Definition 21 (discrete closed surface) Let K be a
discrete surface. If a set of vertices in K whose stars
are semi-cyclic is empty, K is a discrete closed surface.

Definition 22 (Boundary of discrete surface) Let
K be a discrete surface and H be a set of vertices in
K whose stars are semi-cyclic. A boundary of K is

0K = Bp UBy, (14)

where

Bo = {[=]| = € H} (15)

and

B1 = {[z,¥]| = € H, [y] € 8(|o(=)))}- (16)

These definitions lead to the following theorem.

Theorem 2 If a discrete surface K is not closed, a
boundary of K, 0K, consists of a finite number of dis-
crete closed curves.

(proof) In order to show that K consists of a finite
number of discrete closed curves, we show that the star
of every vertex in §K is linear.

For a fixed vertex = in JK, the d-simplexes which are
contained in o(z : 9K) are classified into the following
three types:

1. a 0-d-simplex [z].

2. two 2-d-simplexes [z,y,] (i = 1,2), where [y;] €
Olo(z : K)]. Now, |o(z : K)| is a discrete curve
with boundary because o (= : K) is semi-cyclic. Thus,
dlo(z : K)] consists of two vertices.

Therefore,

o(z:0K) = {2} U{[z.u] |i=1,2)  (17)

and
to(z : OK)] = {[y1, %]} (18)

Namely, |o(= : K)| is linear. Thus, K is a finite
number of discrete closed curves. (Q.E.D)

7 Discrete Object

As a natural extension of the relation between surfaces
and curves, here, we define the relation between ob jects
and surfaces using properties of stars. First, we define
spherical stars and semi-spherical stars.

Definition 23 (spherical star) If |o(z)] is a discrete
closed surface, o(z) is spherical.

Definition 24 (semi-spherical star) If |o(z)] is a
discrete surface which does not contain a closed surface,
a(x) is semi-spherical.

Figure 5 illustrates the points of which stars are spherical
or semi-spherical. The neighborhood of figure 5 is 26-
neighborhood.

Definitions 23 and 24 lead to the definition of a 3-
dimensional discrete object.

Definition 25 (discrete object) Let K be a con-
nected and pure 3-dimensional d-complez. If the star
of every vertez in K is spherical or semi-spherical, K is
a discrete object.

A vertex whose star is spherical corresponds to the
central point of a sphere. Therefore, such a vertex is
located in the interior of an object. A vertex whose
star is semi-spherical is located on the boundary of an
object. Thus, all of the 3-dimensional d-complexes in
figure 2 are not discrete objects. The d-complex in figure
6 is a discrete object. There do not exist discrete closed
objects analogous to discrete closed surfaces. Thus, we
obtain the following theorem.

Theorem 3 Let K be a discrete object. A set of vertices

in K whose stars are semi-spherical is never empty in
z3.

(Proof) If the set of vertices in K whose stars are
semi-spherical is empty, the star of every vertex in K
must be spherical. If the star of every vertex in K is
spherical, we must embed 3-d-simplexes in Z3 leaving
no space between them. Now, a discrete object K is
constructed from a finite number of 3-d-simplexes and
their faces. Thus, we cannot continue the embedding
process infinitely. Therefore, K possesses some vertices
whose stars are semi-spherical. (Q.E.D)

A discrete object always has a boundary, which is de-
fined as follows:

Definition 26 (Boundary of discrete object)

Let K be a discrete object and H be a set of vertices
in K whose stars are semi-spherical. A boundary of K
is

K = By UB; UB,, (19)
where
Bo = {[=] | z € H}, (20)
Bi ={[z,y] |z € H, [y] e dlo(=)]}  (21)
and

By = {[zo,ml,...,zn] | =o€ H,
(@i, 2i41] € 9 o(0)]
(i=1,2,...,n - 1)}.(22)



In the above definition, By, B; and By indicate a
set of 0-d-simplexes, 1-d-simplexes and 2-d-simplexes,
respectively. The next theorem shows that these three
sets, Bg, By and Bgy, form discrete closed surfaces. It
is an analogue of theorem 2. By replacing curves and
surfaces in theorem 2 with surfaces and objects, respec-
tively, we obtain the following theorem.

Theorem 4 The boundary of a discrete object consists
of a finite number of discrete closed surfaces.

(proof) Let the boundary of a discrete object K be K.
In order to show that K consists of a finite number of
discrete closed surfaces, we show that the star of every
vertex in 9K is cyclic.

For a fixed vertex & in K, the d-simplexes which are
contained in o(x : 9K) are classified into the following
three types:

1. a 0-d-simplex [z].

2. 1-d-simplexes [@,y;] (1 = 0,1,2,...,n), where [y;] €
dlo(z : K)]. Now, lo(z : K)] is a discrete surface
with boundary because o(x : K) is semi-spherical.
Thus, Theorem 2 implies that 8|o(= : K)] is a dis-
crete closed curve.

3. 2-d-simplexes [z, y;,¥;4,] (1 = 0,1,...,n) such that
Yny1 = Yo, Where [y;,y;4,] € 8lo(z : K)] and
dlo(x : K)] is a discrete curve.

Therefore,

o(z: 0K) = {[=z]} U {[=,%]]i=0,1,...,n}
u {[z’yilyi-i-l] |i= 0,1,...,n,

Yni1 = Yol  (23)
and
lo(z : 0K)] = {[y]s Wi yiga] | £=0,1,...,m,
Yni1 = Yol}- (24)

o(z : OK) is cyclic because |o(x : OK)| is linear.
Thus, 0K is a finite number of discrete closed surfaces.

(Q.E.D)

8 Conclusions

We proposed a new representation of curves, surfaces
and objects in a discrete space using combinatorial ge-
ometry. We introduced the method of constructing sim-
plexes and complexes in a discrete space, practically, al-
though Frangon proved the existence of simplexes and
complexes in a discrete space. A finite number of com-
plexes generate discrete curves, surfaces and objects.

Therefore, we defined discrete curves, surfaces and ob-
jects by a constructive method. Furthermore, we proved
that the boundary of a discrete surface consists of a finite
number of discrete closed curves and that the boundary
of a discrete object consists of a finite number of dis-
crete closed surfaces. For the application of these repre-
sentations to geometric data processing, in forthcoming
papers, we will present algorithms which extract curves,
surfaces and objects from raw data. Discrete objects,
surfaces and curves which are formed by our method are
classified into three types which depend on the neigh-
borhood in Z%. Then, we obtain geometric parameters,
for example, Euler numbers of objects and curvatures of
curves or surfaces, of objects in the three-dimensional
world from raw data for each neighborhood.

Part of this research was carried out under Grants-in-
Aid for Scientific Research from the Ministry of Educa-
tion, Science, and Culture, of Japan.
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Fig.3: Vertices of which stars are semi-linear and linear. The
neighborhood in this figure is 6-neighborhood.
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2-dimension

QO avertex whose star is cyclic

@ avertex whose star is not cyclic or semi-cyclic
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Fig.1: dosi 1. in 73 Fig.4: Vertices of which stars are semi-cyclic and cyclic. The
ig.1: d-simplexes in Z*.

neighborhood in this figure is 6-neighborhood.
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O a vertex whose star is sherical

@ a vertex whose star is not sherical
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Fig.5: Vertices of which stars are semi-spherical and spherical.
The neighborhood in this figure is 26-neighborhood.

3D pure d-complex

d-complex

Fig.2: d-simplexes, a d-complex, a pure d-complex and a con-
nected and pure d-complex. The neiborhood in this fig-
ure is 26-neighborhood. A 3-dimensional d-complex is
a combination of d-simplexes whose dimensions are 3 or
lower. In a pure 3-dimensional d-complex, d-simplexes
of dimension less than 3 do not exist unless they be-
long to the faces of some 3-dimensional d-simplexes.
In a connected and pure d-complex, d-simplexes are Fig.B: A discrete object. The neighborhood in this figure is
connected with each other. 26-neighborhood.




