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Abstract  In this paper, we show that the random sampling and voting process detects linear
flow filed. First, we summarize the theoretical aspects of randomized sampling and voting process as
dynamics which solves model-fitting-problem. Second, we formalize the linear flow field detection as a
model fitting problem which is solved by the least squares method. Finally, we show some numerical
examples which shows the performance of our method. We introduce a new idea to solve least square
model fitting problem using a mathematical fact for the construction of pseudo-inverse.
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1 Introduction

This paper is the forth of the series of papers which
deal with theoretical aspects of the Hough transform.
In this paper, we deal with the random sampling and
voting process as a solver of linear flow detection. In a
series of papers [1, 2], the author introduced the ran-
dom sampling and voting method for the problems of
machine vision. The method is an extension of the ran-
domized Hough transform which is first introduced by
Finish school for planer image analysis [7]. Later they
applied the method to planar motion analysis [3] and
shape reconstruction from flow field [4]. These results
show that the inference of parameters by voting solves
the least-square problem in machine vision without as-
suming the predetermination of point correspondences
between image frames.

The randomized Hough transform is formulated as a
parallel distributed model which estimates parameters
of planar lines and spatial planes, which are typical ba-
sic problems in computer vision. Furthermore, many
problems in computer vision are formulated as model
fitting problems in higher dimensional spaces. These
problems are expressed in the framework of the least
squares method (LSM) for the parameter estimation [6].

Many problems in computer vision are expressed as
the minimization of the criterion

N
J(:z:a) = Z IAama - bal21 (1)

a=1

for given A = o and by, or

N
J(&a) =Y |Bat, ), (2)
a=1
where
Bo = (Aq,—ba), €= (2", 1)7 3)

These problem can be converted to the minimization
of tr(X M) for matrices X and A. The family of ascent
equation

T =V¢, ¢ =tr(XA), (4)

provides a framework for the minimization of the least-
squares method [8, 9]. Brockett introduces a dynami-
cal system for a matching problem which is motivated
by a basic problem in computer vision, matching for
the motion analysis [8, 9]. He has extended and exam-
ined mathematical properties of these dynamical sys-
tems. We continue his primal motivations applying his
primal idea to the Hough transform. Furthermore, the
mathematical properties of of the random sampling and
voting procedures for computer vision are examined as
a dynamical system.

In this paper, we show that the randomized sam-
pling and voting process detects linear flow filed. First,
we summarize the theoretical aspects of randomized
sampling and voting process as dynamics which solves
model-fitting-problem. Second, we formalize the linear
flow field detection as a-model fitting problem which is
solved by LSM. Finally, we show some numerical exam-
ples which shows the performance of our method. We
introduce a new idea to solve least square model fitting
problem using a mathematical fact for the construction
of pseudo-inverse.

2 Model Fitting and LSM

Setting = (z,y) " to be a vector in two-dimensional
Euclidean space R?, the homogeneous coordinate of
vector  is expressed as € = (z,%,1)7 which expresses
a point on the projective plane. For a nonzero real
number A, the the homogeneous coordinates € and \¢
express the same point @, that is, a homogeneous co-
ordinate £ = (a,3,7)" such that & £ (0,0,0)7 de-
fines a point (@/7, 8/7)T. Therefore, there exist one-to-
one mapping between points on R? and points on the
positive hemisphere Si in three-dimensional Euclidean
space R3. We define the homogeneous coordinate £ of
avectorz € R¥Efor k > 3 as £ = (27,1)T. We de-
note the Euclidean length of vector = in k-dimensional
Euclidean space R* for k > 1 as |al.

Let S™~! be the unit sphere of R" consisting of all
points x with distance 1 from the origin. For n = 1,
S% = [~1,1]. Furthermore, the positive half-space is
defined by

R% = {z|z, >0}, n > 1. (5)
Now, by setting
H} ' =5"1NR%, n2>1, (6)
the positive unit semi-sphere is defined by
St =8y JHY, n> 1 (7)

Setting = to be the valuable in n-dimensional Eu-
clidean space, the Hough transform is a method for the
estimation of parameters {a;}%_; of a collection of equa-
tions,

fi(ai,m)=0,i=1,2,~--,k (8)

from finite many samples {z;}72; such that m > k > 1
using the voting procedure. An equation f;(a;, ) = 0is
called a model for the parameter estimation. The most
typical and traditional models for the Hough transform



are planar lines and conics if the dimension of space is
two. : ' ‘
The model fitting for s set of sample points {z}7_;
is achieved by minimizing the criterion
: n _
J(a) = Y w(a)lf(a,za)f?, (9)
a=1 ‘
with some constraines. If the model equation is ex-
pressed in the form f(a,x) = aTx, these problems are
also expressed as the minimization of tr(M A), where

n ‘ L
M= Zw(a)maml, A=aa". (10)
© a=1 o .
If f(a,‘w) = a'x, we can nomalize la] = 1. Since

Aa = |af’a, rankA = 1, and AT = A, vector a is
the eigenvector associated to nonzero eigenvalue of A.
QOur problem is equivalent to the next problem.

Problem 1 Find A such that A = O which minimizes
tr(M A) with the constraint tr(IA) = 1, since trA =
|af®.

This is the expression of the semidefinite programming
problem. Therefore, the interior point method, which
is a gradient decent method for convex programming
problem, solves the problem.

* The gradient flow

dA
— =—-[A,[M,A 11
= =AM, 4] (1)
derives the solution which minimizes the criterion
J(A) =tr(AM) (12)
for .
tl_lglo A(t) = A. (13)
For a system of equations
) gIO;:O, 0[=1,2,"‘7TL, . (14)
setting . '
E= (51)527"’€m) (15)

the rank of matrix Z is n if vector z, is an element
of R™. Therefore, all n X n square submatrix IN of Z
is nonsingular. Setting N;; to be the ij-th adjacent of
matrix IV, we have the equality

falNll +fa2N21 +oeee At fanan =0,

if the first column of IV is £ = (xf,1)T. Therefore, the
solution of this system of equation is

(16)

Ny

a = (ni, 21,7+, nn1) Ty nay = - (17)

If the dimension of the parameter of model is 3, we have
the solution as ‘

ga X Eﬂ
Aop = T (18)
P e x Egl
for a pair of randomly selected vectors. Therefore, we
can adopt the solution of a system of equations.

Since there are ,,C; posibilities for the selection of
nXn square submatrix from M ;-we can randomly select
n column vectors. Since samples are noisy, the model
parameter is the vectoe which satisfies

l€la| = eq, (19)
for a small positive number e,. Therefore, we adopt the
average of a for many combination of column vectors
of . These properties lead to random sampling and
voting procedure, such as
Algorithm 1

1 : Select randomly n column vectors from E.
2 : Compute Nj; and a.

3 : Vote a to accumulator space which is topolog-
ically equivalent to unit hemisphere in R™.

4 : After an appropriate number of iteration de-
tect the peak in the accumulator space, and
return it as the solution.

A generalization of this property is based on the fol-
lowing proposition.

Proposition 1 [5] Assuming that matrices Py, and O

are a k X k permutation matriz and the (m —n) X n null

matriz, respectively, for a m x n matriz A such that
m > n and rankA = n, vector a which is defined as

o= (A;l O) y (20)

for ’

Ay, = (P, O0)PprA (21)

minimizes a criterion |y — Aal?.

There are ambiguities for the selection of Pp, and Py,
The proposition implies that if the m X n system miatrix
is column full-rank,

1. selecting n equations from the system of equations,
and

2. solving this nonsingular equation,




we obtain a solution of the least square optimization.
If we randomly select column vectors, this method also
derives an extension of the randomize Hough transform.
We show a simple example for the application of this
proposition.

Example 1 Let a system of equation be

a 1

1

Since the rank of the system matriz is 2, we have the
following three systems of equations,

1/2 1/2
2/3 1/3
1/4 3/4

(22)

12 12\ (a) _ (1

(7o) (s) - (1) @

172 112\ (a) _ (1

(i sh)(5) = (3) e

2/3 13\ (a) _ (1

(Gask)() - () @
The solutions of these equations are all (a,b)7 =

a,n7.

3 Flow Field Detection

3.1 The Hough Transform

A line on two-dimensional Euclidean plane R? is ex-

pressed as
&'a=0 (26)

where the parameter vector @ = (a, b,c¢) is normalized
to the unit length, that is, ja| = 1.

Let m lines exist on R? and sample-points P be sep-
arated to clusters of points such as

m o
P= U P, s.t. P = {wz]};ﬁ%

i=1 .

(27)

Furthermore, we assume that in each cluster there ex-
ists k points, that, is ¥ = n(i) and ¥k x m = n. The
Hough transform for the line detection achieves both
the classification of sample points and the model fitting
concurrently. Therefore, in this section, we formulate
the randomized Hough transform as the LSM for the
model fitting problem. After clustering sample-points,
we have the equation,
£hai=0,i=1,2,---m. (28)
For a collection of sample points, we call matrix | X<,

E=(€17€21°"a§n)' (29)

the data matrix. If there is no error in sample points,
the parameters of a line satisfies the equation

Ta =0.

U]

(30)
Let @ be an appropriate permutation matrix. Setting
EQ= (ga(l)a 60(2)3 T aéa(n))T

where o(-) is an appropriate permutation associated
with @, we have

(31)

1

Q= (Ela‘E‘Z;"',E’n)

(32)

where each X'7; is 3 X k matrix. If each E; forms cluster
which determines a line, matrix =; and parameter a;
satisfy the relation

Bia;=0,i=1,2,---,m. (33)
Therefore, setting
T(E, 8 En) = (ELEL BT (3
and
a=a,a2-,0, (35)
the Hough transform achieves the minimization of
1@,@) =|{"=@)} | (3)
with constrains
lai? =1, i=1,2,--,m. (37

This property implies that the classification of sample
data is equivalent to the permutation of elements of data
matrix . There exist many possibilities for the selec-
tion of a permutation @, if we do not know the estimate
of {@;}%,. These expressions of the line fitting prob-
lem conclude that the Hough transform achieves both
the permutation of data matrix E and the computation
of the solution which satisfies eq. (??) concurrently.

Setting

= 528

Y E x &

for all ¢; and §; such that ¢ # j. For noisy data, the
average of a;;

(38)

1
a=—= DL (39)
might provide a good estimate of the parameter of a
line. This property implies the following algorithm for
the estimate of parameter vector @ from noisy data

Next, we calculate the accuracy of solutions which
Algorithm 1 yields. Assuming that |FP;| = p and the



1: procedure :Random Algorithm 2
2: Dbegin
3 select Tmax and p
4: set scor(a) =0
5 while < Tmax do
6: begin
7: select €; and &;, randomly
8: compute a = |£f:£:|
9 set scor(a) = scorj(a) +1
10 : if scor(a) >p then reterna
11 : else t:=t+1
12 end
13 : end

Figure 1: An Algorithm for Line Detection

dimension of the parameter is ¢ for p > g, the number
of the combinations of the equations which yield the
valid solution is ,Cj for each parameter. Furthermore,
the number of the combination of ¢ equations from n
samples is ,Cq. Therefore, the probability for obtaining
valid solutions is ,C;/nCy, since we assume that there
exist m models and p x m{= n) sample points. This
property implies that the probability of a valid solution
is

P =, Cyf{m xa Cy), (40)
and the probability of an invalid solution is
1—5 Cy/nC,
Py =P 9/n"q 41
d nCq —p Cy 1)

Henceforward, we have the inequality P, > Py if
n >» m. This property implies that, after the suffi-
. cient number of iterations, Algorithm 1 achieves both
the classification of data and the estimation of parame-
ters concurrently.

3.2 Linear Flow Field Detection

Setting f(z,y,t) to be a time dependent gray-scale im-
age, the linear optical flow u = (u,,1)7 is the solution
of the linear equation

fTu=0, (42)
for df((l.‘, y7t) — fTu (43)
da ’
where
_ (8f(z,y,t) Bf(z,y,t) Of(z,y,t)\"
7= (v, S, 2 ) (44)

Assuming that the fiow vector u is constant in an area
S, the flow vector in an area is the solution of the min-
imization problem

J(u) =" (fau)?, (45)
a=1
where
o= (af(x,y,t) 0f (@,y, 1) 6f(z,y,t))T
@ Oz ! dy ! ot o=t y=

for a sample point (zq,%,)7 in an area S..

Therefore, methods described in the previous sections
are valid for the detection of the flow filed. Setting the
eigenvector associated to the minimum eigenvalue of

N
M=3 fofa (47)
a=1
to be
a=(4,B,0)7, (48)
our solution is
A B \T
u= (5,5,1) . (49)
For a system of equations
faa=0,a=1,2,---,N, (50)
in a windowed area, we have
fa X fﬁ T
a= ———— a=(4,B,C)’, 51
7o X Fol (4,B,C) (51)

if we assume that |a| = 1. Furthermore, since, u =
(u,v,1)T, setting

u=Xfoxfp) a=(8nT (52
for a nonzero real constant )\, we have also
af 7
u={—,—,1)". 53
( oot ) (53)
Moreover, setting
f (z,y, t)
= Lxasd , 54
fza Oz T=To Y=Y ,U=T ( )
of (m’ Y, t) '
fra = =221 s 55
ve By T=T o Y=Yar,t=T (5%)
of(z,y,t '
fra = Uzt NS
T=Ta Y=You b=T - '




the linear constrain for the linear optical flow is

fzau+fyav+fra=0 (57)
Setting . .
f:z:a fya
o = — 2% by = — 222, 58
S (©8)
for fro # 0, eq. (57) becomes
u v
P + b 1. (59)

Therefore, (u,v)7 is the common point of lines which
connect (aq,0)” and (0,b,) 7, and (ag,0)" and (0,b5)T.
This property implies that the clasical Hough transform
achieves the linear flow-filed detection voting lines onto
the accumulator space.

4 Numerical Examples

Since our images are sampled and expressed in the pixel
form, we approximate,

fa = -}I{f(x-!-1,y,t)+f(x+1,y+1,t)
+f(z+ 1Ly, t+ 1)+ flz+ly+1,t+1)}
i@y + F@y+ 1Y
+f(z,y,t+1) + flz,y + Lt + 1)},
JU@ Y+ L+ e+ Ly + 1,0
+flz,y+1,t+1) + fz+Ly+1,t+1)}
i@y + f@+ Ly
+f(zy,t+ 1) + flz+ Lyt + 1)},
Tyt )+ o+ Lyt 1)
+f(z,y+1,t+1) + flz+1Ly+1,t+ 1)}
i@y + fe+ Ly
+f(z,y+ 1,0+ flz+1Ly+1,8)}

(60)

(61)
fi

(62)

Furthermore, we assume that our window is 5 x 5, pixel.
Therefore, we have the 35C, combinations for the selec-
tion of a pair of linear constraints from 25 constrains.
For the computation of flow vector u, we adopt two
methods which compute eq. (51) and the common point
of two lines which are defined by eq. (57). For the case
of the common point of a pair of lines, we use two accu-
mulator space. First as the classical Hough transform,
we first vote a pair of lines in the usual accumulator
space. Second we vote this common point to the sec-
ond accumulator. After voting this point to the second

‘accumulator space, for the clearance of the first accumu-

lator space, we delate lines from the first accumulator
space. This procedure is introduced to save the amount
of memory for the voting.

The linear constrains of for the linear optical flow field
are derived as the first order approximation of intensity
constrain. Furthermore, because of digitization, fz, fy,
and f; contain numerical errors. These errors distribute
the solutions in the accumulator space. Therefore, for
both cases, we adopt the median of peaks in the ac-
cumulator space. This is the significant difference from
the usual Hough transform for the detection of lines and
conics on a plane. :

Figures 2 and 3 show the results for eq. (51) and
the common point of a pair of lines for “Hamburg Taxi.
” Qur method detects motion of all cars. The results
show the average filed from frame 1 to frame 21. The
solutions are detected from 100 samples. These results
show that the random sampling process speed up the
computational time..

5  Conclusions

In this paper, we showed that the random sampling and
voting process detects linear flow filed. First, we sum-
marized the theoretical aspects of randomized sampling
and voting process as dynamics which solves” model-
fitting-problem. Second, we formalized the linear flow
field detection as a model fitting problem which is solved
by LSM. Finally, we show some numerical examples
which shows the performance of our method. We in-
troduced a new idea to solve least square model fitting
problem using a mathematical fact for the construction
of pseudo-inverse. The most advantage of the proposed
method is simple because we used the same engine with
the Hough transform for the planar line detection.

Setting k to be the number of windowed regions in a
frame, a system of equations which yields the flow field
is described as

Az =b;, i=1,2,--- k. (63)
This system is exp;essed as
Az =b, (64)
where
A = Diag(Ai1, A4z, -, Ag)
@ = diag(z], 25, @)’ (65)
b = diag(b{,b;, --,b)".
The LSM solution of eq. (64) is
z=(ATA)1ATp, (66)



since matrix A; is column full rank for 7 =1,2,---,k.

It is possible to solve eq. (64) using dynamical sys-
tem. However, each subproblem of eq. (64) as the same
mathematical structure. Therefore, if we have the same
number of machines with the windowed region, we have
the flow vector at each reagin concurrently. This math-
ematical structure means that the parallel distributed
framework -is suitable for the detection of flow field.
This system is similar to the visual system of insects
which has many small eyes for the detection of motions
of objects. :

As we mentioned in section 3.1, the Hough transform
achieves grouping of sample points applying the per-
mutation of data matrix. However, for the detection o
linear flow field, we need not to achieve grouping of sam-
ple points, because we solves the model-fitting problem
using the random sampling and voting. This is the fun-
damental difference between the Hough transform and
the flow field detection.
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Figure 2: Detected Flow Field by the Line Voting Method

Figure 3: Detected Flow Field by the Point Voting Method



