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Abstract This paper presents some definitions and theorems concerning to dﬁal
fractals. Among them, dual-similarity plays a key-role not only in generating dual
fractals but also in handling inter-pattern relations such as pattern recognition or image
codihg. Dual-syimilarity is basically defined as a pair of similarity relations between two

patterns, from which two mirror operators have been derived. Discussion has also been’

made on possible applications of dual fractals.
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1. Introduction

Every fractal pattern is characterized by a set of similarity relations defined (or
detected) between the entire pattern and its inner sub-patterns. Mathematically this is
termed  self-similarity[1-5]. MRCM (Multiple Reduction Copy Machine) can be
regarded as the procedural representation of self-similarity by which a fractal pattern is
to be defined as the limit pattern[2-4]. Since self-similarity is basically nothing but a set
of inner relations described within ome fractal pattern, inter-pattern relations or
pattern-to-pattern relations has never been discussed in relation to self-similarity. On the
other hand, we have many living subjects linking with inter-pattern relations; i.e. pattern
recognition, image understanding, computer vision and so on. It follows that a sort of
brldge across the gap between self-similarity and inter-pattern relations should be
requlred for evoking new applications of fractal geometry.

2. Contraction Mapping and Dual Fractals

We discuss dual-similarity between two patterns from the view-point of mathematical
mapping (or transformation) in the metric space of patterns. The first step towards our



discussion is to put some definitions:

Definition 1 Let 7 be a set of real numbers {x| 0= x s1}. Let every pattern depicted on
the two-dimensional plane F°={(x;, x2)| x1,x2 €I} be defined by a real-valued density
function 0 s f(x;, x») = 1. When we write a point on F as x=(x1, x2), the density function
is written f(x). A density function f(x) is called a pattern and denoted simply as f.

Definition 2 Between any pair of patterns f and g, distance d(f, g) is defined in a space
of patterns P. Where either Hausdorff distance[2-5] or the supremum distance[4] is
employed for d(f, g), corresponding to each of two types of spaces of patterns; i.e.
black-and-white and shading patterns. When necessary, we denote two types of spaces
as P, and P; for black-and-white and shading patterns, respectively.

Definition 3 Let P be a metric space of patterns. Then a transformation T: P—P is
called a contraction mapping if there is a constant Os s <1 such that

d(Tf,Tg) s s - d(f,g) foranyf, g EP.
Where d(f, g) is the distance between f and g in P. Any number s is called a contraction
factor of T.

Theorem 1 Let 7: P—P be a contraction mapping on a complete metric space of
patterns. Then T possesses exactly one fixed point (pattern) g €P such that

q=Tgq.
Moreover, for any pattern f €P, the sequence {T"f |n=1,2;- } converges to q.
Symbolically we have

limT"f =q.

Where T"f =TT--- Tf (operating T on f n times, where T°f =f and T'f =Tf). Fixed point g
is called attractor of T. (Fixed Point Theorem[2-6])
Proof See references[2-6].

Definition 4 ILet Ty, T, -, T, be a finite number of contraction mappings on a
complete metric space of patterns P. Then, for any pattern f €P, a parallel compound
Tfis denoted by
Tf=Tif UT2fU- - - ULf.
For fePy, Tif, Tof, -+ ,Tf correspond to n sets of points in P, respectively. Then T f
implies the set operation U (union) for the n sets. For f €P;, Tf is is defined as follows.



With each contraction mapping 7;(i=0,1, ‘-, n) on Py, let a transformed pattern 7;f
be given by a density function defined over a range R; C P. In addition, suppose that the
following conditions hold for n ranges Ry, Ry, -, R,
RNR=J fori=j (,j=0,1,-,n)
RiUR U UR,CF

Then the parallel compound is defined by such a sum as
TfR)=TAf )+ Tof )+ - +Tof(x).

The parallel compound can be regarded as a transformed pattern given by a
composite mapping on a metric space so that we have a common concise notation such
as

I=T,UT,U- - - UT,. (Hutchinson operator[5])

Theorem 2 Let Ty, T3, - ,T,be a finite number of contraction mappings on a complete
metric space of patterns P with contraction factors sy, s2, ***, Sx, respectively. Then T=T
UT, U--- UT, denoted in (11) is also a contraction mapping on P with contraction factor
s=max{ S1, S2, ***, Sn }.

Proof See Hutchinson’s proof in case of P=P, [5]. On the other hand, when P=P;,
Fisher made a proof in terms of z-contraction with the supremum distance [4].

Theorem 3 Let T be a contraction mapping with contraction factor s on a complete
metric space of patterns P. Then we have

1
d(f,Q)SF:d(f,Tf)

Where q is attractor of T.  (Collage Theorem[2])
Proof See Barnsley’s proof[2] or other references[3,4].

Definition 5 Iet Ty, 15, , T, be a finite number of contraction mappings on a
complete metric space of patterns P. Then, for any pattern f €P, a serial (or cascaded)
compound Tf is defined by '

Tf=T,Tp; ToT:f.
Here, we write T such a composite mapping as

T=T, T,T;.

Theorem 4 Let Ty, T3, -+ ,T,be a finite number of contraction mappings on a complete

metric space of patterns P with contraction factors si, s, =, Ss, respectively. Then a
composite mapping I'=T,T,T; is also a contraction mapping on P with contraction



factor s=s152 *** Sp,.
Proof For any fand g €P,
d(Tf, Tg)=d(T(Ty-1 - T2T1 f), To(Tn-1 = T2T1 8))
S Sp A(Tpe1(T2T1 f), Tra(T2T1 8))

< SpSpp S2d(Thf, T1 8)
< 8, S S14(f, 8)=sd(f, 8) Q.E.D.

Definition 6 Let P be a complete metric space of patterns. Then between given f, g
€P, dual-similarity holds if there exists a pair of contraction mappings Tand U on P
such that

g=Tf and f=Ug.
Immediately we have

g=TUg and f=UTf.
We call dual composite mappings TU and UT mirror operators.
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Figure 1: Feedback loop.

~Note that mirror operators (TU =UT) are also contraction mappings from Theorem
4. Then g and f are attractors of 7U and UT, respectively. By Theorem 2, a sequence
{(TU)" u | uEP} converges to attractor g. Another sequence {(UT )" v|v €P } converges
to f. Such iteration processes promoted by mirror operators can be represented by a
feedback loop illustrated in Figure 1. Let u €P be initially given to terminal A in the
left-hand side in the figure. Then its first transformed pattern 7u appears at terminal B in
the right-hand side. At the next stage, just after the first round of the loop, UTu returns
back to A. After n rounds, (UT)"u appears at A. Here pay attention to the next stage, at B,
where a transformed pattern

T(UD)'u=T (UT-UT)u=(TU -TUTu=(TU)" Tu

is obtained. Note Tu €P. From the above discussion, for n—>o, we have



(UD)"u—f atterminal A,

(TU)" Tu — g at terminal B.
Where f and g are attractors of UT and TU, respectively (See Figure 1). When f and g
are fractal patterns, we call them dual fractals. Figure 2 shows an example of dual
fractals.
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Figure 2: Dual fractals. a: Hutchinson operators. b: ( UT )°u and ( TU )*Tu.

Theorem 5 Let P be a complete metric space of patterns. Suppose the following
dual-similarity holds between given f €P and a reference patternr €P :
r=Tf and f=Ur
Where T and U are contraction mappings on P with contraction factors sr and sy,
respectively. Then, for any p EP, we have »
(Vsy)-d(UTp, f) < d(Tp, r) = sr- d(p, f). 1)
(Fractal Pattern Recognition Theorem[7])
Proof d(Ip,r)s=d(Tp, Tf) =sr-d(p,f)and d(UIp, =d(UTIp, Ur) = sy- d(Ip, r)
Q.E.D.

3. Applications

Dual-similarity and dual fractals suggest that we can possibly have new applications to
several subjects. Here our basic and tentative discussion will be focused on two
subjects; pattern recognition and image coding.
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Figure 3: Unknown pattern p and the minimum distance d( Typ , r ) in a metric space.

3.1 Pattern Recognition

A type of definition of pattern recognition is written as follows: Let fi, fo, -, fu be
standard patterns which are the representatives of n classes of patterns, respectively.
Suppose there exist infinitely many patterns belonging to i-th class (i=1, 2, -+, n) around
fi in a metric space of patterns. Then, given a unknown pattern p, we have a special
problem, termed pattern recognition, to identify p; i.e. to judge what class p belongs to.

The simplest way to identify a unknown pattern p is to detect the minimum
distance among {d(p, f;)|i=1, 2, -, n}. We judge p belongs to k-th class when the
minimum distance is obtained for i=k.

Instead of such direct comparison between p and standard patterns {f; }, another
procedure based on dual-similarity can be introduced as follows: First, we build 7
dual-similarity relations between an appropriate reference pattern r and standard
patterns {f; }. Symbolically we denote

r=T;f; and fi=U;r (i=1,2,-,n).

Given a unknown pattern p, we identify it with a pattern in k-th class when the
minimum distance among {d(T; p, r)} is obtained where i=k (See Figure 3). As
mentioned, by Theorem 3, the necessary condition is satisfied for identifying p based on
{d(T:p, r)}. The fractal pattern recognition theorem is, however, incomplete in the sense
that the sufficient condition has not been proved. One of the most important tasks in the
fractal pattern recognition might be concerned with how to find the optimal reference
pattern which acts well for properly classifying unknown patterns.
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Figure 4: Two sample images and their range-cells.

3.2 Image Coding

The fractal image coding technique has been developed based on self-similarity
assumed within a given image[2,5]. It should be noted that most images handled in this
technique have never been fractals. Dual-similarity can provide an individual image
coding technique as well as self-similarity[7]. Here an “image” is treated as a shading
pattern denoted by a density function defined over the domain I,

First, we discuss how to compose a pair of Hutchinson operators which
approximates two contraction mappings founding dual-similarity between two images.
Suppose we are given two images f and g defined as density functions over F.
According to Definition 9, we assume there exist two contraction mappings 7 and U
such that ’

g=Tf and f=Ug. 2)

The simplest way to compose Hutchinson operators approximating 7 and U starts with
partitioning each of the images into sub-images: As shown in Figure 4, g is partitioned
into very small-sized sub—images ‘on disjoint sub-squares. ‘Call each sub-square a
range-cell. Then, for each range-cell of g, we search over the domain of f an optimal
sub-square on which sub-image is well fit for that of the range-cell by applying an
‘contractive affine transformation. We call such a sub-square of f a domain-cell. Since
reduction is the core of contraction mapping, every domain-cell is to be larger than the
range-cell. .‘ ’ '

Suppose we have n range-cells and their corresponding sub-images g, g®, -, g®
which cover the entire image g. Each of {g(i)} is approximated by fitting an appropriate
sub-image on a domain-cell of f, which is obtained by an affine transformation. We



assume this can be written by such a contraction mapping as

gO=19%  (i=1,2, -, n).
Since g =g® U g U - U g™, we obtain a Hutchinson operator as follows:

Tf =TV U TOF U - U 10,
or, as denoted in (11), we write shortly

T=rOuT®Uy - UT", 3)

In the same manner, we have the following Hutchinson operator U such that f=Ug,

which is composed corresponding to m range-cells of f (See Figure 4).

U=u0YuUPy - u U™ 4)
Two Hutchinson operators T and U in (3) and (4) can practically be employed as
contraction mappings actualizing dual-similarity between f and g as presented in (2).

For fand g in (2), we employ two example images Lenna and Pepe, respectively, as
is shown in Figure 4. They are 256x256 pixel images in which each pixel can be one of
256 levels of gray from black to white. Range-cells of an image are defined as 8x8 pixel
disjoint sub-squares covering the 256x256 pixel domain. Then every image is

(UT)u

(UT ) u

(UT)Yu (Tu)? Tu

Figure 5: Two sequences of images generated from the feedback loop.
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partitioned into 32x32=1024 sub-images. A domain-cell is defined as a 16x16 pixel
sub-square in the 256x256 pixel domain of each image. Hence either of two Hutchinson
operators is to be composed of 1024 contraction mapping operators from m=n=1024 in
(3) and (4).

Employing these Hutchinson operators T and U, we can build a feedback loop
same as Figure 1. Figure 5 presents both sequences of images appeared at terminals A
and B of the feedback loop, respectively. Where this iteration process begins with the
initial image f(x)=1 (everywhere “white” over the domain) given at terminal A. When
iteration reaches the limit state, a unique attractor of a mirror operator T7U appears at
terminal A which is an approximate image of Lenna. At terminal B, another attractor of
UT also appears as an approximate image of Pepe.

Our image coding, termed dual-similarity coding (DSC), is nothing but
determining all parameters (codes) of U such that f=Ug. Then any receiver can
approximately reconstruct f by U sent from a sender, provided that the receiver also
keeps g as a key for decoding U. In this case, decoding is carried out very quickly by
f=Ug; i.e. no iteration process is required at all for decoding U. This is quite different
from the existing fractal image coding procedures based on self-similarity. Another way
of decoding is to reconstruct f and g as attractors of mirror operators UT and TU,
provided both U and T are sent from a sender.

4. Conclusion

In this paper, dual-similarity between two patterns has been defined and discussed in
relation to fractal geometry. It would be very suggestive for new fractal applications that
we can handle inter-pattern relations by introducing dual-similarity relations between
two patterns. Namely possible applications to pattern recognition and image coding
have also been discussed. As a matter of course, our next step will be concerned with
studies on definite practical problems such as character recognition, face recognition or
image compression. As previously mentioned, no matter what type of application is
taken up, it should be very important for our success either how to compose Hutchinson
operators or how to select the reference pattern.
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