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Wavelet Coefficients for Traffic Monitoring Movies
Jien Kato!, Toyohide Watanabe' and Hiroyuki Hase?
!Dept.of Information Engineering, Nagoya University

2Faculty of Engineering, Toyama University

Abstract  This paper proposes an improved HMM-based segmentation method which is designed
to classify each small region of images into vehicles, the shadows of vehicles and the background
from a traffic monitoring movie. The observations over time for one small region location are
modeled as a single HMM, independent of the neighboring regions. A state estimation algorithm
1s used to perform context-dependent classification of individual HMM regions. Because this
algorithm is only based on the past observations, state estimation is possible to be performed
in real time. The ambiguity among different categories is reduced by introducing high frequency
wavelet coefficients as the second observation in addition to the intensities. All the unknown
HMM parameters can be fully automatically learned from an ordinary video sequence based on
Baum-Welsh algorithm. Results on real-world motorway sequences show that it is possible to
accurately distinguish vehicles by this method.

I Introduction

For enhancing the robustness to different lighting conditions of car tracking, we have proposed
a segmentation method based on hidden Markov models that classifies each small region of
a traffic monitoring movie into three different categories: foreground (vehicles), background
and shadow[1l]. Two important problems with respect to this method are choosing suitable
observation that aims at describing the statistical properties of individual regions and performing
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context-dependent classification that incorporates spatial information among the regions. This
paper focuses on the improvement for the proposed method from this viewpoint.

Choosing observations is a critical issue in classification problems because observations often
set the limits of classification performance. Since the distributions of intensity for different
categories usually have a large overlap, it is impossible to construct a successful model which
is purely based on intensity values. To classify each small region of an image sequence into the
foreground, background and shadow, both a mean filter and a Sobel filter, defined according to
the pixel intensities within a region, have been employed. Introducing the Sobel filter is based on
the idea that the Sobel filter describes the space homogeneity property which should be different
between the foreground and non-foreground categories. The Sobel filter cooperated with the
mean filter has greatly improved the classification results. But, the improvement is not enough
when the intensity differences between the foreground and non-foreground categories are small.
This becomes the motivation to adopt high frequency wavelet coefficients as the new observation
in this paper.

We consider the second problem. In our approach, observations over time for one specific
region location are modeled as a single HMM, independent of the neighboring regions. As most
block-based image classification algorithms such as BVQ[2], this approach leads to an issue of
choosing region sizes. A too large region size obviously entails crude classification, while choos-
ing a small region size means that only very local properties belonging to the small region are
examined. The penalty then comes from losing information about surrounding regions. A well-
known approach in signal processing to attack this type of problems is to incorporate context
information|[3]. For example, in our particular problem a foreground state is highly unlikely to
be situated in isolation, surrounded by background regions. According to this important con-
sideration, a new criterion for selection of optimal states by not making decisions independently
for each region but performing the context-dependent classification of individual regions have
been modeled in this paper.

In Section II, we give briefly a mathematical formulation of the model and the iterative
re-estimation formulae for the model parameters according to Baum-Welsh algorithm. Section
ITT addresses the new observation of high frequency wavelet coefficients. Section IV describes
state estimation that takes the context-dependence among individual regions into account. In
Section V, experimental results on real-world image sequences are presented. Finally, we draw
conclusions and point out future directions in Section VI.

II The Hidden Markov Model

The theory of hidden Markov models was proposed in the 1960s by Baum et al.[5]-[8]. HMM’s
have earned their popularity in large part from successful application to speech recognition
9], [10], [11], [12]. Under an HMM is a basic Markov chain. At any discrete unit of time,
the system is assumed to exist in one of a finite set of states. Transitions between the states
take place according to a probability, depending only on the state of the system at the unit
of time immediately preceding (one-step Markovian). In an HMM, at each unit of time, a
single observation is generated from the current state according to a probability distribution,
depending only on this state. HMM'’s owe both their name and modeling power to the fact that
these states represent abstract quantities that are themselves never observed. They correspond
to the clusters of contexts having similar probability distributions of the observation.

We apply the HMM to the problem of segmenting each field of a traffic monitoring movie into
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three different categories: foreground (F'), background (B) and shadow (S). To make our method
robust, especially to single out foreground objects reliably, we use both grey-value intensities
and high frequency wavelet coefficients as the observations. At any unit of time, the two values
are observed and depend on an underlying unobservable process which explains the transitions
among hidden categories B, S, and F. The distributions of both shadow and background are
approximated by 2D Gaussian-mixture densities, and that of the foreground is modeled as a
uniform probability density. The state transition probabilities impose the temporal continuity,
which means a region belongs to a certain category for a period of time, on each category. All
the unknown HMM parameters are estimated by using an EM algorithm[13].

We provide a mathematical formulation of the model and the iterative re-estimation formulae
for the model parameters. Let S = {5, S5, Sf} be the states corresponding to the three
categories. The parameters of the HMM, notated as A = {A, B, 7}, are specified as follows:

e Initial state distribution: = = { m,, m, 7 }, m =Pr(S; at t =1).

Qpp  Qps Qb
e State transition matrix: A = | ag as asp |, a;; = Pr(S; at t +1|S; at t).

Ay Afs Qff

e Observation probability distribution in state j: B = {b;(v)}, b;(v) = Pr(v at t|5; at t),
where v is the feature vector.

The observation probabilities of the background and shadow are characterized by only mean
vector (u;) and covariance matrix (3;) instead of all the probabilities for different observation

values, i.e.
1 1 ty—1
b;(v) = e 30T E ) e (5] (1)
(27)2det(X;)

A special case of the EM algorithm, Baum-Welsh algorithm[14], that performs maximum
likelihood estimation is applied for learning the unknown model parameters. This algorithm
produces a sequence of estimates for A, given a set of observed data x such that each estimate
has a greater value for L(x, \) = log[p(z|\)][13]. The re-estimation formulae for 7, A and B are
defined as

T = 71(07 (2)

_— Zf p Uy Ye(4)

o Zt 17:(7) ’ )
< _ S () (e — ) (ue — 1,)*
b Et 1%( ) 7 @
_ 1&( j)

al - )
’ Zt 1 ’Yt(l)

where 1;(7) = Pr(S; at tlu, A) and &(i,7) = Pr(S; at ¢,5; at t + L|ju, A) (U = {uy,...,ur} is a
sequence of observation symbols) are auxiliary probabilities that can be efficiently calculated by
the so-called forward-backward algorithm[16].
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IIT Observations

We partition each field of an image sequence into non-overlap blocks with equal size (k x k
pixels), called HMM region. In the learning phase, the model parameters for each HMM region
are estimated based on the observations extracted from a learning sequence. On the other hand,
in the testing phase, the optimal states associated with the past observations generated from a
testing sequence are found over time for each HMM region, given the trained model.

We use the outputs of a k x k mean filter as the intensity observation instead of using the
gray level directly to reduce the noise. Experiments on real-world motorway sequences reveal
that since all the three intensity distributions (for F, B, and S) have a large amount of overlap,
the HMM with only the intensity observations does not allow to classify vehicles in a robust
way. To distinguish the foreground objects reliably, in addition to the intensities it is necessary
to incorporate another type of observations so that the overlap between the distributions of
different categories can be reduced.

Wavelet transformation is a tool that cuts up data into different frequency components,
and then studies each component with a resolution matched to its frequency[4]. In a traffic
monitoring sequence, vehicles are the objects of interest. They are usually sharply focused but
background objects and shadows are not so. Sharply focused vehicles have more details within
the objects than the background and shadows[15]. The details in the foreground objects result in
larger high frequency energy in an image. If we measure the high frequency energy by the wavelet
transformation, the vehicle regions should have more high value coefficients in high frequency
bands than non-foreground regions. A Sobel filter is good at edge detection. The motivation for
us to choose wavelet coefficients is to make our method more robust by analyzing the details of
the regions rather than by only analyzing the edges.

Suppose for a k x k (pixel) region in the left up corner of a field specified as F = {(m,n),m =
0,..M —1,n =0,..,N — 1}, its wavelet coefficients are {W,,,, = (m,n) € F}. The high
frequency energy is calculated as the variance of the wavelet coefficients in LH, HL and HH
bands, i.e., the variance of the three sets of

Wy mo = M/2, ... M/2+k/2—1,n=0,....,k/2— 1},

Wnsm =0, .., k/2— 1,n=N/2,...N/2+ k/2 — 1},
and Wy, m=M/2,.. . M/24+k/2—-1,n=N/2,.. ,N/2+k/2—1}.

For other shifted HMM regions, their wavelet coefficient blocks for calculating the variance
are shifted correspondingly. In our current implementation, Daubechies wavelet transformation
(N = 2) is adopted|[4].

IV  State Estimation

Although several criteria for making choice of an “optimal” state sequence associated with the
given observation sequence are possible, in view of tracking the basic requirement for the state
estimation is working in real time. Namely, we cannot adopt a criterion that uses the whole
sequence of observations such as Viterbi algorithm[17],[18]. One solution is to maximize the
joint probability of the state at time ¢ and the past observation {u, ..., u;} given the model, i.e.

argmax{a;(k)} = argmax{Pr(uy, ..., u;, Sk at t|\)}. (6)
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However, a drawback to this method is that it does not incorporate the context-dependence
among HMM regions. To take the spatial information among HMM regions into account, we
estimate a state with

argmax{Pr(uy, ..., u;, Sy at t|\) Pr(Qi,j\QNi’j)}, (7)

where Pr(Q;;|Qy; ;) means the probability of the state being Q;; at region (i,j), given the
probability of state set Qy; ; at neighborhood N ; of (i, j). We define Pr(Q;;|Qu;,) as

Pr(Quy]Qu.,) = 5 exp(i(Q1,). ©

In Eq.(8), D and k express a normalizer and a parameter that expresses the strongness of the
context-dependence among HMM regions, respectively. The function 9(Q); ;) is simply selected
as

Qi ) = Z iI(i,j,s,r)—l— Z i](i,j,s’,r’), (9)

(S,T)E./\/'gj 16 (s/,r’)e./\/’%? 32
- 1 Qz j = er
I(i,j,s,7) = { 0 Q] £Q 7 (10)
i,j s,r

where NV, and N9 are the 8-neighbors of region (i,j) with distances 1 and 2, respectively.
Notice that Eq.(6) and Eq.(7) can be solved by the forward procedure alone[16]. Since oy (k) is
defined recursively, it is possible to perform the state estimation with Eq.(6) and Eq.(7) in real
time.

V  Experimental Results

Several 30 second sequences are used for experiments. Although the traffic density and lighting
condition of these sequences do not change too much, the typical time spent in B, F and S
related with a test sequence might be very different from that of a learning sequence. The
experimental results we are about to discuss are obtained with respect to a learned area located
on the right lane where the shadow certainly exists. This area is composed of 18 x 28 HMM
regions, each one has 4 x 4 pixel size.

Some results, all use the constrained model(ays = 0)[1], are given in Fig.1. To make the ex-
planation straightforward, we roughly divide the vehicles into light, dark and gray ones. First we
consider light cars. The first row of Fig.1 shows six successive images of a light car at three-field
intervals. The corresponding classification results, using two observations and adopting Eq.(6)
as the optimality criterion, are given in the second row. It turns out that even if the context-
dependence between HMM regions are not taken into account, the light car has completely
distinguished from other categories. Namely, light cars stand out distinctly among background
objects and shadows.

By “dark cars”, we mean those whose intensity differences with the shadow are very small
or the intensity distributions of them overlap each other. Dark cars are particularly noticeable
since they are easily confused with the shadow. Actually, the HMM with only the intensity
observation also allows to classify light cars in a robust way but not robust for dark cars.
Because the distributions of different categories overlap and moreover the probability of the
foreground is very low (1/256), when the gray-value of an HMM region that belongs to F (a
dark car) also falls in the support of the shadow distribution at the same time, it is more likely
classified as S than F. Introducing the second observation, the variance of wavelet coefficients

0 510


研究会Temp 
－51－


in high frequency bands, contributes to the robustness of foreground object recognition. As
described before, the introduction of this observation is based on the idea that the variance of
wavelet coefficients should be small for S and B but large for F because of the details inside a
car. With a 2D feature vector, the area proportion where the densities of different categories
overlap is less than the same proportion for 1D feature vector. The Bayes risk is thus reduced.

To confirm the effectiveness, we test a sequence at the same area using intensity alone and
using wavelet coefficients together with intensity as the observations. The results with 1D and
2D features for a dark car (see the 3rd row) are shown in the 4th and 5th rows, respectively. A
larger percentage of the dark car, not only the light portions such as the roof and lamps, stand
out in the 5th row than in the 4th row. The 6th row is also related to the same images. The
difference with the preceding rows is that we adopt Eq.(7) as the optimality criterion rather than
Eq.(6). The state estimation based on Eq.(7) is applied to the interested area in raster order
and repeated three times. By incorporating the measure of the context-dependence, the results
are obviously improved.

Some results about a “gray car” are shown in the rest part of Fig.1: the images in the 7th
row, the results based on individual HMM regions in the 8th row, and the results in view of the
context-dependence among HMM regions in the last row. The same problem of misclassification
because of overlapping between the distribution of the foreground and that of the background
concerns gray cars. However, since the variance of the background is usually much smaller than
that of the shadow, the risk a gray car is confused with the background is lower, as you can see
from Fig.1.

The state estimation process has been implemented on an SGI O2 R5000 SC 180 entry-level
desktop workstation and allowed to run at the field-rate of 50 Hz (real time).

VI Conclusions and Future Work

We have described an improved HMM-based segmentation method which is designed to model
the vehicles, the shadows of vehicles and the background for a traffic monitoring movie. A
considerable advantage of this model is that unlike other approaches, it is not necessary to select
the training data. All the HMM parameters are fully automatically estimated from an ordinary
video sequence. The gray-value intensities and high frequency wavelet coefficients over time for
one specific region location are modeled as a single HMM, independent of the neighboring regions.
A state estimation algorithm is used to perform context-dependent classification of individual
regions. Because this algorithm is only based on the past observations, state estimation can be
performed in real time. Since all three distributions of different categories have a large overlap, it
is impossible to construct a model which is purely based on intensity values. Using high frequency
wavelet coefficients has improved the results significantly. This method itself has proved to be
a low-level car tracking approach by experimental results. Since it runs comfortably in real
time, it also offers the possibility of being used as a low-level process for a high-level tracking
approach[19]. As the future work, it will be useful to expand the model itself to deal with both
of temporal and spatial feature information.
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Figure 1: The visualization of the results of state estimation for an interested area. Foreground:
black, shadow: gray and background: white. The images in a row are taken at three-field
intervals from a test sequence.
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