
観測値としてウェーブレット係数を用いた HMMに基づく
交通監視映像における移動物体分離手法
加藤ジェーン 1　渡邉豊英 1　長谷博之 2

1名古屋大学大学院工学研究科
2富山大学工学部

【概要】本論文では、交通監視映像における各小領域が自動車、自動車の影、背景のいずれに属
するかを精度よく分離するための、 HMMをベースに改良した分離手法を提案する。ある位置
の一つの小領域での時間ステップごとの観測値が、一つの HMMとしてモデル化される。モデ
ル化の時点では、近傍領域の状態に関連なく独立にモデルパラメータが学習がされる。これに
対し、分離を実行する状態見積もりアルゴリズムは、それぞれの小領域に対して近傍領域に依
存した分類を行うことができる。このアルゴリズムは、過去の観測値にのみ基づいているため、
状態見積もりはリアルタイムに実行可能である。候補となる状態間の曖昧さは、観測値として
の輝度値以外に、高周波領域のウェーブレット係数を第２観測値として導入することによって
軽減される。未知の HMMパラメータは、Baum-Welshアルゴリズムに基づき、通常のビデオ
シーケンスからすべて自動的に学習される。実際に高速道路を撮影した映像を用いた実験では、
本手法を用いることにより精度よく自動車を背景や影から分離できることが示された。
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Abstract This paper proposes an improved HMM-based segmentation method which is designed

to classify each small region of images into vehicles, the shadows of vehicles and the background

from a traffic monitoring movie. The observations over time for one small region location are

modeled as a single HMM, independent of the neighboring regions. A state estimation algorithm

is used to perform context-dependent classification of individual HMM regions. Because this

algorithm is only based on the past observations, state estimation is possible to be performed

in real time. The ambiguity among different categories is reduced by introducing high frequency

wavelet coefficients as the second observation in addition to the intensities. All the unknown

HMM parameters can be fully automatically learned from an ordinary video sequence based on

Baum-Welsh algorithm. Results on real-world motorway sequences show that it is possible to

accurately distinguish vehicles by this method.

I Introduction
For enhancing the robustness to different lighting conditions of car tracking, we have proposed

a segmentation method based on hidden Markov models that classifies each small region of

a traffic monitoring movie into three different categories: foreground (vehicles), background

and shadow[1]. Two important problems with respect to this method are choosing suitable

observation that aims at describing the statistical properties of individual regions and performing
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context-dependent classification that incorporates spatial information among the regions. This

paper focuses on the improvement for the proposed method from this viewpoint.

Choosing observations is a critical issue in classification problems because observations often

set the limits of classification performance. Since the distributions of intensity for different

categories usually have a large overlap, it is impossible to construct a successful model which

is purely based on intensity values. To classify each small region of an image sequence into the

foreground, background and shadow, both a mean filter and a Sobel filter, defined according to

the pixel intensities within a region, have been employed. Introducing the Sobel filter is based on

the idea that the Sobel filter describes the space homogeneity property which should be different

between the foreground and non-foreground categories. The Sobel filter cooperated with the

mean filter has greatly improved the classification results. But, the improvement is not enough

when the intensity differences between the foreground and non-foreground categories are small.

This becomes the motivation to adopt high frequency wavelet coefficients as the new observation

in this paper.

We consider the second problem. In our approach, observations over time for one specific

region location are modeled as a single HMM, independent of the neighboring regions. As most

block-based image classification algorithms such as BVQ[2], this approach leads to an issue of

choosing region sizes. A too large region size obviously entails crude classification, while choos-

ing a small region size means that only very local properties belonging to the small region are

examined. The penalty then comes from losing information about surrounding regions. A well-

known approach in signal processing to attack this type of problems is to incorporate context

information[3]. For example, in our particular problem a foreground state is highly unlikely to

be situated in isolation, surrounded by background regions. According to this important con-

sideration, a new criterion for selection of optimal states by not making decisions independently

for each region but performing the context-dependent classification of individual regions have

been modeled in this paper.

In Section II, we give briefly a mathematical formulation of the model and the iterative

re-estimation formulae for the model parameters according to Baum-Welsh algorithm. Section

III addresses the new observation of high frequency wavelet coefficients. Section IV describes

state estimation that takes the context-dependence among individual regions into account. In

Section V, experimental results on real-world image sequences are presented. Finally, we draw

conclusions and point out future directions in Section VI.

II The Hidden Markov Model
The theory of hidden Markov models was proposed in the 1960s by Baum et al.[5]-[8]. HMM’s

have earned their popularity in large part from successful application to speech recognition

[9], [10], [11], [12]. Under an HMM is a basic Markov chain. At any discrete unit of time,

the system is assumed to exist in one of a finite set of states. Transitions between the states

take place according to a probability, depending only on the state of the system at the unit

of time immediately preceding (one-step Markovian). In an HMM, at each unit of time, a

single observation is generated from the current state according to a probability distribution,

depending only on this state. HMM’s owe both their name and modeling power to the fact that

these states represent abstract quantities that are themselves never observed. They correspond

to the clusters of contexts having similar probability distributions of the observation.

We apply the HMM to the problem of segmenting each field of a traffic monitoring movie into
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three different categories: foreground (F), background (B) and shadow (S). To make our method

robust, especially to single out foreground objects reliably, we use both grey-value intensities

and high frequency wavelet coefficients as the observations. At any unit of time, the two values

are observed and depend on an underlying unobservable process which explains the transitions

among hidden categories B, S, and F. The distributions of both shadow and background are

approximated by 2D Gaussian-mixture densities, and that of the foreground is modeled as a

uniform probability density. The state transition probabilities impose the temporal continuity,

which means a region belongs to a certain category for a period of time, on each category. All

the unknown HMM parameters are estimated by using an EM algorithm[13].

We provide a mathematical formulation of the model and the iterative re-estimation formulae

for the model parameters. Let S = {Sb, Ss, Sf} be the states corresponding to the three
categories. The parameters of the HMM, notated as λ = {A,B, π}, are specified as follows:

• Initial state distribution: π = { πb, πs, πf }, πi = Pr(Si at t = 1).

• State transition matrix: A =

 abb abs abf

asb ass asf

afb afs aff


, aij = Pr(Sj at t+ 1|Si at t).

• Observation probability distribution in state j: B = {bj(v)}, bj(v) = Pr(v at t|Sj at t),

where v is the feature vector.

The observation probabilities of the background and shadow are characterized by only mean

vector (µi) and covariance matrix (Σi) instead of all the probabilities for different observation

values, i.e.

bi(v) =
1√

(2π)2det(Σi)
e−

1
2
(v−µi)

tΣ−1
i (v−µi), i ∈ {b, s}. (1)

A special case of the EM algorithm, Baum-Welsh algorithm[14], that performs maximum

likelihood estimation is applied for learning the unknown model parameters. This algorithm

produces a sequence of estimates for λ, given a set of observed data x such that each estimate

has a greater value for L(x, λ) = log[p(x|λ)][13]. The re-estimation formulae for π, A and B are
defined as

πi = γ1(i), (2)

µi =

∑T
t=1 utγt(i)∑T
t=1 γt(i)

, (3)

Σi =

∑T
t=1 γt(i)(ut − µi)(ut − µi)

t∑T
t=1 γt(i)

, (4)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, (5)

where γt(i) = Pr(Si at t|u, λ) and ξt(i, j) = Pr(Si at t, Sj at t + 1|u, λ) (U = {u1, ..., uT} is a
sequence of observation symbols) are auxiliary probabilities that can be efficiently calculated by

the so-called forward-backward algorithm[16].
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III Observations
We partition each field of an image sequence into non-overlap blocks with equal size (k × k
pixels), called HMM region. In the learning phase, the model parameters for each HMM region

are estimated based on the observations extracted from a learning sequence. On the other hand,

in the testing phase, the optimal states associated with the past observations generated from a

testing sequence are found over time for each HMM region, given the trained model.

We use the outputs of a k × k mean filter as the intensity observation instead of using the
gray level directly to reduce the noise. Experiments on real-world motorway sequences reveal

that since all the three intensity distributions (for F, B, and S) have a large amount of overlap,

the HMM with only the intensity observations does not allow to classify vehicles in a robust

way. To distinguish the foreground objects reliably, in addition to the intensities it is necessary

to incorporate another type of observations so that the overlap between the distributions of

different categories can be reduced.

Wavelet transformation is a tool that cuts up data into different frequency components,

and then studies each component with a resolution matched to its frequency[4]. In a traffic

monitoring sequence, vehicles are the objects of interest. They are usually sharply focused but

background objects and shadows are not so. Sharply focused vehicles have more details within

the objects than the background and shadows[15]. The details in the foreground objects result in

larger high frequency energy in an image. If we measure the high frequency energy by the wavelet

transformation, the vehicle regions should have more high value coefficients in high frequency

bands than non-foreground regions. A Sobel filter is good at edge detection. The motivation for

us to choose wavelet coefficients is to make our method more robust by analyzing the details of

the regions rather than by only analyzing the edges.

Suppose for a k×k (pixel) region in the left up corner of a field specified as F = {(m,n),m =
0, ...,M − 1, n = 0, ..., N − 1}, its wavelet coefficients are {Wm,n = (m,n) ∈ F}. The high
frequency energy is calculated as the variance of the wavelet coefficients in LH, HL and HH

bands, i.e., the variance of the three sets of

{Wm,n, m =M/2, ...,M/2 + k/2− 1, n = 0, ..., k/2− 1},

{Wm,n, m = 0, ..., k/2− 1, n = N/2, ..., N/2 + k/2− 1},
and {Wm,n, m =M/2, ...,M/2 + k/2− 1, n = N/2, ..., N/2 + k/2− 1}.

For other shifted HMM regions, their wavelet coefficient blocks for calculating the variance

are shifted correspondingly. In our current implementation, Daubechies wavelet transformation

(N = 2) is adopted[4].

IV State Estimation

Although several criteria for making choice of an “optimal” state sequence associated with the

given observation sequence are possible, in view of tracking the basic requirement for the state

estimation is working in real time. Namely, we cannot adopt a criterion that uses the whole

sequence of observations such as Viterbi algorithm[17],[18]. One solution is to maximize the

joint probability of the state at time t and the past observation {u1, ..., ut} given the model, i.e.

argmax{αt(k)} = argmax{Pr(u1, . . . , ut, Sk at t|λ)}. (6)

4

研究会Temp 
－50－



However, a drawback to this method is that it does not incorporate the context-dependence

among HMM regions. To take the spatial information among HMM regions into account, we

estimate a state with

argmax{Pr(u1, . . . , ut, Sk at t|λ) Pr(Qi,j|QNi,j
)}, (7)

where Pr(Qi,j|QNi,j
) means the probability of the state being Qi,j at region (i, j), given the

probability of state set QNi,j
at neighborhood Ni,j of (i, j). We define Pr(Qi,j|QNi,j

) as

Pr(Qi,j|QNi,j
) =

1

D
exp(κϑ(Qi,j)). (8)

In Eq.(8), D and κ express a normalizer and a parameter that expresses the strongness of the

context-dependence among HMM regions, respectively. The function ϑ(Qi,j) is simply selected

as

ϑ(Qi,j) =
∑

(s,r)∈N 8
i,j

1

16
I(i, j, s, r) +

∑
(s′,r′)∈N 16

i,j

1

32
I(i, j, s′, r′), (9)

I(i, j, s, r) =

{
1 Qi,j = Qs,r

0 Qi,j �= Qs,r
(10)

where N 8
i,j and N 16

i,j are the 8-neighbors of region (i, j) with distances 1 and 2, respectively.

Notice that Eq.(6) and Eq.(7) can be solved by the forward procedure alone[16]. Since αt(k) is

defined recursively, it is possible to perform the state estimation with Eq.(6) and Eq.(7) in real

time.

V Experimental Results
Several 30 second sequences are used for experiments. Although the traffic density and lighting

condition of these sequences do not change too much, the typical time spent in B, F and S

related with a test sequence might be very different from that of a learning sequence. The

experimental results we are about to discuss are obtained with respect to a learned area located

on the right lane where the shadow certainly exists. This area is composed of 18 × 28 HMM
regions, each one has 4× 4 pixel size.
Some results, all use the constrained model(afs = 0)[1], are given in Fig.1. To make the ex-

planation straightforward, we roughly divide the vehicles into light, dark and gray ones. First we

consider light cars. The first row of Fig.1 shows six successive images of a light car at three-field

intervals. The corresponding classification results, using two observations and adopting Eq.(6)

as the optimality criterion, are given in the second row. It turns out that even if the context-

dependence between HMM regions are not taken into account, the light car has completely

distinguished from other categories. Namely, light cars stand out distinctly among background

objects and shadows.

By “dark cars”, we mean those whose intensity differences with the shadow are very small

or the intensity distributions of them overlap each other. Dark cars are particularly noticeable

since they are easily confused with the shadow. Actually, the HMM with only the intensity

observation also allows to classify light cars in a robust way but not robust for dark cars.

Because the distributions of different categories overlap and moreover the probability of the

foreground is very low (1/256), when the gray-value of an HMM region that belongs to F (a

dark car) also falls in the support of the shadow distribution at the same time, it is more likely

classified as S than F. Introducing the second observation, the variance of wavelet coefficients
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in high frequency bands, contributes to the robustness of foreground object recognition. As

described before, the introduction of this observation is based on the idea that the variance of

wavelet coefficients should be small for S and B but large for F because of the details inside a

car. With a 2D feature vector, the area proportion where the densities of different categories

overlap is less than the same proportion for 1D feature vector. The Bayes risk is thus reduced.

To confirm the effectiveness, we test a sequence at the same area using intensity alone and

using wavelet coefficients together with intensity as the observations. The results with 1D and

2D features for a dark car (see the 3rd row) are shown in the 4th and 5th rows, respectively. A

larger percentage of the dark car, not only the light portions such as the roof and lamps, stand

out in the 5th row than in the 4th row. The 6th row is also related to the same images. The

difference with the preceding rows is that we adopt Eq.(7) as the optimality criterion rather than

Eq.(6). The state estimation based on Eq.(7) is applied to the interested area in raster order

and repeated three times. By incorporating the measure of the context-dependence, the results

are obviously improved.

Some results about a “gray car” are shown in the rest part of Fig.1: the images in the 7th

row, the results based on individual HMM regions in the 8th row, and the results in view of the

context-dependence among HMM regions in the last row. The same problem of misclassification

because of overlapping between the distribution of the foreground and that of the background

concerns gray cars. However, since the variance of the background is usually much smaller than

that of the shadow, the risk a gray car is confused with the background is lower, as you can see

from Fig.1.

The state estimation process has been implemented on an SGI O2 R5000 SC 180 entry-level

desktop workstation and allowed to run at the field-rate of 50 Hz (real time).

VI Conclusions and Future Work
We have described an improved HMM-based segmentation method which is designed to model

the vehicles, the shadows of vehicles and the background for a traffic monitoring movie. A

considerable advantage of this model is that unlike other approaches, it is not necessary to select

the training data. All the HMM parameters are fully automatically estimated from an ordinary

video sequence. The gray-value intensities and high frequency wavelet coefficients over time for

one specific region location are modeled as a single HMM, independent of the neighboring regions.

A state estimation algorithm is used to perform context-dependent classification of individual

regions. Because this algorithm is only based on the past observations, state estimation can be

performed in real time. Since all three distributions of different categories have a large overlap, it

is impossible to construct a model which is purely based on intensity values. Using high frequency

wavelet coefficients has improved the results significantly. This method itself has proved to be

a low-level car tracking approach by experimental results. Since it runs comfortably in real

time, it also offers the possibility of being used as a low-level process for a high-level tracking

approach[19]. As the future work, it will be useful to expand the model itself to deal with both

of temporal and spatial feature information.
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Figure 1: The visualization of the results of state estimation for an interested area. Foreground:
black, shadow: gray and background: white. The images in a row are taken at three-field
intervals from a test sequence.
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