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Abstract  We formulate multiple-view geometry for omni-directional and panorama-camera sys-
tems. The mathematical formulations enable us to derive the geometrical and algebraic constraints for
multiple panorama-camera configurations. The constraints permit us to reconstruct three-dimensional

objects for a large feasible region.
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1 Introduction

In this paper, we formulate multiple-view geome-
try for omni-directional and panorama-camera sys-
tems. The mathematical formulations enable us
to define the geometrical and algebraic constraints
for multiple panorama-camera configurations. The
configurations derive a larger feasible region for the
three-dimensional reconstruction of objects than
usual omni-directional and panorama-camera sys-
tems.

Multiple-view geometry for pin-hole cameras
studied in the computer vision community. The
well-known algebraic constraints for the multiple-
view geometry were introduced, such as epipo-
lar constraints equivalently bilinear form [1], [2]
for stereo views, the trifocal tensor [2], [3] for
three views, the quadrifocal tensor [4], [5] for four
views and the factorization method [6] for multiple
views. On the other hand, T. Svoboda, T. Pa-
jdla and V. Hlavac introduced the geometrical con-
straint for stereo systems of omni-directional cam-
eras [7]. However, three or more view geometri-
cal constraints are not clearly represented for the
omni-directional cameras. Our aim in this study is
to derive the geometrical and algebraic constraints
for multiple omni-directional cameras.

Recently, T. Sugimura and J. Sato proved (8]
that the number of algebraic constraints in the
trifocal tensor is reduced if cameras mutually im-
age their epipoles. This geometrical condition re-
stricts the geometrical configuration of pin-hole
cameras, because multiple pin-hole camera systems
can not always observe the epipoles of their cam-
eras. Here, we assume omni-directional cameras
are located parallel on the same plane. These omni-
directional camera systems satisfy the geometrical
condition that they always observe the epipoles of
their cameras, because the omni-directional cam-
era always images the other cameras. Therefore,
Sato’s condition could be achieved with multiple
omni-directional camera systems.

In this paper, we analyze the geometrical config-
urations of omni-directional camera systems fulfill-
ing the conditions for the multiple-view geometry
to reduce the number of constrains for the multiple
camera systems. This is the first step to establish
the multiple-view geometry for omni-directional
camera systems as a generation from multiple-view
geometry for pin-hole camera systems to multiple-
view geometry for omni-directional camera sys-
tems.

(a) (15)

Figure 1: Geometrical configurations of a pin-hole
camera system and an omni-directional camera sys-
tem to image epipoles mutually.

2  Panoramic Image

A sequence of pin-hole camera images enables us
to synthesize a wide view image comparing to the
image observed by a camera. The synthesized im-
age from a sequence of images is generally called a
panoramic image. Since a point and a line are fun-
damental elements for imaging, many camera mod-
els could be geometrically constructed from the two
essential elements for imaging. Therefore, we for-
mulate a camera model with lines and points for
our applications.

2.1 Line-Camera Model

Definition 1 A4 line camera is a collection of rays
which pass through a single point on a plane in
a space. A line-camera model consists of a line-
camera center which is the single point, an image
line and a camera axis which intersects the line-
camera center and is parallel to the image line.

We assume that the line-camera center C =
(0,0,0)7 is located at the origin of the world co-
ordinate system. For the line camera axis 7., we
set 7. = k(0,0,1)7 for k € R, that is, the direction
of r. is the direction of the z axis. For the image
line I of the line camera on the z-z plane (y = 0),
a point X = (X,0,Z)7 in a space is projected to
the point © = (x,0)7 on the image line [ according
to the formulation

X
?7 (1)

where f is the focal length of the line camera.

o= f

2.2 Line-Motion Camera Model

The motion of a line camera along the direction of
the y axis yields a collection of image lines {{;}}";
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Figure 2: A line-camera model.

as illustrated in figure 3 (a) and (b). In figure 3
(¢), dq is the distance between the lines I; and 1;.;.
If we set d; — 0, the collection of the image lines
{l;}}~1 forms a rectangular image plane. Assuming
the collection of parallel imaging lines as a single
camera model, such a camera model has the same
geometrical property with a normal camera with
respect to the y direction.

Definition 2 A line-motion camera is a collec-
tion of rays which pass through a single line in a
space. A line-motion camera consists of a line-
motion camera center which is the single line and
a tmage plane.

A line-motion camera projects a point X =
(X,Y,Z)" in a space to the point = (z,y)! on
the rectangular image plane according to the equa-
tions

(2)

where f is the focal length of the line-motion cam-
era.

X

A\

(@) ® ©

Figure 3: The parallel translation of a line camera
constructs a line-motion camera.

2.3 Panorama-Camera Model

The rotation of a line camera around the camera
axis 7. yields a collection of image lines {l;}7_; and
a collection of planes {o;}; as illustrated in fig-
ure 4 (a). The plane ¢; includes the image line [;

and the line-camera center C. In figure 4 (a), w;
is the angle between the planes «; and ;4. If we
set w; — 0 and 1,43 = [}, the collection of the par-
allel image lines {I;}?, forms a cylindrical-image
surface. We consider that the collection of these
image lines {l;}1~; and the camera center C con-
struct a camera model.

Definition 3 A panorama camera is a collection
of rays which pass through a single point in a space.
A panorama camera consists of a panorama-camera
center which is the single point, a cylindrical-
image surface and a camera azis which intersects
the panorama-camera center and is parallel to the
cylindrical-image surface.

We assume that the panorama-camera center
C,p = (0,0,0)7 is located at the origin of the world
coordinate system. For the line camera axis rp,
we set T, = k(0,0,1)T for k € R, that is, the di-
rection of 7, is the direction of the z axis. A point
X =(X,Y,2)7 in a space is projected to the point
xp = (zp, yp, zp)T on the cylindrical-image surface
according to the formulation

f
Ep= ==X,
VXTI IY?

where f is a focal length of the panorama cam-
era, as illustrated in figure 4 (b). Here, we trans-
form the cylindrical-image surface to a rectangular
panoramic image. We set a point on the rectangu-

(3)

lar panoramic image is p = (up, vp)T. The points
p and x satisfy the equations
z
Uup = fs tan™! yﬂ, vp = fo tan™! 2 (4)

x 2 2’
4 xp+yp

where f; is a scale factor for transforming from the
cylindrical-image to the rectangular image.

3 Hyperbolic-Camera Model

An omni-directional camera is constructed with a
pin-hole camera and a mirror. A hyperbolic camera
enables to image the largest region in such omni-
directional cameras [9]. We deal with a hyper-
bolic camera which practically observes an omni-
directional image. In figure 5, the focal point of the
hyperbolic surface S is F' = (0,0,0)7 at the origin
of the world coordinate system. The camera center
of the hyperbolic camera is C = (0,0, —2¢). The
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(a) (b)

Figure 4: (a) : The rotation of a line camera con-
structs a panorama-camera model. We set w; is the
angle between the planes which pass through the
camera center C' and the image lines I; and ;4
respectively. (b) : A panorama-camera model.

hyperbolic-camera axis 7y, is the line which connects
C and F. We set the hyperbolic surface

T N
2 R

S

= -1, (5)

where e = va2 + 2. A point X = (X,Y,Z)" in a
space is projected to the point & = (z,y, z) | on the
hyperbolic surface S according to the formulation

z=XX, (6)

where )

\ = +a . )

bV X2+ Y?+22FeZ

This relation between X and x is satisfied, if the
line, which connects the focal point F' and the point
X, and the hyperbolic surface S have at least one
real common point. Furthermore, the sign of pa-
rameter A depends on the position of the point X
[7]. Hereafter, we assume that the relation of equa-
tion (7) is always satisfied. Setting m = (u,v)T to
be the point on the image plane 7, the point « on
S is projected to the point m on 7 according to the

equations

X
ujfZ—,—Qe’ U*f

—_— 8
z+2€ ®)
where f is the focal length of the hyperbolic cam-
era. Therefore, a point X = (X,Y,Z)" in a space
is transformed to the point m as

— fa*X
(a2F2e?)Z42bey X24Y 24 2Z2)° 9
a?Y ( )

U= (@2F2e%) Z42bey XE1YEFZE)
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Figure 5: A hyperbolic-camera model. A point X
in a space is transformed to the point & on the
hyperboloid and @ is transformed to the point m on
image plane. The geometrical property of reflected
ray constructs the camera model with a hyperbolic
mirror.

4 Camera-Model Transforma-
tion

We present the camera-model transformation from
a hyperbolic camera to a panorama camera. Here,
setting C), and F' to be the panorama-camera cen-
ter and the the focal point of the hyperbolic surface
S, respectively, we locate Cp, and F at the origin
of the world coordinate system. Furthermore, for
the panorama-camera axis 7, and the hyperbolic-
camera axis Tj, we set T, = ) = k(0,0,1)7 for
k € R, that is, the directions of 7, and 7 are
the direction of the z axis. For the configuration
of the panorama camera and the hyperbolic cam-
era which share axes r, and 7, as illustrated in
figure 6, the points m = (u,v)", ¢ = (r,y,2)"
and x, = (Zp,Yp, 2p) are projections of a point
X = (X,Y,Z)7 in a space on to the hyperbolic-
image plane 7, the the hyperbolic surface S and the

cylindrical-image surface S,, respectively. Here,
the points  and m satisfy the equation
g m 0
—_ ( " )+<_Qe), (10)

where
o2

N = . 11
ef%cb u2+1}2+f2, ( )

The configuration of the hyperbolic-camera image
7 and the hyperbolic surface S enables us to set’

2

a
Cef—by/uR 0+ 2

by (12)
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The point. zis transformed to the point xy, accord-
ing to the equation

T, = /\/If:;llm (13)

Therefore, equations (10) and (13) derive the rela-
tion between the point x, and m as

(- B0 ()

I 1
These relations permit us to transform the
hyperbolic-image plane 7 to the cylindrical-image
surface S,. This geometrical property leads to
the conclusion that a hyperbolic camera and a
panorama camera are mathematically equivalent
camera models.

ic

Figure 6: The geometry for the camera transfor-
mation from a hyperbolic camera to a panorama
camera.

5  Multiple-View Geometry for
Panorama Cameras

We consider the imaging region observed by the
stereo panorama cameras which are configurated
parallel axially, single axially and oblique axially.
The parallel-axial and the single-axial stereo cam-
eras image a larger feasible region than the oblique-
axial stereo ones. Here, we deal with a cam-
era system of four panorama cameras. The four
panorama-camera centers are on the corners of a
square vertical to a horizontal plane. Furthermore,
all of the camera axes are parallel. Therefore, the
panorama-camera centers are C, = (tx,ty,t;)T,
Cp = (toty,~t;)", Co = (—ty, ~t,,t.) and
Cy = (~ty,—t;,—t,)". This configuration is illus-
trated in figure 7 (a). Since the epipoles exist on

the panorama images and correspond to the camera
axes, this camera configuration permits us to elim-
inate the rotation between the camera coordinate
and the world coordinate systems.

For a point X, the projections of the
point X to cameras C,, C, C, and
Cy are x, = (cos,sinb tana)’, x, =

(cosf,sind,tanb)’, x, = (cosw,sinw, tane)
and x4 = (cosw, sinw, tan d)T7 respectively, on the
cylindrical-image surfaces. These four points are
the corresponding-point quadruplet. The points
Za; Ty, T and x4 are transformed to p, = (8,a)7,
p, = (0,0)", p, = (w,0)7 and p; = (w,d)7,
respectively, on the rectangular panoramic images.
The corresponding-point quadruplet yields six
epipolar planes. Using homogeneous coordinate
systems, we represent X as £ = (X,Y,Z,1)7.
Here, these six epipolar planes are formulated as

(15)
where
(16)

.
M = (my, my, m3, My, ms, mg) ',

sin§
—cosf
0 7
—sindt, -+ cos 6t

(17)

sin w
— COSW
0

sinwt; — coswty

(18)

tancsin @ — tan asinw
tanacosw — tanccosf
sin(w — 6)
— sin(w — 0)¢,

tandsin 6 — tan bsinw
tanbcosw — tandcosd
sin{w — 6)
sin(w — 0)t,)

(20

tandsin € — tan asinw
tanacosw — tandcos 8
sin{w — 6)
0

v (21)

and

tancsin @ — tan bsinw
tanbcosw — tanccos @
sin(w — 6)
0
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Figure 7: The configuration of four panorama cam-
eras whose centers are on the corners of a square
vertical to a horizontal plane. (a) : The six epipo-
lar planes are yielded by the corresponding-point
quadruplet. (b) : The common points of three
planes which are orthogonal are determined by the
configuration of four panorama cameras.

Since these six planes intersect at the point X in a
space, the rank of the matrix M is three. Therefore,
the matrix Mg,

Mg My My3 Mg ’miT
MR = mj1 My My3 mj4 = m; s
Mgy M2 ME3 Mig m,,
(23)

is constructed from three row vectors of the matrix
M. If and only if the rank of the matrix Mg is
three, Mg satisfies the equation

Mpé€ =0. (24)
The point X is derived by the equation
X = l\_/I"lm4 (25)
where
_ mip  Ma2 M43 —Mig
M = M1 Myz Mys ,ﬁl4 = —Mj4
ME1 Mg Mgy —Mi4
(26)

Equation (25) enable us to reconstruct the point X
uniquely from any three row vectors selected from
the matrix M.

However, the elements of the matrix M include
the numerical errors in their values in the practical
use. We evaluate the numerical quantity of the

selected row vectors for the reconstruction using
the angles between them. Setting

GoB = MMy, Jug=m, Mg (27)

for a, 3 = 1,2, 3, the matrices

Gr = ((98)), G = ((30p)) (28)
satisfy the relations,
Gr=MgM}, G=MM". (29)

Setting A; and o; for ¢ = 1,2,3, to be the eigen-
values of Gg and G, respectively, we can quanti-
tatively evaluate the angles between m, and mg,
and 1, and Mg, respectively, from the ratios of
the eigenvalues. The ratios \;/A; and o;/0; de-
termine the approximate dimensions of the volume
spanned. by the eigenvectors as follows:

1. If the eigenvalues satisfy

AL A A3, 01> 0p o3, (30)

the dimension of the volume spanned by the
eigenvectors is approximately one. Therefore,
the three row vectors of the matrices M g and
M are distributed on a line.

2. If the eigenvalues satisfy

A1 2)\Q>>)\37 o1 = 09 > 03, (31)
the dimensions of the volume spanned by the
eigenvectors are approximately two. There-
fore, the three row vectors of the matrices Mg

and M are distributed on a plane.
3. If the eigenvalues satisfy

)\1 ~ )\2 s )\3, (32)

0] X 09 =03,

the dimensions of the volume spanned by the
eigenvectors are approximately three. There-
fore, the three row vectors of the matrices Mg
and M are distributed in a space.

The point X is derived by the equation (25) as
a numerically stable solution if the eigenvalues );
and o; satisfy the equations (32). Specifically, the
conditions

M =X =2A3, o01=09 =03, (33)
indicate that the three row vectors are mutually
orthogonal. These mathematical properties lead to

—162—



(a) (b) (¢)

Figure 8: The approximate dimensions of the eigen-
vectors are determined by the ratios A;/A; and
oi/o;. For eqs. (30), (31) and (32), the three row
vectors of the matrices Mp and M are distributed
on a line (a), on a plane (b) and in a space (c),
respectively.

the conclusion that we can select three orthogo-
nal planes from six epipolar planes for the recon-
struction of the point X. The configuration of
four panorama cameras determines the point as the
common points of three planes which are orthogo-
nal. The collections of the points are expressed as
follows:

1. Ifa'l _Laglﬂl

X*+Y =02+t Z=t,. (34)

2. Ifay Lag L By
X*+Yi=82+t, Z=—t,. (35)

3.a; LA Lp
(X =t + (Y -t + 22 =2 (36)

4. oy LB LBy
(X +t)2+ (Y +t,)2+ 22 =42 (37)

Equations (34) and (35) geometrically define the
circles on a plane in a space. Equations (36) and
(37) geometrically define the spheres in a space.
Figure 7 (b) shows the two circles and the two
spheres defined by equations (34), (35), (36) and
(37).

Next, we consider a camera system whose cam-
era centers are configurated on the corners of a hor-
izontal square, and assuming that all of the cam-
era axes are parallel. Here, four panorama-camera
centers are C, = (tz,ty,O)T, Cy = (—-tI,ty,O)T,
C. = (~ty,~t;,0)" and Cy = (t;,—t,,0)". This
configuration is illustrated in figure 9 (a). The

Figure 9: The configuration of four panorama cam-
eras whose centers are on the corners of a horizon-
tal square. (a) : The six epipolar planes are yielded
by the corresponding-point quadruplet. (b) : The
common points of three planes which are orthog-
onal are determined by the configuration of four
panorama cameras.

corresponding-point quadruplet for a point in a
space yields six epipolar planes. The three planes
selected from the four epipolar planes intersect or-
thogonally on a common point. The collections of
the common points of three planes which are or-
thogonal are expressed as follows:

1. Ifal_LOfg_Lﬂl

X*+7Z%=¢, Y=t, (38)
2. fay Lag 1 B

V24 Z2 =8, X=—t,. (39)
3.0a, LB LM

X2+ Z2=t2 Y =—t, (40)
4. Mo LB L

V2422 =1l X =t, (41)

Equations (38), (39), (40) and (41) geometrically
define the circles on a plane in a space. Figure 9
(b) shows the circles defined by these equations.
For the configurations of cameras in figure 7 (a)
and figure 9 (a), the four panorama-camera cen-
ters are located on a vertical plane and a horizontal
plane, respectively, in a space. If a point in a space
are on this plane, all elements of a corresponding-
point quadruplet for the point are mutually copla-
nar on this plane. The six epipolar planes yielded
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Figure 10: The configuration for eight panorama
cameras.

by a corresponding-point quadruplet for the point
coinside to a plane. Therefore, the point on this
plane is not possible to reconstruct from the geo-
metrical constraint of the six epipolar planes.

Finally, we propose a camera system with eight
panorama cameras combinating the two configu-
rations of four panorama cameras shown in fig-
ure 7 (a) and figure 9 (a). Therefore, the eight
panorama-camera centers are on the corners of a
parallel pipe. This configuration is illustrated in
figure 10. The corresponding-point octuplet for a
point in a space yields 28 epipolar planes. Same
as the four panorama-camera system, this eight
panorama-camera system enables us to select. three
orthogonal planes, which orthogonally intersect on
a common point, from the 28 epipolar planes.
The collections of common points of three epipo-
lar planes yield the 16 circles and the 8 spheres as
illustrated in figure 11.

Since cameras of this system are configurated in
a space, this camera system can vield more com-
binations of orthogonal planes than the four cam-
era system dose. Therefore, the points which are
the common points of these orthogonal planes dis-
tribute in wider areas in a space. Furthermore,
because of the combination of the two planar con-
figurations, the configuration in a space of eight
cameras has no critical point which are not recon-
structed. This geometrical property leads to the
conclusion that our eight panorama-camera system
provides a larger feasible region for the reconstruc-
tion of objects than four-camera system on a plane.

6 Summary and Conclusions

In this paper, we formulated quadrilinear forms
for the multiple images observed by panorama
and omni-directional cameras. We observed that
multiple-focal-tensorial expression is a natural
mathematical tool for the analysis of multiple
panorama-camera system. ‘

(a) (b) (©)

Figure 11: The gray circles in figures are the
spheres. The dashed lines in these figures are the
circles on a plane in a space. These spheres and cir-
cles are yielded by the collections of common points
of three orthogonal planes selected from 28 epipolar
planes.
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