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Abstract
The computation of visual motion at multiple locations is important for tasks such as stereo motion,
depth estimation, structure from motion, and control of locomotion. From an image sequence we can
classify objects according to their motion; grouping static objects and moving objects, for instance. Such
classification of image frame regions can be used for tasks such as surveillance systems and attention
control for humanoid robots. In this paper we present an approach for grouping image objects by
motion decomposition, based on the Potts model [1] and Monte Carlo simulation of the spatial-temporal
information. The temperature changes in the Potts model allow clustering the spins (pixels), thus at low
temperature the spins that belong to the same cluster are aligned.
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Pottsモデルによる動画像のクラスタリング

木下敬介 ∗ イリス・フェルミン †‡

あらまし

視覚による動きの検出は、ステレオ視や奥行き推定、3次元復元、自立歩行なとのタスクに必須である。人
間は、画像列の中から対象物体を、その動きに基づいて分類（たとえば、静止物体と運動している物体）す
ることができる。このような機能を実現できたなら、監視システムや人型ロボットの注意生成機構に応用可
能である。本研究では、Pottsモデルとモンテカルロ・シミュレーションに基づいた動きの分類手法を提案
する。Pottsモデルは、磁性体のスピンモデルの拡張であり、温度をパラメータとして持つ。この温度パラ
メータを変化させると、スピンの結合具合が変化する性質を利用して、画像列の動きを抽出する。

キーワード: 動き分割, 領域分割, 相関, Pottsモデル, モンテカルロ・シミュレーション

1 Introduction

One of the most challenging issues for computer vi-
sion is to develop visual mechanisms that facilitate
the interaction with dynamic environments. Ob-
ject motions that repeat are common in both na-
ture and man-made environments. Moving objects
over background surfaces that may themselves be
mobile, require the computation of relative motion.
Thus, use of motion as a cue can be a meaningful
factor for object recognition and control in mobile
robot applications.

Clustering objects given their motions has simi-
larities with image segmentation, which is the divi-
sion of an image frame into different regions each
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having certain properties. The level to which these
divisions of the image are carried depends on the
problem being solved. This process is similar to the
human recognition process [2, 3]. The extraction
of the motion information is also categorized under
three main approaches: trajectory-based features,
optical flow and region-based features [4, 5, 6].

Since the problem of motion representation is
closely related to image segmentation and efficient
motion estimation solutions should be able of ad-
dressing both components. This remark has led to
the proliferating of algorithms with iterate between
optical flow estimation and segmentation [7, 8].
Such algorithms can be seen as variations of the
expectation-maximization model or Markov Ran-
dom Fields, which is very popular approach for
modeling spatial interactions on lattice systems. An
important characteristics of MRF modeling is that
global patterns are formed via stochastic propaga-
tion of local interactions [9, 10], however, difficulties
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arise due to the dependence structure in the mod-
els and approximations are required to make the
algorithm manageable.

Cremers et.al. [11] presented a variational
method for the segmentation of piecewise of the flow
fields, in which minimization of the motion energy
and internal shape energy are computed. This al-
lows that objects that are not discernible by their
appearance can be segmented according to their
motions. The drawback of this approach is that
the model of the shape has to be assumed and the
complexity increase as the model of the shape be-
come more complex. Bayesian approaches are well
known since their robustness to outliers but the es-
timation of the priors is computational expensive
[9, 12, 13]. Approaches based on level sets that ex-
ploit the ability to handle variations in the topology
of the segmentation and its numerical stability have
also been proposed [14, 15].

1.1 Visual Motion Perception

Motion perception is fundamental for our under-
standing of and our communication with the envi-
ronment. Visual motion can be a powerful cue that
enables us to classify different forms of movement
such as rigid versus non-rigid, as well as recogniz-
ing classes of objects on the basis of their motion
characteristics. The ability of recognize classes of
objects on basis of their motion characteristics is
an essential requirement to build robust vision sys-
tems.

There are both psychological and physiological
evidences that the visual system processes moving
images using a bank of filters tuned to specific spa-
tial and temporal frequencies [16]. It is well known
that the points on the surface of an object, moving
relative to a camera, generate trajectories in space-
time. The projection of these trajectories onto the
imaging surface produces a two dimensional path,
the time derivatives of which are the two dimen-
sional velocities.

Two main approaches for the computation of im-
age motion have been studied extensively: optical
flow [17, 18], and extraction of three dimensional
scene structure from image velocities [5, 19].

The difficulty in measuring image velocity is that
image intensity depends on several independent as-
pects of the image formation process. Horn [17]
pointed out that the optical flow cannot be com-
puted at a point in the image independently of
neighboring points without introducing additional
constraints, because the velocity field at each im-
age point in the image plane has two components,
and the brightness change has only one.

We propose a method based on the Potts model
using correlation and flow information to cluster dif-

ferent moving objects. The spatial-temporal and
brightness information is used to cluster the data.
In the spin model every point is assigned a spin
value that represents its state. The state of the
spin varies in order with the spin-spin interaction.

Potts, or spin models, are classical examples of
many body systems where local two body interac-
tions increase the whole group behavior. The group
behavior is determined by the fact that many of
the spins are found in the same state. This state
similarity represents a similarity measure based on
the spin-spin correlation function. In contrast with
the distance measure used in many methods, spin-
spin correlation is an inherently group-like property
and is influenced by the state of the spins of the
neighboring regions [20]. The strength of this kind
of approach is that general image structures can
be modeled using similar graph structures for rep-
resentation, whether the interactions are between
neighboring pixels or regions.

In sections 2 and 3, the Potts model and clus-
tering method are explained in detail. In section 4
the implementation of the algorithm and computa-
tional results are introduced. Finally, in section 5
the conclusions are presented.

2 Potts Model and Swendsen

and Wang Algorithm

The Ising model is the simplest model for ferromag-
netic material where the number of states (q) that a
spin can have are two (2). The model is originated
from physical studies of magnetics [21]. One of the
interesting feature is that it exhibits a spontaneous
magnetization at low temperatures. At the same
time, the magnetization disappears at a higher tem-
perature, Tc. Tc is called the critical temperature
and the phases below and above this temperature
are called ferromagnetic and paramagnetic, respec-
tively. The Potts model is a generalization of the
Ising Model to more than two states [22].

Given a sequence of points 0, 1, ..., n in a line. At
each point, or site, there is a spin which at given
moment is in one of the two positions that it can
take: up or down. In a two-dimensional space, for
example a square lattice L × L, we put a spin si

(this may take several values in the Potts model) at
each lattice site i. The set of L2 spins consists of
the state space X. The system has a total energy
defined by

H = −
∑
〈i,j〉

Jijδsisj si = 1, ..., q (1)

where J is the interaction between spins and only
interactions between neighbors are considered. For
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J > 0 the system is in the ferromagnetic phase, and
if J < 0 the phase is anti-ferromagnetic. Changes
in temperature will generate changes in the state of
the system. The changes of the temperature define
a probability distribution of the states:

P (s) ∝ exp
(
−H(s)

zT

)
(2)

where z is a normalization constant.
The Swendsen-Wang (SW) is a multi-cluster al-

gorithm for Ising and Potts model. SW starts with
a spin configuration s and generates a percolation
configuration based on the following method:

• Pick an arbitrary state s

• Go through each neighboring connection in the
lattice, create a bond between two neighboring
sites i and j with probability 1 − e−J/zT but
only if the spins are the same.

• Identify clusters as a set of sites connected
by bonds, or isolated sites. After a cluster is
found, each cluster is assigned a new Ising spin
chosen with equal probability. The old spin
values are discarded.

• One Monte Carlo step is finished, repeat.

The method is such that the transition leaves the
equilibrium probability invariant, i.e., the system is
ergodic. The SW algorithm generates many clus-
ters and flip them at the same time, this makes this
algorithm very efficient [21, 23, 24]. Algorithms us-
ing similar strategy (annealing) are well-know in the
area of texture analysis [25, 26] or motion estima-
tion [27], given that this method possesses desirable
global optimization properties.

3 Potts Model for Motion
Clustering

The q-state Potts model consists of a lattice si

which can take q values and is governed by a Hamil-
tonian energy Eq. 1. Based on the model proposed
by Blatt et.al.[1], we developed an algorithm to clus-
ter the image pixels given their motion fields. Hav-
ing N motion fields we want to cluster all pixels in
M groups that should be determined. We assumed
that the number of moving objects is unknown and
a perfect clustering will be reached if N = M .

We assign a spin variable si to each xi that rep-
resents our velocity pattern, and introduce an in-
teraction Jij between pairs of spin, whose strength
decreases as the inter-spin distance dij decreases.
δsisj is the spin-spin correlation. Let an image se-
quence F of P ×Q pixels f(x, y, k) by frame, where

x and y refer to spatial coordinates and k refers to
the temporal coordinate.

We define the vector xi = (fx,fy,ft) derived from
the gradient constraint [17]

fx =
1
4
[fi+1,j,k − fi,j,k + fi+1,j+1,k − fi,j+1,k

+ fi+1,j,k+1 − fi,j,k+1 + fi+1,j+1,k+1 − fi,j+1,k+1]

fy =
1
4
[fi,j+1,k − fi,j,k + fi+1,j+1,k − fi+1,j,k

+ fi+1,j,k+1 − fi,j,k+1 + fi+1,j+1,k+1 − fi+1,j,k+1]

ft =
1
4
[fi,j,k+1 − fi,j,k + fi+1,j,k+1 − fi+1,j,k

+ fi+1,j,k+1 − fi,j+1,k + fi+1,j+1,k+1 − fi+1,j+1,k]
(3)

and

di =
−ft√

f2
x + f2

y

(4)

where di indicates the component of the movement
in the direction of the gradient (fx, fy). The ve-
locity (vx, vy) has to lie along a line perpendicular
to the brightness gradient vector (fx, fy). The dis-
tance of this line to the origin is di (see Fig. 1).
Thus, di can be used for cluster points that move
with similar velocity.

V

(f   ,  f  )x y

d i

flow constraint

y

xV

Figure 1: Image brightness equation con-
straint.

3.1 Local Interaction and Thermo-
dynamics Parameters

The local interaction is defined allowing only K
neighbors and we assume a local length scale a. The
interaction strength is [1]

Jij = Jji =
1

K̂
exp

(
−|di − dj|2

2a2

)
(5)

Here a is set to the mean of the |di − dj| in the
neighbours,K̂ is the average number of neighbors
per site.
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The spin-spin correlation affects the ordering
properties of the system, and can be estimated us-
ing a Monte Carlo procedure. The SW algorithm is
used to identify clusters of similar spins. Starting
with an initial spin configuration, SW selects the
points over the neighborhood given the following
probabilities,

P i,j
d = exp

(
−Jij

T

)
to delete a spin (6)

P i,j
f = 1 − P i,j

d to freeze a spin. (7)

Thus the points that belong to the same cluster
are those which have a path of frozen bonds con-
necting them. A new configuration is generated, by
assigning randomly a value si = 1, ..., q to the spins
of each cluster. This define one step of the Monte
Carlo procedure and should be iterated until a ther-
modynamic equilibrium is reached. The relation of
the SW clusters and the ordering properties of the
Potts spins is given in the following relation

δsi,sj =
(q − 1)nij + 1

q
(8)

where u is the average over the temperature and

nij =
{

1 if si and sj ∈ the same cluster
0 otherwise.

The transition from ferromagnetic phase to param-
agnetic phase [1] can be approximated as

Tc ≈ e−
1
2

4 log(1 +
√

q)
(9)

and the susceptibility of the system is proportional
to the magnetization

χ =
N

T
(m2 − m2) (10)

where the magnetization, m is defined as

m =
qNmax/N − 1

q − 1
Nmax = max{N1, ..., Nq},

(11)
and Nq is the number of spins with the value
q. Hence the point where the susceptibility van-
ishes is an upper bound for the transition tempera-
ture from super-paramagnetic to the paramagnetic
phase. Thus, we apply a Monte Carlo (MC) pro-
cedure to identify the temperature transition. The
magnetization of the system tells us how well the
spins are aligned. Perfect alignment corresponds to
complete order in the system. When T increases,
the order decreases, for T > Tc the order is lost.

4 Clustering Strategy

The procedure for clustering consists of two main
steps, firstly the identification of the range of tem-
peratures in which the cluster may be observed, sec-
ondly, identification of the clusters using the infor-
mation given by the spin-spin correlation function
at this temperature. However, before to proceed
with the clustering a pre-filtering is applied to re-
duce the size of the data.

4.1 Image Space Reduction

Given an image sequence, let b = f(x, y, k) be the
pixel brightness in the location x, y at the time k,
k = 0, . . . , τ . If an object is moving with respect to
the cameras plane, then a change between two con-
secutive image frames will be registered as a change
of the brightness and position. Thus given a vec-
tor Ik(x, y, b), a correlation function is defined as
follows.

ck,k+1(x, y, b) =
Ik(x, y, b)Ik+1(x, y, b)�

‖Ik(x, y, b)‖‖Ik+1(x, y, b)‖ (12)

such that
|ck,k+1(x, y, b) − 1| > ε (13)

where ε is a small number.
Eq. 13 allows us to reduce the searching space in

the image region, and is known that a great percent-
age of an image frame corresponds to static back-
ground. Clearly, if ck,k+1 is zero then not changes
were registered for the corresponding pixel. Using
this constraint the process of clustering the moving
pixels is accelerated.

4.2 Clustering Algorithm

The details of our algorithm which is based on the
Blatt [1] clustering procedure, are as follows.

1 Select a pair of images, and apply a Gaussian
filter to the image difference.

2 Applied the correlation filter Eq. 12 and select
the respective image points to be clustered.

3 Using Eq. 3 estimate the points xi using 3× 3
neighbors.

4 Select an initial temperature interval using Eq.
9. Set T to T = 0.00 until T = 2Tc, and divide
it into intervals of Tsteps. Tsteps is set to 100
in our experiments.

5 Do until limit of iterations M has reached. M
is set to 2000 in our experiments.

5.1 Assign q-states (uniform distributed) -Potts
spin variable- si to each xi or cluster.

5.2 Compute the point interactions Jij using Eq.
5.
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5.3 Compute the probability of bonding by Eqs. 6
and δij by Eq. 8 for all sites.

5.4 Connect (bonding) or delete each neighbors for
each site depending on the probability com-
puted in step 5.3.

5.5 Draw a configuration identifying all the clus-
ters. A cluster is defined by a group of sites
which have bonds connecting each other.

5.6 Repeat from 5.
6 Calculate the susceptibility χ using Eq. 10.
7 Identify the range of temperatures between

the susceptibility density χT/N vanishes and
χT/N is maximal, set the temperature for
clusterTcluster inside that interval.

8 Repeat steps 5 for the given the Tcluster.
Tcluster is supposed to be the best clustering
temperature.

9 Compute nij and then estimate the spin-spin
correlation δsisj for all neighboring pairs xi and
xj using Eq. 8.

10 The cluster is selected according with δsisj and
a threshold θ. Here θ is set to the value 0.5.

5 Computational Results

In this section we present two examples of clustering
different motions: tennis sequence§ and mouse se-
quence, respectively. The images used in the tennis
sequence are shown in Fig. 2. These images are 240
by 352 pixels. We construct the points to be clus-
tered using the correlation constraint and the esti-
mated distance di. The total number of points to be
clustered in this case are 2008. We conducted 2000
iterations of Monte Carlo steps through out the ex-
periments. Figures4 shows the clusters at T = 0.00,
T = 0.049,T = 0.091, T = 0.134, respectively. For
this simple case, the clustered regions are stable un-
til the temperature is raised to high. The clustering
process is susceptible to the selection of T as shown
in Fig. 5.

In the second experiment, the mouse sequence is
used as shown in Fig. 3. Here the hand, the pur-
ple mouse pad, the Pooh mouse pad, the cd-rom
and the reel are moved at the same time. We re-
scale these images to 60 by 80 pixels and reduce the
number of points to be clustered to 1601. Fig. 6 is
the results forT = 0.00 and T = 0.087, T = 0.102,
and T = 0.138, respectively. We can observe that
at T = 0.102 six clusters are found: reel, cd-rom,
Pooh, hand, purple mouse, and some shadow ef-
fects. Fig. 7 shows the susceptibility of the cluster-
ing process.

§The images are taken from http://sampl.eng.ohio-
state.edu/ sampl/database.htm

(a) (b)

Figure 2: Two frames of the tennis sequence. (a)
Image1. (b) Image2.

(a) (b)

Figure 3: Mouse sequence 640x480 pixels: (a) Im-
age1. (b) Image2.

The neighboring points were defined as eight
points which surrounds the point. The parameter
ai that is a local scale parameter is selected as the
mean of |di − dj|, where j is the neighboring points
of point i. K̂ which is a global scale was computed
as the average number of neighboring points over
all the points . The interval to select T was set be-
tween Tmin = 0.0 and a maximum of 2Tc, where Tc

is given by Eq.9. The threshold θ for the selection
of the cluster is set to 0.5. We notice that the se-
lection of Tcluster as the average of the T between
Tvanish at χT/N vanishes and Tpeak at χT/N is
maximal is not necessarily a good estimator. But
the selection of Tcluster is inside that interval and
around Tc. For the tennis sequenceTcluster is almost
the same as (Tpeak +Tvanish)/2. But for the mouse
sequence it is not a good estimator. We are study-
ing the influence that flow data considered has on
the selection of Tcluster.

Figure 8 shows a sequence of the results for the
mouse sequence, but in this case the parameter a is
estimated using the median values of |di − dj|. Fig
9 shows the susceptibility density χT/N in which
can be noticed that the phase transition is reached
faster than that using the mean value. Finally, Fig.
10 is a synthetic color image data to explain the pos-
sibilities of the extension of the method to higher
dimensional vector. In this case r,g,b intensities are
used to compute di, and good segmentation results
are shown in Fig. 12. Fig. 11 shows its susceptibil-
ity density χT/N . Thus, it is feasible to extend this
method to work with more than one gradient con-
straint to deal with problems related to apparent
motion, and occlusion without considering shape

研究会Temp 
－197－



models.

6 Conclusion and Discussion

We have presented an algorithm based on Potts
model and Monte Carlo sampling for the cluster-
ing of several motions. Monte Carlo models are
useful for obtaining numerical solutions to problems
which are complicated to solve analytically. The er-
ror scale of MC models like 1/

√
(N), is independent

of the number of dimensions. This makes this kind
of method very attractive. Optical flow fields are in-
herently uncertain because of image noise, lighting
changes, low contrast regions, the aperture problem
and multiple motions in a single localized region. A
probabilistic approach allows to represent these un-
certainties in the computation. In our experiments,
using a one-dimensional measure of the flow we were
able to determine different objects in the sequence.

We found that changes in the temperature T lead
to changes in the cluster distribution. For low tem-
peratures, there are few clusters with high point
density. And for high temperatures there are many
clusters with low point density. The temperature
parameter is a control scale parameter that defines
the fitness of the cluster space. However, we need
to find a robust way to select theTcluster . Likewise,
we would like to extend the method to deal with 2-
and 3-dimensional measure of the flow.
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