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あらまし オプティカルフローを用いた移動ロボットのための環境地図生成法と自己運動推定法を提案する。環

境地図はロボットが移動可能な領域と障害物領域を固定した座標系で表したものであり、それを生成することは、

ロボットの自律行動のために重要な仕事である。本論文では、移動可能領域はロボットから見た視野の半分以上

を占めるという仮定を用い、その領域のオプティカルフローを画像列から推定する。そして、推定されたフロー

から自己運動を推定し、逆投影により環境地図を作成する。実際の移動ロボットにより撮影された画像列を用い、

自己運動推定と環境地図生成の実験結果を示す。
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optical flow for robot navigation
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Abstract In this paper, we aim to develop an algorithm for the construction of an environmental map
using optical flow observed through a vision system mounted on an autonomous mobile robot. Our algorithm
first detects an area corresponding to the planar area from a sequence of images by employing optical flow,
and second, backprojects the planar area to the environment for the construction of an environmental map.
Moreover, our algorithm estimates ego-motion of the mobile robot using projected optical flow. The planar area
detection by our method does not require any physical assumptions concerning the robot motion or any camera
calibration. Therefore, our algorithm allows obstacles to be detected without using any models in the database
or any heuristics rule. We show the results of the construction of an environmental map using the mobile robot.

1 Introduction

In this paper, we aim to develop an algorithm for
the construction of environmental maps using opti-
cal flow observed through a vision system mounted
on an autonomous mobile robot. The mobile robot
moves over a planar area (e.g., floors and ground) and
must avoid collision with obstacles. Therefore, envi-
ronmental map construction is an essential task for
the autonomous navigation and path planning for mo-
bile robots. We assume that the environmental map
describes the planar area and other areas from a top
view of a fixed coordinate system. Therefore, the en-
vironmental map enables the robot to move about the
planar area without collision with obstacles.

For the construction of an environmental map, we
must detect the planar area in the image sequence ob-
served by the mobile robot. There are many methods
for the detection of planar areas in vision systems [1].
For example, edge detection of omni-, and monocu-

lar camera systems [2] and the observation of land-
marks [3] are classical ones. Since these methods are
dependent on the environment around a robot, they
involve difficulties, such as the need to predetermine
landmarks, when applied to general environments. If
a robot captures an image sequence of moving objects,
the optical flow[4] [5][6], which is the flow of movement
in the scene, is obtained for the fundamental features
to generate environment information around the mo-
bile robot. Additionally, optical flow is considered to
be fundamental information for obstacle detection in
the context of biological data processing [7]. There-
fore, the use of optical flow is an appropriate method
for the construction of environmental maps from the
viewpoint of the affinity between the robot and human
beings.

For planar area detection, we apply the idea of a
dominant plane. The dominant plane is the planar
area that occupies the largest domain in the image
observed by a camera. Therefore, the problem of pla-
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nar area detection is described as that of dominant
plane detection in an image sequence. We show that
the dominant plane in a pair of images is combined
with affine transformation when the mobile robot ob-
tains successive images for optical flow computation.
Therefore, our algorithm allows the dominant plane to
be detected without the need to calibrate the camera
or to assume camera displacement, since the compu-
tation of optical flow does not require the calibration
of camera systems.

Our algorithm first detects an area corresponding
to the dominant plane from a sequence of images by
employing optical flow, and second, backprojects the
dominant plane to the environment for the construc-
tion of an environmental map. The dominant plane
detection by our method does not require any phys-
ical assumptions concerning the robot motion. Fur-
thermore, our algorithm detects the dominant plane
without camera calibration. Therefore, our algorithm
detects obstacles without using any models in the
database or any heuristic rules.

Section 2 presents an algorithm for the detection
of the dominant plane using optical flow. Section 3
presents an algorithm for the construction of the en-
vironmental map from the sequence of the dominant
plane. Experimental results of applying our algorithm
are presented in Section 4. We show the results of the
estimation of an ego-motion of the mobile robot and
the construction of an environmental map using the
mobile robot.

2 Dominant plane detection
from image sequence

When the mobile robot moves over the ground plane,
we obtain successive images which include a dominant
plane area and obstacles. Therefore, the optical flow
computed from the successive images describes the
motion of the dominant plane and obstacles on the
basis of camera displacement. Since the correspond-
ing points in the dominant plane of an image sequence
are combined by an affine transformation, we can com-
pute the affine coefficients in Eq.(3) from optical flow
on the dominant plane. Once the affine coefficients are
computed, we can estimate the dominant plane motion
in the image sequence from the affine coefficients. The
dominant plane motion is described by a planar flow
field, as shown in Fig.1. The difference between the
estimated planar flow field and the computed optical
flow field enables us to detect the dominant plane area
on the image by matching the flow vectors on the im-
age planes.

Camera

Dominant Plane

ObstacleCamera Motion

Figure 1: Planar flow of image sequence. top: Exam-
ple of camera displacement and the environment. left:
Computed optical flow. right: Estimated planar flow.
In a top-middle area, where exists the obstacle, the
length of optical flow is bigger than planar flow.

2.1 Approximation of the dominant
plane motion by affine transforma-
tion

Setting H to be the 3× 3 matrix [8], the homography
between the two images of a planar surface is expressed
as

p = Hp′, (1)

where p = (u, v, 1)> and p′ = (u′, v′, 1)> are the cor-
responding points on the two images. The matrix H
is expressed as

H = K(R + tn>)K−1, (2)

where K, R, t, and n are the projection matrix, the
rotation matrix, the translation vector, and the plane
normal of the planar surface, respectively. The ma-
trixes K and K−1 are affine transformations since
these matrixes are the projection matrix of a pinhole
camera. Assuming that the camera displacement is
small, the matrix R and the matrix tn> are approx-
imated by an affine transformation. These geometri-
cal and mathematical assumptions are valid when the
camera is mounted on a robot moving over the dom-
inant plane. These assumptions allow us to describe
the relationship between (u′, v′) and (u, v) as an affine
transformation, such as

(
u′

v′

)
=

(
a b
d e

)(
u
v

)
+

(
c
f

)
. (3)

In the next section, we develop an algorithm for the
estimation of these six parameters, a,b,c,d,e, and f ,
from a sequence of images.

2.2 Planar flow estimation

First, using a pair of successive images from a sequence
of images obtained from the camera during robot mo-
tion, we compute the optical flow field (u̇, v̇). Since
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optical flow is the correspondence of dense points be-
tween an image pair, Eq.(3) can be applied to each
point on the dominant plane. Let (u, v) and (u′, v′) be
the points of the corresponding image coordinates in
the two successive images. Point (u′, v′) can be calcu-
lated by adding the flow vector (u̇, v̇) to (u, v), if (u, v)
and (u′, v′) are a pair of corresponding points. Thus,
by setting (u̇, v̇) to be the optical flow at point (u, v)
in the image coordinate system, we have the relation

(
u′

v′

)
=

(
u
v

)
+

(
u̇
v̇

)
. (4)

If we obtain (u, v) and (u′, v′), we can compute the
affine coefficients in Eq.(3). If three points are non-
collinear, Eq.(3) has a unique solution. Since the dom-
inant plane occupies the largest domain in the image,
we select three points randomly to compute the affine
coefficients in the successive pair of images. After we
compute the affine coefficients, using Eq.(3) again, we
can compute the motion of the image sequence of the
dominant plane, that is, the collection of correspond-
ing points

(
û
v̂

)
=

(
u′

v′

)
−

(
u
v

)
(5)

in the image sequence can be regarded as motion flow
of the dominant plane on the basis of camera displace-
ment. We call this flow planar flow (û, v̂).

2.3 Dominant plane detection

Setting ε to be the tolerance of the difference between
the optical flow vector and the planar flow vector, if

∣∣∣∣
(

u̇t

u̇t

)
−

(
ût

ût

)∣∣∣∣ < ε (6)

is satisfied, we accept point (ut, vt) as a point in the
dominant plane.

If at least one point on the obstacle area in the im-
age is selected for the estimation of the planar flow,
this planar flow is no longer the dominant plane mo-
tion. Therefore, the detected dominant plane area is
very small. Since the dominant plane occupies the
largest domain in the image, in such cases, it be-
comes evident that the selection of points is incorrect.
In those cases, we consequently select another three
points randomly. Figure 2 shows examples of each
case.

Once we have detected the dominant plane in a cer-
tain frame of the image sequence, the planar flow of
subsequent images can be estimated robustly using the
least-squares method, because dense optical flows are
used for the estimation of affine coefficients. Assum-
ing that the robot displacement is small, the domi-
nant plane in the successive images changes negligi-
bly. Therefore, using optical flow on the estimated

Figure 2: Examples of random sampling. Bottom-left
is incorrect case, since the point is selected on the ob-
stacle area. Select another points randomly. Bottom-
right is correct case. This planar flow is equal to opti-
cal flow in 50% or more of area.

dominant plane in the previous image, we estimate
the affine coefficients using the least-squares method.
Setting (ui, vi) and (u′i, v

′
i) (0 ≤ i ≤ n) to be corre-

sponding points, the mean-squared errors Eu and Ev

associated with Eq.(3) are

Eu =
n∑

i=1

{u′i − (aui + bvi + c)}2, (7)

Ev =
n∑

i=1

{v′i − (dui + evi + f)}2, (8)

where n is the number of points used for estimation.
Therefore, we can compute affine coefficients which
minimize errors Eu and Ev.

2.4 Procedure for dominant plane de-
tection

Our algorithm is summarized as follows.

1. Compute optical flow (u̇, v̇) from two successive
images.

2. Compute affine coefficients in Eq.(3) by random
selection of three points.

3. Estimate planar flow (û, v̂) from affine coefficients.

4. Match the computed optical flow (u̇, v̇) and esti-
mated planar flow (û, v̂) using Eq.(6).

5. Detect the dominant plane. If the dominant plane
occupies less than half of the image area, then
return to step(2).

Figure 3 shows the procedure of dominant plane
detection from the image sequence.
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Figure 3: Algorithm for dominant plane detection de-
scribed in Section 2.3.

3 Environmental map construc-
tion

In this section, we develop an algorithm for the con-
struction of the environmental map using planar flow
and detected dominant plane.

3.1 Ego-motion estimation from planar
flow

We first fix the origin of the world coordinate system at
an appropriate point in the environment within which
our robot moves. Furthermore, we assume that the ori-
gin of the robot coordinate system is initially located
at the origin of the world coordinate system. The
robot coordinate system moves relative to robot mo-
tion. Since the origin of the robot coordinate system
moves, to generate an environmental map, we need to
know the trajectory of the origin of the robot coordi-
nate system. Using the ego-motion of the robot and
the geometrical configuration of the camera system on
the robot, we can find the location of the origin of the
robot coordinate system. The origin of the camera co-
ordinate system is located at the origin of the robot
coordinate system at height H, and the angle between
the optical axis of the camera and the vertical axis
is angle θ. The relationships between these coordi-
nate systems are shown in Fig.4. Setting (X, Y, Z),
(XR, YR, ZR), and (XC , YC , ZC) to be the world co-
ordinate system, the robot coordinate system and the
camera coordinate system, respectively, the relation-

ship among these coordinate systems is described as



XR

YR

ZR


=



−1 0 0
0 cos θ sin θ
0 sin θ − cos θ







XC

YC

ZC


+




0
0
H


 . (9)

Since we assume that the dominant plane in an im-
age is a collection of points on the plane with Z = 0,
a point on the dominant plane corresponds to coor-
dinates (X, Y, 0). Therefore, if the camera motion is
estimated between time t and time t+1, we can detect
the ego-motion of the mobile robot and the location of
the robot in the fixed coordinate system.

The planar flow on the image plane describes the
motion of the dominant plane between time t and time
t + 1 relative to camera displacement. As shown in
Fig.5, the projections of planar flow to the dominant
plane yield the flow vector of each point on the dom-
inant plane. The flow vectors on the dominant plane
describe the camera motion relative to the dominant
plane.

YR

ZR

XR

OR

u

v

Camera coordinate system

Robot coordinate system

Image coordinate system

Dominant plane Z=0

OC

ZC

YC

XC

(u0,v0)

O

X

Z

Y
World coordinate system

Figure 4: Coordinates of the camera and the dominant
plane. (u, v): Image coordinate system. (XC , YC , ZC):
Camera coordinate system. (XR, YR, ZR): Robot co-
ordinate system. (X, Y, Z): World coordinate system.
The dominant plane is the plane with Z = 0.

YR(t+1)

ZR(t+1)

XR(t+1)

OR(t+1)
Robot coordinate system

(t)(t+1)

Ego-motion of the camera

Camera displacementPlanar flow

Figure 5: Projected planar flow vector describing ego-
motion of the camera relative to the dominant plane.

In Fig.6, the point (u, v) in the image coordinate
system is projected onto the point (XR(u, v), YR(u, v))
on the dominant plane in the robot coordinate system
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θ
f

camera

Robot coordinate system

Image coordinate system

ZR
H
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v
h

XROR X1

(u1,v1)

f

(u0,v0)

w

Image coordinate system

Dominant plane

ZR

H

o

v

OR

v1

Y1YR

v0

f θ

h

Dominant plane

Image coordinate system

Figure 6: Coordinates of the camera and the dominant
plane. (u, v): Image coordinate system. (Xr, Yr, Zr):
Robot coordinate system. f : Focal length of the cam-
era. H: Distance from the dominant plane to the cam-
era centre. θ: Tilt angle of the camera system from
the vertical direction towards the Y axis.

as follows:

XR(u, v) =
H(u− u0)

f cos θ + (v − v0) sin θ
, (10)

YR(v) =
H(f sin θ + (v0 − v) cos θ)

f cos θ + (v − v0) sin θ
, (11)

where (u0, v0) and f are the coordinates of the optical
centre of the camera in the camera coordinate system
and the focal length, respectively. Therefore, setting
(X̂, Ŷ ) to be the planar flow projected onto the dom-
inant plane, projected planar flow (X̂, Ŷ ) and planar
flow (û, v̂) are related by

X̂ = X(u + û, v + v̂)−X(u, v), (12)
Ŷ = Y (v + v̂)− Y (v). (13)

Examples for the projection are show in Figs.7 and
8. The projected planar flow (X̂, Ŷ ) describes the
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Figure 7: Example of planar flow relative to the for-
ward motion of the mobile robot. left: Planar flow on
the image plane. right: Planar flow projected onto the
dominant plane.
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Figure 8: Example of planar flow relative to the ro-
tational motion of the mobile robot. left: Planar flow
on the image plane. right: Planar flow projected onto
the dominant plane.

displacement of the dominant plane. This displace-
ment combines the translation and the rotation of the
dominant plane relative to the camera motion.

Setting (TX(t), TY (t)) and ΩZ(t) to be the transla-
tion vector and the rotation angle at time t, the rela-
tionship between point (XR(t), YR(t)) on the dominant
plane and the corresponding point (XR(t + 1), YR(t +
1)) at time (t + 1) is described as
(

XR(t + 1)
YR(t + 1)

)
=

(
cosΩZ(t) − sinΩZ(t)
sinΩZ(t) cosΩZ(t)

)(
XR(t)
YR(t)

)

+
(

TX(t)
TY (t)

)
. (14)

Since the algorithm in Section 2.2 yields planar
optical flow, Eqs.(10) and (11) define the pair of
points (XR(t + 1), YR(t + 1)) and (XR(t), YR(t)). Us-
ing Eq.(14) allows us to estimate the translation
(TX(t), TY (t)) and the rotation ΩZ(t) by the least-
squares method.

The estimation of the robot ego-motion parameters
(TX(t), TY (t)) and ΩZ(t) at time t yields the location
of the robot in the world coordinate system at time t.
To determine the location of the mobile robot in the
dominant plane, we apply SE(2)[9], the special Eu-
clidean group of rigid-body motion in two dimensions.

SE(2) =
{(

R t
0 1

)
|R ∈ R2×2, t ∈ R2,

5

研究会temp
テキストボックス
－5－



R>R = I,det(R) = 1
}

, (15)

using SE(2), we have the relationship
(

XR(t + 1)
YR(t + 1)

)
= R

(
XR(t)
YR(t)

)
+ t. (16)

For the estimation of the trajectory of the coor-
dinate system, setting (PX(t), PY (t)) and (PX(t +
1), PY (t+1)) to be the locations of the robot at times
t and t+1 in the world coordinate system, the location
(PX(t + 1), PY (t + 1)) is expressed as

(
PX(t + 1)
PY (t + 1)

)
=

(
PX(t)
PY (t)

)

+
(

cosΩZ sinΩZ

− sinΩZ cosΩZ

)(
TX(t)
TY (t)

)
,(17)

where ΩZ =
∑t

i=0 ΩZ(i). Equations (17) are illus-
trated in Fig.9 and Fig.5.

O X

Y
(TX(t),TY(t))

ΩZ(t)

P(t)

P(t+1)

Figure 9: Ego-motion (TX(t), TY (t)) and ΩZ(t) of the
mobile robot. The robot moves from point P (t) to
point P (t+1) at time t in the world coordinate system.

3.2 Map construction by backprojec-
tion

We construct the two-dimensional environmental map
from planar and nonplanar areas of the image sequence
by backprojection[10].

In Fig.6, point (u, v) in the image coordinate sys-
tem is projected to point (XR, YR, 0) on the dominant
plane in the robot coordinate system, using Eqs.(10)
and (11). Since we estimate the location of the mobile
robot in the world coordinate system from Eq.(17),
the dominant plane in the robot coordinate system is
transformed to the dominant plane in the world coor-
dinate system using the relation
(

X
Y

)
=

(
cosΩZ(t) − sinΩZ(t)
sinΩZ(t) cosΩZ(t)

)(
XR

YR

)
+

(
PX(t)
PY (t)

)
. (18)

The dominant plane in the world coordinate system
is the area in which the robot can move. Therefore,
we can construct an environmental map relative to the
displacement of the mobile robot.

Table 1: The location (X, Y ) in the world coordinate
system in last frame. T0 . . . T5 are results of the
estimation with initial frames 0 . . . 5 of the image se-
quence, respectively.

T0 T1 T2 T3 T4 T5
PX -10.7 -9.9 -10.0 -10.6 -10.5 -9.6
PY 681.6 678.2 679.1 677.9 680.5 679.8

4 Experiment

In this section, we show some results of ego-motion
estimation and environmental map generation using
a real image sequence observed through the camera
mounted on a mobile robot.

4.1 Ego-motion estimation

We show the results of experiments for ego-motion es-
timation of the mobile robot using a real image se-
quence. The robot moves forward toward the obstacle,
as shown in Fig.10. For the evaluation of the robust-
ness and the accuracy of our algorithm, we estimate
the ego-motion of the robot using images observed dur-
ing one robot motion. and change the initial location
and the step interval of the image sequence. The robot
is located at the origin of the world coordinate system
in frame 0, and moves forward along the direction of
the Y axis.

First, we estimate the robot motion using frame t
and frame t + 6 of the image sequence and change
the initial location t from t = 0 to t = 5. We set
T0 to be the result of estimation with t = 0, that is,
using (0, 6, 12, . . .) frames of the image sequence. In
the same manner, we set T1, T2, T3, T4 and T5 to
be the results of the estimations with t = 1, 2, 3, 4 and
5, respectively. The result of the estimations is shown
in figure 11, and Fig.11(b) shows an enlargement of
figure 11(a). In figures 11(a) and 11(b), X and Y axes
are those of the world coordinate system, and lines
and dots are the estimated paths and locations of the
mobile robot (PX(t), PY (t)) in Eq.(17), respectively.
Table 1 shows the location of the mobile robot in the
last frame.

Figure 10: Image sequence of translational motion.
From the left, the image at frames 100, 200, 300 and
400.
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Figure 11: (a) Result of the estimation of translational
motion for different initial frames. Lines and dots are
estimated paths and locations of the mobile robot, re-
spectively. (b) Enlargement of (a).

The results in Fig.11(a) and Tab.1 indicate that the
difference in the location in the last frame is about 0.9
% relative to the distance moved by the robot, about
680mm. Therefore, we can conclude that our algo-
rithm of ego-motion estimation is robust for various
initial locations of the robot.

Next, we estimate the robot motion starting at
frame t = 0 using the image sequence frame t and
frame t + s, where the step interval s is 4, . . . , 8. We
set S0 to be the result of estimation with s = 4, that is,
using (0, 4, 8, . . .) frames of the image sequence. In the
same way, we set S5, S6, S7 and S8 to be the results
of the estimations with s = 5, 6, 7 and 8, respectively.
The results of the estimations are shown in Fig.12(a),
and Fig.12(b) shows an enlargement of Fig. 12. Table
2 shows the location of the mobile robot in the last
frame.
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Figure 12: (a) Result of the estimation of translational
motion for a various span of the image sequence. (b)
Enlargement of (a).

The results in Fig.12(b) and Tab.2 show that the
difference in the location of the robot in the last frame
is about 0.7 % relative to the distance moved by the
robot. Therefore, our algorithm is robust for different

Table 2: The location (X, Y ) in the world coordinate
system in last frame. S4 . . . S8 are results of the es-
timation with spans 4 . . . 8 of the image sequence,
respectively.

S4 S5 S6 S7 S8
PX mm -9.5 -10.4 -10.7 -11.1 -11.6
PY mm 684.9 685.3 681.6 683. 684.7

velocities of the mobile robot.
We also estimate the ego-motion of the robot using

the image sequence of rotational motion, as shown in
Fig.10. The robot is initially located at the origin
of the world coordinate system in frame 0, and then
rotates about 80 degrees to the right. Figure 14 shows

Figure 13: Image sequence of rotational motion. From
the left, images at frames 10, 30, 50 and 80.

the result of the estimation of rotational motion.

-120
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-20

0

20

0 20 40 60 80 100 120 140

Figure 14: Result of the estimation of the rotational
motion.

4.2 Environmental map construction

We experimentally construct the environmental map
using Eq.18. Figure 15 show the result of the con-
struction of the environmental map using the image
sequence in Fig.10. In Fig.15, X and Y coincide with X
and Y axes of the world coordinate system. Further-
more, gray, black and white areas are the estimated
planar area, obstacles and areas out of sight. The line
represents the path of the mobile robot estimated us-
ing Eq.(17).
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Figure 15: Environmental map at frames 100, 200, 300
and 400. X and Y axes coincide with world coordinate
X and Y axes, respectively. Gray, black and white
areas are the estimated planar area, obstacles and area
out of sight. The line represents the estimated path of
the mobile robot.

5 Conclusion

We developed an algorithm for the construction of
an environmental map for mobile robot navigation.
The algorithm allows the locations of obstacles and
the robot to be detected using optical flow com-
puted from the image sequence observed through the
camera mounted on the mobile robot. Furthermore,
we showed that corresponding points on dominant
planes in a pair of successive images are combined by
affine transformation. Using this idea, if we compute
the affine coefficients which relate the corresponding
points in two successive images, we can easily obtain
a dense planar flow which expresses a camera motion.
This property of the points in a dominant plane allows
us to design an algorithm which enables the dominant
plane to be detected by simple pattern matching of the
flow vectors in a series of dominant planes. Further-
more, planar flow enables us to estimate the path of
camera displacement.

Although a model-based approach to dominant
plane detection has been proposed in [13], our method
is a non-model-based approach. In addition, our algo-
rithm allows the dominant plane to be detected with-
out camera calibration, since our algorithm uses opti-
cal flow which does not require the calibration of cam-

era systems and the affine approximation for the corre-
spondence between the same points in a pair of images.
Results of experiments using real and artificial image
sequences confirmed that the dominant plane can be
detected accurately. These experiments allow the ap-
plication of our method to the navigation and path
planning of a mobile robot with a vision system.
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