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あらまし 動画像中の物体の階層構造の推移に基づく時間分割法を提案する．また，その応用として心臓動画の
時間分割を示す．提案手法は動画像中の物体の定性的な構造変化を検出するため，物体の形状や動きを定量的に
評価することなく時間分割を実現している．本稿では，図流線，特異点と停留点の接続性，無限遠点といった新
しい概念を尺度空間解析に導入し，異なる尺度（または解像度）における画像の特徴点の階層的な相互関係を明
確に定義している．

Temporal Segmentation of Motion Image
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Abstract Objects in motion image change their structure. This article proposes a temporal segmentation
scheme based on the transitions of the hierarchical structure of frame images. A segmentation of heart motion is
shown as a potential application. The hierarchical structure is presented by the Gaussian scale-space, in which
tracks of image feature points across scale represent interrelationships between them. In order to clarify the
scale-space hierarchy, we introduce some novel concepts for consistency: figure field, connectivity of singular
points and stationary points of image intensity, including a local minimum point at infinity.

1 Introduction

The aim of this article is to develop a method to divde
a motion image into temporal segments by detecting
structural transitions of objects in the image. We ap-
ply the scale-space analysis [1, 2, 3, 4, 5], which treats
the images at all levels of resolution, simultaneously.
Generally, the resolution of the image governs stabil-
ity, accuracy and cost of quantitative estimations such
as edge extractions or motion detections of the objects.
Therefore, we require a priori knowledge of necessary
and sufficient resolution to employ the quantitative es-
timations. That is, the scale selection problem is in-
evitable.

The scale-space analysis allows us to avoid the quan-
titative estimations in the temporal segmentation. We
can instead obtain qualitative description of image
structure, i.e. the scale-space hierarchy. Firstly, we
introduce the scale-space theory and define the scale-
space tree, which describes the hierarchical structure
of image at fixed time. Secondly, we define the tem-
poral tree as a sequence of scale-space trees for the
motion image. We demonstrate the temporal segmen-
tation of beating heart wothout any a priori knowl-
edge.

2 Gaussian Scale Space

2.1 Principle

Consider transformation of a given greyscale image
f(x) into low-resolution images without creating spu-
rious structures. The transformation is supposed to
satisfy some fundamental principles: positivity pre-
serving, linearity, translation invariance, scale and ro-
tation invariance, and semigroup (associative) prop-
erty. Such transformation is known as the isotropic
Gaussian convolution [1, 6]. The Gaussian convoli-
tion yields a one parameter family of blurred images
f(x, τ). The parameter τ > 0 represents the scale,
which is related to the width of the Gaussian kernel
function. The function f(x, τ), the Gaussian scale-
space image, is the solution to the linear diffusion
equation,

∂

∂τ
f(x, τ) = ∆f(x, τ), τ > 0, f(x, 0) = f(x). (1)

Since the original image is simplified with continuously
increasing the scale, we can hierarchically classify im-
age features across scale.
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2.2 Stationary Curve

A remarkable feature of the image is a set of stationary
points of f(x, τ). The stationary points and stationary
curves are defined as follows [4].

Definition 1. Stationary points are defined as the
points where the gradient vanishes, that is,

{x|∇f(x, τ) = 0}. (2)

Definition 2. Stationary curves are the trajectories
of stationary points x(τ) in the scale space.

The stationary points of N -dimensional (N > 1)
scale-space images are classified into three types; local
maximum points, local minimum points and saddle
points. At the regular points where the determinant
of the Hessian matrix of f(x, τ) is non-zero, the types
of stationary point can be descriminated by the sec-
ond derivative of f(x, τ), that is, the second derivative
test. Since the directional derivative of f(x, τ) in the
direction of a unit vector n is calculated as

df

dn
= n�∇f, (3)

the second directional derivative of f(x, τ) can be writ-
ten in the quadratic form,

d2f

dn2
= n�∇(n�∇f) = n�Hn, a (4)

where H is the Hessian matrix of f(x, τ). Equation
(4) implies that the maximum and minimum values
of the second directional derivative d2f/dn2 are the
maximum and minimum eigenvalues λmax and λmin of
H, respectively.

λmin ≤ d2f

dn2
≤ λmax. (5)

The eigenvalues of H and corresponding eigenvectors
are called the principal curvatures and the principal
directions, respectively. The principal curvatures are
obtained by the second directional derivation in the
principal directions. The function f(x, τ) is said to be
convex if the second directional derivative d2f/dn2 is
positive for any direction of n. Analogously, f(x, τ)
is concave for negative d2/dn2. The local maximum
(minimum) points are the stationary points at the con-
cave (convex) points. That is, λmin > 0 at the min-
imum points and λmax < 0 at the maximum points.
The other stationary points are classified as the sad-
dle points.

We denote the types of stationary points by com-
binations of the signs of the eigenvalues. In case
of two-dimensional images, labels (−,−), (+,−) and
(+, +) correspond to the local maximum points, saddle
points, and local minimum points, respectively. Note
that the stationary curves are also classified as local

maximum curves, saddle curves, and local minimum
curves according to the second directional derivation
in the same fashion.

Since the scale-space image f(x, τ) is a superposi-
tion of the Gaussian function, the local maximum and
minium points are representatives of dominant parts of
bright objects and cavities in the image, respectively.
The saddle points appear on ridge-like and trough-like
structures in two-dimensional images. According to
the sign of the Laplacian ∆f(x, τ), we can distinguish
the saddle points as the ridge-like (∆f < 0), trough-
like (∆f > 0), and balanced saddle (∆f = 0) [7]. The
balanced-saddle is also known as scale-space saddle [8].

Generally, the sign of the Laplacian depends on the
sum of eigenvalues of H:

∆f = trH = tr(V ΛV �) =
∑

i

λi, (6)

where V is the square matrix whose column vectors
are eigenvectors of H, and Λ is the diagonal matrix
of eigenvalues λi. Since the sum of the eigenvalues is
negative (positive) at the local maximum (minimum)
points, the image intensities on the local maximum
(minimum) curves decrease (increase) with increasing
scale. By the same token, the image intensities on the
saddle curves composed of the ridge-like (trough-like)
saddle points decrease (increase) with increasing scale.

The endpoints of the stationary curves are the sin-
gular points where detH = Πiλi = 0, that is, at
least one of the eigenvalues is zero. This property im-
plies that the local maximum/minimum curves and
saddle curves share the singular points as their end-
points. The maximum (minimum) curves and ridge-
like (trough-like) saddle curves can share the singular
points with negative (positive) Laplacian.

2.3 Figure Field

We focus on the gradient field of the Gaussian scale-
space image. The basic idea of the figure field and the
following definitions were provided by Zhao and Iijima
[5].

Definition 3. Figure field F is defined as the negative
of the gradient vector field of the scale-space image,
that is,

F = −∇f(x, τ). (7)

Definition 4. Figure flow curve is the directional flux
curve of figure field.

The following differential notation is directly ob-
tained from Eq. (1) and (7):

∂f

∂τ
+ ∇�F = 0. (8)

Equation (8) is exactly the conservation law of image
intensity. Therefore, the figure field F is considered as
the current density flow of image intensity.
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The local maxima and local minima are start-points
and end-points of the figure flow curves. It is trivial
that F = −∇f �= 0 at any point x in the vicinity
of an extrema, and we can draw a figure flow curve
which passes through the point x in the direction of
F unless x is not the extrema itself. In the sense of
the current density flow of image intensity, the local
maxima, local minima and saddle points are sources,
drains and confluences of the flow, respectively.

The saddle points are confluent points of two in-
ward and two outward figure flow curves, which are
called separatrices. The net field flux from a ridge-like
(trough-like) saddle point is positive (negative). The
balanced saddle points are divergenceless points since
∇�F = −∇�∇f = ∆f = 0. This implies that the
balanced saddle points are confluent points where in-
ward and outward figure flow are balanced and totally
cancelled out.

3 Hierarchy

3.1 Concept

As the scale parameter increases, the image is sim-
plified and the features of the image are reduced.
The number of stationary points in the diffused image
f(x, τ) decreases when the different types of station-
ary points meet and annihilated at a singular point,
and only one maximum point remains at the coarsest
scale. The saddle points are always involved in the an-
nihilations and creations of the stationary points [7, 8].

This behaviour of stationary points is described as
the stationary curves in the scale space. The different
types of stationary curves share the singular point as
their endpoint. Some singular points are connected
by the stationary curves to the other singular point in
higher scale. Therefore, the stationary curves imply
the hierarchical relationship between singular points
across scale.

In order to express this implicit hierarchy as a tree,
we regard the singular points as nodes of the tree.
The leaves of the tree are the stationary points at the
finest scale. The branches represent the connections
by the stationary curves. However, the singular point
at which the stationary points are annihilated does
not always have the connection to the singular point
in higher scale. Therefore, it is essential to find non-
singular stationary points as the additional nodes of
tree to which the annihilation points are connected.
In this section, we firstly show that such nonsingu-
lar stationary points can be determined by tracing a
unique figure flow curve from each singular point. Sec-
ondly, we introduce a local minimum point at infinity
in order to define consistently the scale-space hierar-
chy. Finally, we propose the scale-space tree which
explicitly desctibe the hierarchy. We briefly deal with

two-dimensional images to simplify the discussion.

3.2 Zero Principal Curvature Direc-
tion

Zhao and Iijima [4] showed that the stationary curves
are the solutions of the system of linear equations:

H
dx(τ)

dτ
= −∇∆f(x(τ), τ). (9)

Equation (9) gives the velocity of the stationary points
x(τ) in the space with respect to the scale. Transform-
ing the coordinates into the principal axis coordinates
of H , we obtain from Eq. (9)

dp(τ)
dτ

= −Λ−1∇p∆f, (10)

where p(τ) = V �x(τ), and ∇p is the gradient opera-
tor in the principal axis coordinates.

Equation (10) shows that the third derivatives are
weighted by the reciprocal eigenvalues. Recall that
we have the zero eigenvalue of H at the singular
point. This indicates that the velocity component cor-
responding to the zero principal curvature becomes in-
finite at the singular point. In other words, the veloc-
ity of the stationary points is infinite in the direction
of the zero principal curvature.

We observe the zero principal curvature directions
at the annihilation points. Figure 1 illustrates the an-
nihilation of local maximum and saddle. The annihila-
tion point P is called a shoe point beacuse of the shape
of the surface [7, 9]. The shoe point has outward fig-
ure flow curves, but only one figure flow curve reaches
the shoe point along the “instep” of the shoe. Here we
call it “anti-directional figure flow curve”. The anti-
directional figure flow curve connects another maxi-
mum point Q to the shoe point P. Therefore, we con-
sider the point Q as the parent node of the annihilation
point P.

It has been shown that generic annihilation evens
are desctibed as Fold catastrophes [10, 11, 12]. The
Fold catastrophe in the principal axis coordinates is
modelled as

f(p1, p2, τ) = p3
1 + 6p1τ + γ(p2

2 + 2τ), (11)

where γ = ±1. This model of scale-space image
f(p1, p2, τ) has a local maximum point and a saddle
point if τ < 0 and γ = −1. These two stationary
points meet at the origin at τ = 0. A family of figure
flow curves p2 = C(p1) are derived from the differen-
tial equation,

dp2

dp1
= −∂f/∂y

∂f/∂x
. (12)

Figure 2 plots the figure flow curves before, after, and
at the annihilation event of the local maximum point
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P

Q

Figure 1: Figure flow around the shoe point. An anti-
directional figure flow (solid line) penetrates into the
shoe point P, which leads to a maximum point Q as
the source of the flow.

P

Figure 3: Figure flow around an annihilation point P
of a local minimum point and a saddle point. In this
example, the anti-directional figure flow (solid curve)
from P does not have a drain in the region.

M and the saddle point S. We clearly see that the anti-
directional figure flow curve coincides with the zero
principal curvature direction, that is, p1-axis.

However, we cannot always identify the stationary
point as the parent of annihilation point in the finite
domain of image. Figure 3 shows such a case of the
annihilation event. The annihilation point P in Fig.
3 has inward figure flow curves, but only one outward
figure flow curve is found as the anti-directional figure
flow curve. The outward figure flow curve reaches the
end of the region of image. This example suggests that
the annihilation point like this case is linked to a drain
of whole image intensity.

3.3 Stationary Point at Infinity

We conclude that the annihilation point of the local
minimum in Fig. 3 is connected to a point at infinity.
If the image function f(x, τ) is defined in the infinite
domain, all of the outward figure flow curves from the
whole region of the image are considered to converge at
the point at infinity. Since the image function f(x, τ)
is positive, the point at infinity is a drain, that is,
the local minimum point. This local minimum point
at infinity is representative of the dark background
of the positive image. The local minimum point at
infinity resides throughout the scale. We define the
collection of local minimum points at infinity as the
local minimum curve at infinity.

Furthermore, we presume that the local minimum
point at infinity is annihilated with one remaining
maximum point at infinite scale. This concept allows
us to connect the remaining maximum curve to the
local minimum curve at infinity. Consequently, the
annihilation point is connected to the remaining max-
imum curve through the figure flow curve and the local
minimum curve at infinity.

3.4 Scale-Space Tree

The hierarchical structure of image is described by a
tree. The root of the tree is a virtual annihilation
point of the local minimum point at infinity and re-
maining maximum point at infinite scale. The nodes
of the tree are singular points. Stationary points which
are connected to the annihilation points by the figure
flow curves are also selected as the nodes of the tree.
Some nodes may be the points at infinity. The leaves
of the tree are the stationary points at the finest scale
including the local minimum at infinity. The branches
indicate the connections between the nodes by the sta-
tionary curves in the scale space and the figure flow
curves. Thus, the figure field and stationary curves
define the scale-space hierarchy.

4 Temporal Segmentation

4.1 Temporal Tree

The scale-space tree, which we define in the previous
section, describes the hierarchical structure of the im-
age. Suppose the image varies in time t, i.e. the mo-
tion image f(x, t). The hierarchical structure of the
image can be expressed as the scale-space tree at any
monent. If the image changes the structure with re-
spect to time, we can detect the topological change of
the scale-space tree. Thus, the motion image is divided
into temporal segments by the variation of scale-space
hierarchy.

We denote the algorithm for the construction of
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Figure 2: Surface plot of f(p1, p2) and corresponding figure flow curves (a) before, (b) at, and (c) after the Fold
catastrophe event.

scale-space tree T (t) of the motion image by

Θ(f(x, t)) = T (t). (13)

We call T (t) the temporal tree. In case that the motion
image is given by a sequence of frame images f(x, ti),
The algorithm yields successive trees T (ti). If a pair
of the successive trees T (ti) (ia ≤ i ≤ ib) are topolog-
ically equivalent, we represent the identical trees by
T (ia-ib).

4.2 Approximated Tree Distance

For quantitative analysis of time-varying image with
the temporal trees, we introduce a distance between
the trees based on editing operations of the tree struc-
ture. Since it is possible to transform irregular trees
to regular trees by adding dummy nodes “∗” to the ir-
regular trees, our temporal trees can be assumed to be
regular. Kawashima et al. have developed a method
for a fast computation of the distance between regular
rooted trees [13], which is applicable to the temporal
trees.

Setting α to be a k-digit number whose each digit
is from 0 to k − 1, the subtree of a node nα in the
m-regular tree is expressed as

nα(T ) = tα[Tα1, Tα2, · · · , Tαm], (14)

where tα is the label of the subtree rooted at the node
nα, and Tαi (i = 1, · · · , m) is the subtree whose sub-

root is a child node of the node nα. Equation (14)
expresses the whole tree for α = 0, and n0 is the label
of the root. Therefore, k is identical to the depth of
the subtree.

The operations applied to the tree are replacement
of a node label, permutation of subtrees, insertion of
a subtree to “∗” and elimination of a subtree. These
operations are respectively denoted by

Er : tα[Tα1, · · · , Tαm]
→ xα[Tα1, · · · , Tαm], (15)
Ep : tα[Tα1, · · · , Tαi, · · · , Tαj , · · · , Tαm]
→ tα[Tα1, · · · , Tαj , · · · , Tαi, · · · , Tαm], (16)
Ei(S) : tα[Tα1, · · · , ∗, · · · , Tαm]
→ tα[Tα1, · · · , S, · · · , Tαm], (17)
Ee(Tαk) : tα[Tα1, · · · , Tαk, · · · , Tαm]
→ tα[Tα1, · · · , ∗, · · · , Tαm]. (18)

For these operations, the lengths of operations are
defined as:

d(sα) =
1

1 + lα
|sα|. (19)

Here,

lα =
{

0, if α = 0,
the number of digits of α, otherwise,

(20)
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and

|sα| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if sα is nonoperation,
1, if sα is the replacement Er,
|P |, if sα is the permutation Ep,
|S|, if sα is the insertion Ei,
|S|, if sα is the elimination Ee,

(21)

where |P | is the number of the permutations. The
distance between trees T and T ′ is defined as the sum
of lengths:

D(T, T ′) =
n∑

α=1

d(sα) (22)

for the sequence of operations {s1, s2, · · · , sn} which
transforms T to T ′. This tree distance satisfies the
following lemma.

Lemma 1. The distance in eq. (22) is metric for
trees with almost same order, that is, it satisfies the
conditions of distance.

Proof. It is obvious that D(T, T ) = 0 and that
D(T, T ′) = D(T ′, T ). Setting

{s1, s2, · · · , sn}, {t1, t2, · · · , tn}, {u1, u2, · · · , un}
(23)

to be sequences of transformation from T to T ′, from
T ′ to T ′′ and from T ′′ to T for a triplet of almost same
size trees, we obtain the relation

|sk| + |tk| ≥ |uk|. (24)

This derives the relation

D(T, T ′) + D(T ′, T ′′) ≥ D(T, T ′′).

5 Application

We apply the temporal segmentation to a sequence of
beating heart images [15]. Figure 1 shows the 1st, 6th,
7th, 8th, 11th, 12th, 32nd, 33rd and the 38th frame
from 38 frames of the sequence.

Figure 2 shows the stationary curves of these frames
of the beating heart. The temporal tree analysis de-
tects topological difference between the 6th and 7th,
7th and 8th, 11th and 12th, 12th and 13th, 31st and
32nd and between the 32nd and 33rd frames. No
topological transition is found between the other two
successive images. Thus the image sequence of beat-
ing heart is segmented into seven groups of frames:
the 1st to 6th frames, the 7th frame, the 8th to 11th
frames, the 12th frame, the 13th to 31st frames, the
32nd frame and the 33rd to 38th frame. Corresponding
temporal trees are shown in Figure 3. The distances
among trees with topological difference are

D(T (6), T (7)) = 1.5, D(T (7), T (8)) = 3,
D(T (11), T (12)) = 3, D(T (12), T (13)) = 1.5,
D(T (31), T (32)) = 1.5, D(T (32), T (33)) = 1.5.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4: Sequence of beating heart. The images from
(a) to (i) are the 1st, 6th, 7th, 8th, 11th, 12th, 32nd,
33rd and the 38th frame from 38 frames, respectively.
The topology of the temporal tree changes before and
after these images.
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Figure 5: Sequence of stationary curves of beating
heart, corresponding to the images in Figure 1. The
scale axis is in log scale.
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Figure 6: Temporal trees of the sequence of beating
heart. (a) Tree of from the 1st to 6th. (b) Tree of the
7th. (c) Tree of from the 8th to 11th. (d) Tree of the
12th. (e) Tree of from the 13th to 31st. (f) Tree of
32nd. (g) Tree of from the 33rd to 38th. These trees
symbolize the hierarchical structures of the images.

7

研究会temp
テキストボックス
－143－



The temporal scale space analysis achieves the detec-
tion of topological changes of beating heart. The result
indicates that our temporal scale-space analysis based
on tree construction in the scale space is feasible to
the sequential analysis of low-contrast medical images
as this example.

6 Conclusions

Firstly, we developed a method to construct the scale-
space tree which qualitatively describes the hierarchi-
cal structure of a greyscale image. The scale-space
tree has two types of nodes: singular points and addi-
tional local extrema. The local extrema selected as the
nodes are linked to the annihilation points by the fig-
ure flow curves, of which directions coincide with the
zero principal curvature directions at the annihilation
points.

Secondly, the temporal segmentation of the motion
image is achieved by detecting the topological changes
of the temporal tree. We applied the temporal seg-
mentation to the motion image of beating heart. The
sequence of images is segmented into groups based on
the structures of frame images. Our temporal segmen-
tation scheme is non-heuristic, non-model-based, and
is performed without any quantitative estimation such
as edge extraction, motion detection, etc.
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