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Abstract

We propose a strategy for the detection of dominant motion in the scene. The dominant motion

is the motion of pixels on the dominant plane, which occupies more than 50% in the scene. Therefore, the
dominant motion is not affected by the aperture problem which is a critical problem in optical-flow-based
motion detection from sequence of images. We apply dominant motion of scene to the ego-motion estimation

of autonomous robot.

1 Introduction

In this work, we aim to develop an algorithm for robot
motion planning using the dominant plane. The domi-
nant plane is the planar area which occupies the largest
domain in the image observed by a camera. Assuming
that the robot moves on the dominant plane (for exam-
ples, floors and ground areas), the use of the dominant
plane is an appropriate method for the autonomous
navigation and the path planning of the mobile robot.

The autonomous navigation of mobile robots desires
a simple mechanism and light devices, since mobile
robots are restricted their payload (for examples, a
power supply, a capacity of input devices and a com-
puting power). Vision sensors mounted on a mobile
robot can obtain an image sequence from the camera
motion. The image sequence provides the motion and
structure from correspondences of points on successive
images [1]. Additionally, vision sensors are fundamen-
tal devices for the understanding of the environment,
since the robot collaborates with a human being. Fur-
thermore, visual information is valid for the path plan-
ning of the mobile robot in a long sequence, because

the vision system can capture environmental informa-
tion quickly for a large area compared to present sonar-
and laser-based systems.

There are many methods for the detection of ob-
stacles or planar areas using vision systems [2][3][4].
For example, the edge detection of omni and monoc-
ular camera systems [5] and the observation of land-
marks [6] are the classical ones. However, since these
methods are dependent on the environment around a
robot, these methods are difficult to apply in general
environments. If a robot captures an image sequence
of moving objects, the optical flow [7] [8] [9], which
is the motion of the scene, is obtained for the funda-
mental features in order to construct environment in-
formation around the mobile robot. Additionally, the
optical flow is considered as fundamental information
for the obstacle detection in the context of biological
data processing [10]. Therefore, the use of optical flow
is an appropriate method from the viewpoint of the
affinity for the collaboration between the robot and
human being.

Haag and Nagel[11] extracted moving cars from a
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sequence of images observed by a fixed camera us-
ing optical flow and the model fitting technique. Fur-
thermore, they applied the same methodology to hu-
man motion tracking [12]. We develop the detection
of static obstacles from an image sequence observed
from a mobile robot. This problem is the dual prob-
lem to the detection of moving objects from an image
sequence observed from a static camera, since the mo-
tion of objects and the camera have geometrically dual
properties. We address the problem of detecting ob-
stacles and the dominant plane using optical flow from
an image sequence observed by a moving robot for the
purpose of navigation.

The obstacle detection using optical flow is pro-
posed in [13] [14]. Enkelmann [13] proposed an
obstacle-detection method using the model vectors
from motion parameters. Santos-Victor and Sandini
[14] also proposed an obstacle-detection algorithm for
a mobile robot using the inverse projection of optical
flow to ground floor, assuming that the motion of the
camera system mounted on a robot is pure translation
with a uniform velocity. However, even if a camera
is mounted on a wheel-driven robot, the vision system
does not move with uniform velocity due to mechanical
errors of the robot and unevenness of the floor.

Optical-flow-based motion segmentation has long
history in computer vision [4]. Most fundamental seg-
mentation is extraction of moving objects, since on
the pixels of the moving objects and the background,
flow vectors are not zero and zero, respectively. This
method also allows us to separate object, whose depths
from a camera are finite, from a scene, whose depth
from a camera is infinite. Furthermore, optical flow in
an image sequence observed from moving camera, for
example a camera mounted on a mobile robot is used
for the detection of obstacles in front of camera. In
this paper, we extend these ideas on the segmentation
of image sequence using optical flow to the detection
of dominant plane in an image sequence. For the de-
tection of dominant plane, we are not required to deal
with the aperture problem for the optical flow on the
boundary of moving object, as shown in Fig.1, since
the dominant plane occupies the largest region in an
image and the optical flow vector on the dominant
plane can be computed stable.

2 Preliminary

2.1 Estimation of the optical flow

We detect dominant plane using optical flow, that is,
for

dt’dt
u is constant at each pixels in a windowed region.
Therefore, our optical flow vectors is the solution

:
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Figure 1: Normal flow has a aperture problem. Global
flow dose not apply when many objects exist. Smooth
flow dose not preserve motion discontinuities. Our pla-
nar flow on a dominant plane has no such problem
since the dominant plane occupies the largest domain
in the image observed by a moving camera.

which minimise the condition
)= [ [ e @ Vit + e @)
Q(x)

where Q(x) is the finite windowed area continued at
x, and w is the weight function. For the details of the
derivation of the optical flow using the Lucas-Kanade
method with pyramids, see Appendix A.

2.2 Definition of the dominant plane

As stated in Section 1, the dominant plane has the
following properties

1. The plane occupies the largest domain in the im-
age.

2. The distance from a camera to the plane is finite
in a space.

The examples of a application of the definition of
(1) and (2) are shown in Fig. 2 and Fig. 3, respec-
tively. In Fig. 2, a obstacle is placed in front of a
camera on the right and the camera moves toward a
obstacle. Therefore, the top-right area of the image is
not detected as the dominant plane.

In Fig. 3, the front of the camera is edge of the dom-
inant plane. and the camera moves forward. There-
fore, the top area of the image is not detected as the
dominant plane.

Furthermore, our geometric assumptions are that
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Figure 2: left: Camera moves toward a obstacle. right:
Dominant plane of the captured image. The white area
is the dominant plane. Since the obstacle is placed
in front of the camera on the right, this area is not
dominant plane.

5

Camera

Dominant Plane

Figure 3: left: Camera moves on the edge of the dom-
inant plane. right: Dominant plane of the captured
image. Since the depth of the top area of the image is
infinite, this area is not dominant plane.

1. Images are observed from a camera mounted on a
mobile robot moving on a plane perpendicular to
the axes of the gravity.

2. So, the plane in an image is horizontal.

3. The dominant plane is a finite plane in an envi-
ronment on which a robot moves.

4. The dominant plane is a region more than 50% in
an image in a sequence of images.

These definitions and the assumptions enable the
robot to navigate autonomously in a environment with
obstacles.

2.3 Approximation of the dominant
plane motion by affine transforma-
tion

In this section, we show that the corresponding points
in a pair of successive images which are a projection
of the dominant plane in a space are connected by an
affine transformation. Therefore, the corresponding
points (u,v) and (u/,v’) on the dominant plane are
expressed by

()= ) (D) (5) o

if the camera displacement is small. That means, a
homography between the two images of a planar sur-
face is approximated by an affine transformation if the
camera displacement is small.

Setting H to be the 3 x 3 matrix [15], the homog-
raphy between the two images of a planar surface is
expressed as

p=Hp', (4)

where p = (u,v,1)7 and p’ = (v/,0’,1)" are the cor-
responding points of two images. The matrix H is
expressed as

H=K[R+tn")K™, (5)

where K, R, t, and n are the projection matrix, the
rotation matrix, the translation vector, and the plane
normal of the planar surface, respectively. The matri-
ces K and K~ are affine transformations since those
matrices are the projection matrix of the pinhole cam-
era. Assuming that the camera displacement is small,
the matrix R and the matrix tn' are approximated
by an affine transformation. These geometrical and
mathematical assumptions are valid when the camera
mounted on the robot moves on the dominant plane.
For the details of the derivation of the homography
using our coordinate system, see Appendix B. These
assumptions allow us to describe the relationship be-
tween (u',v') and (u,v) as the affine transformation.
Therefore, setting a,b,c,d,e,f to be affine coefficients,
Eq.(4) is expressed as Eq.(3). In the next section, we
develop an algorithm for the estimation of these six
parameters from a sequence of images.

2.4 Planar flow estimation

Using a pair of successive images from a sequence of
images obtained from the camera during robot mo-
tion, we compute the optical flow field (u,?). Since
optical flow is the correspondence of dense points be-
tween an image pair, Eq.(3) can be applied to each
point on the dominant plane. Let (u,v) and (u',v") be
the points of the corresponding image coordinates in
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Figure 4: Optical flow generated by affine transfor-
mation. Optical flow (@, ?) on the dominant plane is
described as an affine transformation.

the two successive images. Point (u/,v") can be calcu-
lated by adding the flow vector (4, ¥) to (u,v), if (u,v)
and (u/,v’) are a pair of corresponding points. Thus,
by setting (i, ?) to be the optical flow at point (u,v)
in the image coordinate system, as shown in Figure 4,
we have the relation

/ .
(v)-()+() o

If we obtain (u,v) and (u/,v"), we can compute the
affine coefficients in Eq.(3). If three points are non-
collinear, Eq.(3) has a unique solution. Since the dom-
inant plane occupies the largest domain in the image,
we select three points randomly to compute the affine
coefficients in the successive pair of images. After we
compute the affine coefficients, using Eq.(3) again, we
can compute the motion of the image sequence of the
dominant plane, that is, the collection of correspond-

ing points
(5)-()-(0) o

in the image sequence can be regarded as motion flow
of the dominant plane on the basis of camera displace-
ment as shown in Figure 5. We call this flow planar
flow (4, 0). This planar flow is used as temporal-model
for dominant plane detection.

[T ~$Y

2.5 Dominant plane detection

Next, we compute the dominant plane area using the
estimated planar flow and the computed optical flow.
Setting ¢ to be the tolerance of the difference between
the optical flow vector and the planar flow vector, if

U U
()= (i )= ®
Ut Ut
is satisfied, we accept point (us,v;) as a point in the
dominant plane.

a
* N , 3
(UV)=(u'-uv’-v)
o
®a  Second coordinate system

o First coordinate systemU

Figure 5: Optical flow computed from corresponding
points in two successive images. Optical flow is de-
scribed as the correspondence of the same points in
the two successive images. Therefore, point (u/,v’) is
(u+ 4, v+ v) and planar flow (@, 9) is (u' — u, v’ — v).

In the case that at least one point on the obsta-
cle area in the image is selected, the estimated planar
flow is no longer the dominant plane motion. There-
fore, the detected dominant plane area is very small.
Since the dominant plane occupies the largest domain
in the image, in such cases, it becomes evident that the
selection of points is incorrect. In those cases, we con-
sequently select another three points randomly. Figure
6 shows examples of each case.
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Incorrect case.

Figure 6: Examples of random sampling. Bottom-left
is incorrect case, since the point is selected on the ob-
stacle area. Select another points randomly. Bottom-
right is correct case. This planar flow is equal to opti-
cal flow in 50% or more of area.

For the estimation of the affine parameters of the
affine transformation. We are required to detect at
least pair of three points in the regions which are
corresponded by the affine transform. Therefore, if
we select a correct pair of three points, we can com-
pute correct affine parameters. However, if we select
miss matched pairs, we can not compute the correct
affine parameters. This geometrical property derives
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Figure 7: For the first frame, our algorithm uses a
pair of images for the detection of the dominant plane.
For subsequence frames, the dominant plane in the
previous frame is used for the application of the least-
squares method.

a voting-based algorithm [16][17] for the computation
of the affine parameters.

Once we have detected the dominant plane in a cer-
tain frame of the image sequence, the planar flow of
subsequent images can be estimated robustly using the
least-squares method, because dense optical flows are
used for the estimation of affine coefficients. Assum-
ing that the robot displacement is small, the domi-
nant plane of the successive images changes negligi-
bly. Therefore, using the optical flow on the estimated
dominant plane in the previous image, we estimate
the affine coefficients using the least-squares method,
as shown in Figure 7. Setting (u;,v;) and (ul,v])
(0 < ¢ < n) to be corresponding points, the mean-
squared errors F, and F, associated with Eq.(3) are

E, = Z{u; — (au; + bv; +¢)}?, 9)

By = {v} = (du + ev; + )}, (10)

=1

where n is the number of points used for estimation.
Therefore, we can compute affine coefficients which
minimize errors F,, and F,. This algorithm generates
planar flow as temporal-model at subsequent frames

2.6 Procedure for dominant plane de-
tection

Our algorithm is summarized as follows.

Image Sequence

Affine Coeffecients

Planar Flow(0,V)

FAY
‘ Pattern Matching by |U-’C1| <g|v-v|<e

Ratio of detection > 50 %
yes

Optical Flow(u,v)

Figure 8: Procedure for dominant plane detection. (1)
Compute optical flow (i, ?) from two successive im-
ages. (2) Compute affine coefficients in Eq.(3) by ran-
dom selection of three points. (3) Estimate planar flow
(i, 0) from affine coefficients. (4) Match the computed
optical flow (4%, ) and estimated planar flow (@, 0) us-
ing Eq.(8). (5) Detect the dominant plane. If the
dominant plane occupies less than half of the image
area, then return to step(2).

1. Compute optical flow (@,?) from two successive
images.

2. Compute affine coefficients in Eq.(3) by random
selection of three points.

3. Estimate planar flow (&, ©) from affine coefficients.

4. Match the computed optical flow (@, v) and esti-
mated planar flow (@, 9) using Eq.(8).

5. Detect the dominant plane. If the dominant plane
occupies less than half of the image area, then
return to step(2).

Figure 8 shows the procedure of dominant plane
detection from the image sequence.

2.7 Navigation using the dominant

plane

We describe an algorithm for navigation of a mobile
robot using the dominant plane. The percentages of
the dominant plane in the image determine for the
robot a strategy of a robot motion. If the percentage
of the dominant plane in the image is greater than 80%
and the dominant plane of the left side of the image
is greater than that of right side, the robot moves for-
ward. If the percentage of the dominant plane in the
image is less than 80% and the dominant plane of the
left side of the image is greater than that of right side,
the robot rotates counterclockwise to avoid collision of
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Percentage of the dominat plane > 80 ‘

Yes No
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[ leftside>rightside |

Yes No
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| N

Move forward Rotate Rotate
counterclockwise clockwise
Figure 9: Strategy of a mobile robot. Left: Robot

moves forward. Middle: Robot rotates counterclock-
wise. Right: Robot rotates clockwise.

obstacles. If the percentage of the dominant plane in
the image is less than 80% and the dominant plane of
the right side of the image is greater than that of left
side, the robot rotates clockwise. These algorithm are
summarized in Figure 9.

3 Experiment

3.1 Dominant plane detection

We experiment for the dominant plane detection from
optical flow. The camera moves forward to the edge of
the table and captures the image sequence, as shown in
the first row of Fig. 10. The obstacle is on the right of
the table. For the computation of optical flow, we use
the Lucas-Kanade method with pyramids [18]. The
result of the experiment shows Fig. 10. In Fig. 10,
the right column shows the detected dominant plane.
The white and black areas are shown the dominant
plane and the obstacle area, respectively. The depths
of pixels in background are infinite. Therefore, it is
impossible to detect flow vectors on these pixels. Our
algorithm detects optical flow vectors for pixels where
depths are finite. The result shows that the dominant
plane can be detected accuracy as the definition of the
dominant plane in Section 2.2.

3.2 Moving obstacles detection

Next, we experiment for the detection of moving ob-
stacles. The robot moves forward, and captures the
image sequence. The obstacle is in front of the robot,

Figure 10: The first, second, third, and forth rows
show the original image, the optical flow, planar flow,
and the dominant plane, respectively. The left and
right columns show the first and second image of the
sequence, respectively.

and moves to left, right, back, and front of the robot.
Figures 11, 13, 15 and 17 show the experiment result
in each case. These results show that the algorithm
detects moving objects in the environment around a
robot.

3.3 Navigation of the mobile robot

Figure 18 shows the image sequence and the domi-
nant plane observed form the robot. In these sequence,
there is a reflective rail in the center of images. In a
middle sequences, robot detects obstacles in the cen-
tral region of images. However, since these parts are
small, the robot moves forward considering these re-
gion as noise.

4 Conclusion

We developed an algorithm for planning of the robot
motion using the dominant plane, which detected from
a sequence of images observed through a moving un-
calibrated camera. Since our algorithm uses simple
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Figure 11:

Figure 12: The obstacle moves left. The first, second,
and third columns show the original image, the opti-
cal flow, and the dominant plane, respectively. The
sequences are ordered in time from the top row.

il

Figure 13:

Figure 14: The obstacle moves right. The first, second,
and third columns show the original image, the opti-
cal flow, and the dominant plane, respectively. The
sequences are ordered in time from the top row.

Figure 15:

Figure 16: The obstacle moves front. The first, second,
and third columns show the original image, the opti-
cal flow, and the dominant plane, respectively. The
sequences are ordered in time from the top row.

Figure 17: The obstacle moves back. The first, second,
and third columns show the original image, the opti-
cal flow, and the dominant plane, respectively. The
sequences are ordered in time from the top row.

0 1350


研究会temp
テキストボックス
－135－


Figure 18: Left and right columns show the image
sequence and the dominant plane, respectively

method and input devise, a robot dose not demand a
large payload.
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