幾何学的整合性に基づくレンジデータとカラー画像の位置合わせ

椛島佑樹 原 健二 倉爪 亮 岩下友美 長谷川勉 九州大学

レーザスキャナ等により測定された実物体の3次元幾何モデルをより現実感高く表現するには,実物 体表面のテクスチャをカラーセンサにより撮影し,3次元幾何モデルに貼り付けて表示するテクスチャ マッピングが有効である.しかし通常,テクスチャマッピングを実現するには,レーザ,カラーセンサ間 の正確なキャリブレーションを必要とし,また,キャリブレーション後は両センサを常に固定しておく 必要がある.一方,屋内環境やビルなど多数の平面から構築される環境においては,複数の平面が交差 してできる直線的な幾何エッジを利用し,それとカラー画像上の濃淡エッジの位置を一致させることで, 両センサの相対位置を推定する方法が考えられる.しかし,レーザスキャナから得られるレンジデータ はノイズを多く含むため,3次元幾何モデルから正確な幾何エッジの抽出は困難である.そこで本論文で は,レンジデータから幾何エッジを直接的に抽出し利用するのではなく,カラー画像から抽出された直 線エッジ群を3次元幾何モデルに投影し,その投影パッチ群に対して直線性,平行性,直交性などの幾 何学的整合性を数値化し,それを最大化することで正確なテクスチャマッピングを行う方法を提案する.

Mapping textures on 3D geometric model using geometrical constraints

Yuuki Kabashima Kenji Hara Ryo Kurazume Yumi Iwashita Tsutomu Hasegawa Kyushu University

Texture mapping, that is the method to map current color images on a 3D geometric model measured by a range sensor, is the key technique of the photometric modeling for the Virtual Reality. Usually range and color images are obtained from different viewing positions, through two independent range and color sensors. Thus, in order to map those color images, current textures, on the geometric model, it is necessary to determine relative relations between these two viewpoints. In this paper, we propose a new calibration method for the texture mapping using geometrical features such as linearity, parallelism, and perpendicularity.

1 はじめに

バーチャルリアリティ,シネマトグラフィーや都市計 画のような現実感高いモデルを必要とするアプリケー ションを効率よく作成するために,実物体の幾何,光学 特性を正確にモデル化し,この二つを使ってコンピュー タ内で再現する方法がある.その効率的作成法のひと つとして,レンジセンサ等により測定された実物体の3 次元幾何モデル上に,カラーセンサにより撮影された 実物体表面のテクスチャ画像を貼り付けて表示するテ クスチャマッピングの手法が知られている.

通常,正確なテクスチャマッピングを行うには,レ ンジセンサとカラーセンサ各視点間の相対位置関係を 正確に求める必要があるが,これには例えばキャリブ レーションボード等を用いて両者の相対位置関係を精 密にキャリブレーションする手法が考えられる.しか し,この方法は相対関係が求まった後,レンジセンサ とカラーセンサを同じ固定器具に常に固定する必要が あり,使いづらい.

一方,屋内環境やビルなどの多数の平面から構築される環境においては,複数の平面が交差してできる直線的な幾何エッジを利用し,それとカラー画像上の濃淡エッジの位置を一致させることで,両センサの相対位置を推定する方法が考えられる[1].しかし,レンジデータにおける幾何エッジの検出では,ノイズを多く含むレンジデータに対し,法線方向が不連続であるところを検出したり,各点の近傍で局所的に多項式を当てはめたりする必要があり,なかなか容易ではない[2,3].

本報告では、レンジデータから幾何エッジを直接的に 抽出し利用するのではなく、カラー画像から抽出され たエッジのみを間接的に利用することでテクスチャマッ ピングを正確に行う手法を提案する.一般に、カラー 画像におけるエッジは濃度値の不連続点であり、レンジ データにおける幾何エッジの場合よりも、安定かつ正 しくエッジ検出を行うことができる.他方、平面の集合 で構成される物体シーンを対象とするビジョンの問題、 特に形状復元の問題では、各々の平面や稜線に関する 幾何学的条件を利用するアプローチがしばしばとられ てきた [4, 5].

以上の点に着目し,本研究では,カラー画像から抽出 された直線エッジ群を3次元幾何モデルに投影し,そ の投影パッチ群に対して直線性,平行性,直交性など の幾何学的整合性を数値化し,それを最適化することで正確なテクスチャマッピングを行う方法を提案する.

従来の手法では,カラー画像とレンジデータの両方 で,正確なエッジ検出が要求されるのに対し,提案手 法ではレンジデータから幾何エッジを明示的に抽出す ることなく,テクスチャマッピングにおける位置合わせ を行うことが可能である.

本報告の構成は以下のとおりである.まず,2章では 関連手法を述べる.次に,3章で提案手法について説明 し,4章において実験結果を報告する.そして,最後に 結論を述べる.

2 関連手法

距離画像とカラー画像の位置合わせ法として,多く のレンジセンサにおいて距離画像の付加的な情報とし て得られるリフレクタンス画像(反射強度画像)を用 いる手法が提案されている. 倉爪ら [6][7] は, リフレク タンス画像中のエッジ点とカラー画像中のエッジ点間 の誤差を,ロバストM推定法を用いて最小化すること により位置合わせする手法を提案している. Elstromら [8] はリフレクタンス画像を用いたカラーセンサとレン ジセンサの相対位置の推定法を提案している。この手法 では,まずリフレクタンス画像とカラー画像からそれ ぞれ特徴点を抽出し,類似度計算によりそれらの対応 関係を決定する.次にステレオ視の原理によりそれら 対応点の奥行きを求め,それと距離画像から得られる 奥行きが一致するように両センサの相対位置姿勢を推 定する.さらに梅田ら [9] は,リフレクタンス画像と2 次元画像の勾配拘束を利用した,レンジセンサと画像 センサの相対位置の推定法を提案している.

一方,シルエット画像や輪郭線を用いた位置合わせ手 法も提案されている.Lenschら[10],[11],[12]が提案し たシルエット画像を用いた位置合わせ手法では,まず2 次元画像と3次元幾何モデルのそれぞれのシルエット 画像の排他的論理和をとることで類似度を評価する.次 にDownhill Simplex 法を利用し,2次元画像と3次元 幾何モデルの位置合わせ誤差を収束させている.また, 3次元幾何モデルの3次元距離場を予めoctree 形式で 構築し,2次元画像のシルエット輪郭線の視線方向への 延長線と3次元幾何モデル間の3次元距離を最小化す る手法が提案されている [13],[14] . Zuffi ら [15] は,人 工関節の位置姿勢を1枚のX線画像から推定する問題 に適用し,3次元距離誤差を Levenberg-Marquardt 法 により最小化する手法を提案した.医療用画像におけ る種々の位置合わせ手法については [16] に詳しい.

一方,2次元輪郭線を用いた位置合わせ手法では,2 次元画像内の輪郭線上の点と投影された3次元幾何モ デルのシルエット画像輪郭線の点との距離の和として 位置合わせ誤差を求め,繰り返し計算により誤差を最 小化する手法が一般に用いられる[17],[18],[19].岩下 らは,Level Set Method を利用して高速に求められる 2次元輪郭線の等距離場を利用し,位置合わせ誤差を高 速に計算する手法を提案している[20].

また,建物などの人工構造物に対しては,レンジデー タに平面をあてはめ,それらの交線エッジとカラー画 像のエッジを比較することによって位置合わせする手 法が多く提案されている [21],[22],[1].[22] では,まず カラー画像上の消失点と焦点を結んだ線とそれに対応 する3次元エッジが平行になるように姿勢を回転させ, おおまかな位置合わせを行う.次に,3次元エッジをカ ラー画像上に投影し,2次元エッジと比較し位置を決 定している.

3 提案手法

屋内環境や人工構造物は複数の平面で構成されてい ることが多く、その稜線の多くは平行関係または直交 関係にある.そこで本章では、複数の稜線の平行性や 稜線の直線性などの幾何学的整合性を利用して、3次元 幾何モデルと2次元カラー画像の位置合わせを行う手 法を提案する.

3.1 手法の概略

提案する手法の概略を以下に示す.ただし,3次元幾 何モデルと2次元カラー画像はそれぞれレーザスキャ ナとカラーセンサによって別々の視点から得られている とし,また,3次元幾何モデルは多数の微小な3角パッ チで記述されているとする.

1. 2次元カラー画像から Canny オペレータ等により エッジを抽出する.

- 1 組あるいは2 組のエッジ群を取り出し,オペレー タがそれらに対して後述する幾何学的条件を定義 する.
- 3.2を十分多数のエッジ群に対して行う.
- レーザスキャナとカラーセンサ間の相対位置姿勢 に適当な初期位置を与え、2、3で抽出された2次 元画像のエッジ群を3次元幾何モデルに投影する.
- 5. 投影された 3 次元幾何モデルの三角パッチを抽出 し,投影点の 3 次元座標を求める.
- 投影点の3次元座標に対して,2,3で定義した 幾何学的条件の満足度(幾何学的整合度)を計算 する.
- 7. 4~6を繰り返し,幾何学的整合度を最大化する 相対位置姿勢を共役勾配法または最急降下法によ り推定する.

以下それぞれの手順について詳細に示す.

3.2 幾何学的整合度

まずエッジに付与される幾何学的整合度について説 明する.提案手法では図1,図2,図3に示す以下の3 つの幾何学的条件を用い,レンジセンサとカラーセン サの相対位置関係を推定する.

- 直線度
- 平行度
- 直交度

図 1: 幾何学的整合度(直線度)

図 2: 幾何学的整合度(平行度)

図 3: 幾何学的整合度(直交度)

3.2.1 直線度

2次元画像上からエッジを抽出し、そのなかで実世界 において1つの直線と思われるエッジ群を Hough 変換 あるいはオペレータからの指示により定義し、それを 幾何モデルに投影することを考える.このとき、直線 エッジの投影点が3次元幾何モデルの平面上、あるいは 3次元的なエッジ上にある場合、その投影点も直線状に なる.しかし、平面と平面にまたがって投影された場 合、投影した 2D エッジは折れ曲がった線分となり、こ れは実世界では直線であることと矛盾する.従って直線 エッジの投影点がどれくらい直線状に分布しているか を数値化することによって、レンジセンサとカラーセ ンサの相対位置を推定する際の1つの基準となる.こ れを本論文では直線度と定義する.

3.2.2 平行度と直交度

屋内環境では,平面同士は平行または直交関係にあ ることが多く,2次元画像から抽出した直線エッジ同士 も平行または直交関係になっていることが多い.そこ で2次元画像上で平行または直交関係と思われる2本 の2次元直線エッジを幾何モデルに投影することを考 える. レンジセンサとカラーセンサの相対位置関係が正し く推定されている場合,2本の2次元直線エッジの投影 点は平行または直交関係にある.一方,レンジセンサ とカラーセンサの相対位置関係が正しい位置から離れ ている場合,投影点の平行性,直交性は満たされなく なる.したがって,直線度と同様に,どれくらい平行ま たは直交関係であるかを数値化し,レンジセンサとカ ラーセンサの相対位置を推定する際の基準とする.本 論文ではこれらを平行度,直交度と定義する.

3.3 OpenGL を用いた 3 次元投影点の計算

上述した直線度,平行度,直交度を数値化するには, 幾何モデルに投影した2次元エッジの3次元座標が必 要となる.本手法ではOpenGLの機能を用い,幾何モ デルを構成する三角パッチの座標から投影点の3次元 座標を決定する.

まず三角パッチそれぞれにあらかじめ番号付けを行う.この番号はある番号が呼ばれたときにそれに対応 する三角形パッチが唯一決定されるように番号付けさ れていればよい.そうすると,2Dエッジ投影点を含む 三角形パッチを決定できれば,そのパッチの3点の座 標から2Dエッジ投影点の座標を求めることができる.

実際の番号付けではまず, RGB の初期値をすべて0 にしておく.ここで RGB の値を (R,G,B) であらわす ことにする.OpenGL では三角形パッチを表示する際, 個別に色を指定できるので,まず (0,0,0) として1 番目 のパッチを描画する.次に,Rの値を1 増やし (1,0,0) として2 番目のパッチを表示する.Rの値が 255 に達 したら,Rの値をいったん0 にリセットし,Gの値を 1 増やす.つまり (0,1,0) で 256 番目のパッチを描画す る.このようにして幾何モデルを構成するすべての三 角形パッチに番号付けを行い,幾何モデルを描画する.

次に2次元画像から抽出されたエッジを,描画され た幾何モデルに投影して表示し,OpenGLの機能を用 いて重なった三角パッチの色を調べる.これにより対 応する三角パッチが簡単に探索でき,その3次元位置 から2次元エッジ投影点の3次元座標を求めることが できる.

3.4 幾何学的整合度の計算手法

上述した手法で求められた2次元エッジ投影点の3次 元座標から,以下のようにして幾何学的整合性の計算 を行う.

3.4.1 直線度

直線度の計算は以下のようにして行う.まず2次元画 像から抽出された直線エッジiを幾何モデルに投影した 3次元点の共分散行列を求め,その共分散行列の固有値 を求める.この固有値を $(0 \le \lambda_1 \le \lambda_2 \le \lambda_3)$ とおき, それぞれの固有ベクトルを X_1, X_2, X_3 とおく. X_1 は 分散が最大となる方向, X_2 は分散が2番目に大きい方 向, X_3 は分散が最小となる方向を表す.よって λ_1 と λ_2 が小さいほど,幾何モデルに投影した点群は直線に 近づく.そこで,直線度を

$$E_{i,straight} = \lambda_1 + \lambda_2 \tag{1}$$

によって評価する.このとき,その点群の方向はX₃となる.

3.4.2 平行度と直交度

まず平行または直交関係にある2本の2次元エッジの組iを幾何モデルに投影した点群から,2本の近似直線を求める.この近似直線の方向は直線度を評価する際に求めた X₃とする.この2本の近似直線の方向ベクトルを X, X'とおくと,平行度,直交度をそれぞれ

$$E_{i,parallel} = |\mathbf{X} \times \mathbf{X}'| \tag{2}$$

$$E_{i,orthogonal} = | \mathbf{X} \cdot \mathbf{X}' | \tag{3}$$

によって評価する.

3.5 相対位置姿勢の推定

相対位置姿勢の推定は,上で求めた直線度,平行度, 直交度の線形和を最小化することによって行う.位置合 わせの評価値 E は以下の式で表される.

$$E(\mathbf{R}, \mathbf{T}) = \alpha \sum_{i} E_{i,straight} + \beta \sum_{j} E_{j,parallel} + \gamma \sum_{k} E_{k,orthogonal}$$
(4)

ここで R は回転行列, T は平行移動行列, α, β, γ は適 当な重み係数を表す.本論文では最急降下法, あるいは 共役勾配法を利用し,評価値 E を最小にする相対位置 姿勢を推定する.

4 実験結果

提案した手法を用いて,計算機シミュレーションを 行った.幾何モデルは仮想的に作成した高さ5m,幅 10mの部屋の内部とし,2次元カラー画像は,幾何モ デルに色をつけ照光処理を施したものをキャプチャし て作成した.

まず初期位置を真値とし,図5に示す幾何モデル上のドア(左側)に垂直な軸周りに回転させたときの直 線度,平行度,直交度の評価値の変化を調べた.その 結果を図4に示す.ただし,横軸は真値からのずれ角 度(rad),縦軸は評価値である.これより,ローカルミ ニマムは存在するものの,真値の場合のみ直線性等す べての評価値はほぼ0となることがわかった.

次に,初期位置を真値から離して位置合わせ実験を 行った.図5に実験結果を示す.ただし,幾何モデル とカラー画像の初期相対位置は,真値から x 軸周りに 13.0 度, v 軸周りに-12.5 度, z 軸周りに-1.5 度, x 軸 方向に-0.3 m, y 軸方向に 1.0 m, z 軸方向に 0.08 mず らしたものとし,また,評価値の重み係数は $\alpha = 0.5$, $\beta = 1.0$, $\gamma = 1.5$ とした. また, 図 6 に式 (4) で定義さ れた評価値の変化を示す.ただし,横軸は繰り返し計 算回数,縦軸は評価値 E である.このように,この場 合は評価値 E は単調に減少し,6回目以降はほぼ0に なっている.また,直線度,平行度,直交度の変化の 様子を図7に示す.平行度,直交度は5回目にはほぼ0 になっており,5回目以降の評価値は直線度が支配的で あることがわかるしかし一般的には直線度,平行度, 直交度の収束性能への影響は,初期位置や選択した稜 線の数,種類に大きく依存し,重み係数の適切な設計 や制御が今後の検討課題である。

5 終わりに

本論文では,幾何学的整合性を用いたレーザスキャナ から得られた3次元幾何モデルとカラーセンサから得

図 4: 画面に平行な軸周りに回転させたときの直線度, 平行度,直交度の変化

られた 2 次元カラー画像の位置合わせ手法を提案した. 本手法は,まず,カラー画像から抽出された直線エッジ 群を幾何モデルに投影し,その投影パッチ群に対して 直線性,平行性,直交性などの幾何学的整合性を数値 化する.次にそれを最大化するセンサ間の相対位置姿 勢を探索,推定することで,正確なテクスチャマッピン グを行うものである.また,計算機実験により提案手 法の有効性を確認した.今後は屋内実画像を用いた位 置合わせ実験を行う予定である.

参考文献

- L. Liu and I. Stamos. Automatic 3d to 2d registration for the photorealistic rendering of urvan scenes. In *IEEE International Conference on Robotics & Automation*, 2005.
- [2] S. W. Zucker and R. A. Hummel. A three dimensional edge operator. *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 3, No. 3, pp. 324–331, 1981.
- [3] M. Morgenthaler and A. Rosenfeld. Multidimensional edge detection by hypersurface fitting. *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol. 3, No. 4, pp. 482–486, 1981.

図 5: 位置合わせ結果

- [4] H. Lipson and M. Shpitalni. Optimization-based reconstruction of a 3d object from a single freehand line drawing. *Journal of Computer Aided Design*, Vol. 28, No. 8, pp. 651–663, 1996.
- [5] P. E. Devebec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In *Computer Graphics Proceedings, ACM SIGGRAPH'96*, pp. 11–20, 1996.
- [6] R. Kurazume, K. Noshino, Z. Zhang, and K. Ikeuchi. Simultaneous 2d images and 3d geometric model registration for texture mapping utilizing reflectance attribute. In Proc. of Fifth Asian Conference on Computer Vision (ACCV), pp. 99—106, 2002.

図 7: 直線度,平行度,直交度の比較

- [7] 倉爪,西野, M. D. Wheeler,池内. リフレクタン スエッジと濃淡エッジを用いたテクスチャのアラ インメント.電子情報通信学会論文誌 D-II, Vol. J85-D-II, No. 6, pp. 1038–1046, 2002.
- [8] M. D. Elstrom and P. W. Smith. Stereo-based registration of multi-sensor imagery for enhanced visualization of remote environments. In Proc. of the 1999 IEEE International Conference on Robotics and Automation, pp. 1948–1953, 1999.
- [9] K. Umeda, G. Godin, and M. Rioux. Registration of range and color images using gradient constraints and range intensity images. In Proc. of 17th International Conference on Pattern Recognition, pp. 12–15, 2004.
- [10] H. Lensch, W. Heidrich, and H.-P. Seidel. Automated texture registration and stitching for real world models. In *Pacific Graphics '00*, pp. 317– 326, 2000.
- [11] H. Lensch, W. Heidrich, and H.-P. Seidel. Hardware-accelerated silhouette matching. In SIGGRAPH Sketches, 2000.

- [12] H. Lensch, W. Heidrich, and H.-P. Seidel. A silhouette-based algorithm for texture registration and stitching. *Graphical Models*, Vol. 63, pp. 245–262, 2001.
- [13] L. Brunie, S. Lavallee, and R. Szeliski. Using force fields derived from 3d distance maps for inferring the attitude of a 3d rigid object. In Proc. of the Second European Conference on Computer Vision, pp. 670–675, 1992.
- [14] S. Lavallee and R. Szeliski. Recovering the position and orientation of free-form objects from image contours using 3d distance maps. *IEEE Trans. on Pattern Analysis and Machine Intelli*gence, Vol. 17, No. 4, pp. 378–390, 1995.
- [15] S. Zuffi, A. Leardini, F. Catani, S. Fantozzi, and A. Cappello. A model-based method for the reconstruction of total knee replacement kinematics. *IEEE Trans. on Medical Imaging*, Vol. 18, No. 10, pp. 981–991, 1999.
- [16] J. Maintz and M. Viergever. A survey of medical image registration. *Medical Image Analysis*, Vol. 2, No. 1, pp. 1–36, 1998.
- [17] Q. Delamarre and O. Faugeras. 3d articulated models and multi-view tracking with silhouettes. In Proc. of the International Conference on Computer Vision, Vol. 2, pp. 716–721, 1999.
- [18] K. Matsushita and T. Kaneko. Efficient and handy texture mapping on 3d surfaces. In *Comput. Graphics Forum* 18, pp. 349–358, 1999.
- [19] P. J. Neugebauer and K. Klein. Texturing 3d models of real world objects from multiple unregistered photographic views. In *Computer Graphics Forum 18*, pp. 245–256, 1999.
- [20] Y. Iwashita, R. Kurazume, K. Hara, and T. Hasegawa. Fast alignment of 3d geometrical models and 2d color images using 2d distance maps. In Proc. of The 5th International Conference on 3-D Digital Imaging and Modeling, pp. 164–171, 2005.

- [21] I. Stamos and P. K. Allen. Integration of range and image sensing for photorealistic 3d modeling. In Proc. of the 2000 IEEE International Conference on Robotics and Automation, pp. 1435–1440, 2000.
- [22] I. Stamos and P. K. Allen. Automatic registration of 2-d with 3-d imagery in urban environments. In Proc. of the International Conference on Computer Vision, pp. 731-737, 2001.