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Abstract Real-world objects are usually composed of different materials with complex textures. Acquiring spatial reflec-
tance appearance of objects requires a dense set of images. Recovering spatially varying reflectance is usually considered as a
numerically ill-conditioned problem for a very sparse set of images. In this paper, we address the problem, and propose the
techniques for acquiring spatial appearances of real objects from sparse images. Spatially varying reflectance recovery is in-
vestigated under controlled lighting and general distant lighting conditions. Regarding controlled illumination conditions, we
propose efficient algorithms to recover a complete object model, including both the shape and the spatial reflectance, from four
single-light images. Regarding distant illumination conditions, we developed an algorithm to recover high-quality spatially
varying BRDFs under arbitrary illumination using a sparse image set (6~10 images). The recovered spatially varying surface
models can be used to create realistic renderings of the object under novel scenes.
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1. Introduction .and illuminalif)n. In ter.:ent years, th.ere ha.s been a s.ig'liﬁca.m interest in

inverse rendering techniques to obtain realistic rendering attributes from a

The central problem in computer graphics is creating photorealistic im- set of photographs. However, inverse rendering problems usually require

ages. In order to synthesize realistic images, physically-based rendering  extremely complex and costly processes. The difticulty of obtaining accu-
algorithms require accurate input models for geometry, reflective properties
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rate models of a scene has been a major limiting factor in realism of physi-
cally-based rendering today.

A major challenge is the acquisition of spatial reflectance appearance of
objects. Real-world objects generally have spatially varying reflectance
properties over surfaces. For a spatially varying material, recovery algo-
rithms estimate the bidirectional refle distribution function (BRDF) at
each point, demanding dense images and a costly fitting process. In this
paper, we focus an inverse rendering problem for acquiring the spatial ap-
pearances of real objects.

1.1. Previous Work

1.1.1. Controlled illumination

Non-Lambertian BRDF is a complicated 4D function. A great deal of
work on inverse rendering has been conducted in highly controlled lighting
conditions which usually assume that illumination source is a single point
source. Traditionally, BRDF is measured with a gonioreflectiometer system,
positioning a point source and detector with respect to a flat material. A
measure system (e.g. [12], [14], [15]) generally demands a very large set of
measurements in order to capture high-frequency information, such as sharp
highlights. The reconstruction of spatially varying BRDFs requires sampling
6D function, which would be tedious if not impossible. Some methods
recover only a subset of the BRDF. For example, Debevec et al. [6] meas-
ured the 2D lighting-dependent variation (64*32 images) with fixed view-
point and constructed a reflectance map for each point.

Most methods approxi flectance using an analytic reflection model,
thereby simplify the problem from recovering a 4D fimction to that of esti-
mating a handful parameters. However, fiiting processes still demand a large
set of samples to robustly estimate the parameters. Sato et al. [19] used about
120 images to spatial refl with Torrance-Sparrow model.
The estimation of spatial reflectance from a small image set, which is in fact
an ill-conditioned problem without any assumptions, is very challenging.
Recently, Lensch et al. [13] described an acquisition process for spatially
varying BRDFs from sparse image set (about 15~25). They partitioned
the surface points into clusters comresponding to different BRDF's and built a
set of basis BRDFs to describe the reflectance of each point. Their method
however operates under the assumption that the surface is composed of a
few different BRDFs, which cannot be applied to the surface with
high-frequency variation in BRDF.

There are some methods to recover both the shape and the reflectance
properties of an object using techniques based on Photometric Stereo.
Hertzmann and Seitz [10] proposed the empirical methods for spatial mate-
rials recovery. Their approach requires a material segmentation and a refer-
ence object for each material to build look-up tables. Kay and Ceelli [11]
investigated the problem using an analytic reflection model without any
assumptions. They applied nonlinear regression to a large ber (thou-
sands) of input images. Goldman et al. [9] developed a Photometric Stereo
approach based on [13). On the assumption that the surface is composed of

only one or two mateials, they recovered the spatially-varying BRDF and
the shape from a small number of images.

Coleman and Jain [5] has proposed a specularity detection method to
avoid the ill-conditioned problem. Improvements were suggested by Solo-
mon and Ikeuchi [20}, and recently by Barsky and Petrou [2]. This approach
is based on a strict constraint that no specular reflection spatially overlaps
among the images. By treating highlights as outliers to the Lambertian
model, the method excludes the highlighted pixel and recovers the surface
normal with the others.

1.1.2. Complex illumination

Comparatively less work has been done under general illumination. Yu et
al. [23] presented an inverse radiosity method to estimate reflectance by
using 40 images taken at different viewpoints in a closed scene.
High-frequency variation is allowed in the diffuse reflectance with the as-
sumption that the specular reflectance was constant for a surface. Boivin and
Gagalowicz [4] recover the uniform BRDFs of the surfaces in a scene using
one image. Both methods recover BRDF's by an iterative estimation process
with very costly radiosity computation. )

Instead of conventional light transport computation, some methods (e.g.
[1], [16], [18]) have been proposed to represent reflection in term of spheri-
cal harmonics. Westin et al. [22] proposed a method to reconstruct the
BRDFs of non-Lambertian surfaces by estimating the coefficients of the
spherical harmonics. However, their results shows that even the moderately
complex BRDFs require large numbers of spherical harmonic basis func-
tions to be represented correctly. To address the problem, Ramamoorthi and
Hanrhan [17] presented a single-processing method of inverse rendering
under distant illumination. They proposed an algorithm consisted of nested

procedures with a dual angular and frequency-space rep n. How-
ever, both [22] and [17] require a large number of images for the estimation
of spatially varying reflectance.

We have briefly reviewed the previous work on spatial appearance acqui-
sition. Little literature exists on spatial appearance recovery with sparse
images, particularly under general illumination conditions. Previous meth-
ods demand dense input images, or constraints are imposed on materials and
lighting conditions.

1.2. Overview

Recovery of spatially varying materials from sparse images is considered
as an ill-conditioned problem. In this paper, we address the problem, and
describe the techniques for acquiring truly spatial appearances of real objects
which are efficient and require only a very small image set.

Spatially varying BRDF recovery is investigated under controlled lighting
and general distant lighting conditions, respectively. We show that the
high-frequency varying term of the reflection consists of the diffuse reflec-
tion component. We demonstrate the high-frequency varying diffuse term
can be removed with a small set of images since the diffuse reflection can be
approximated by a low-dimensional linear subspace. This allows us to ex-
tract the low-frequency varying term of the reflection and address the
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ill-conditioned problem for fitting process. The contributions of the paper
are; : )

. Werep@mtan'appmachtmeoomboﬂlﬂwslmpemdﬂlespaﬁally
varying BRDF from four images under controlled illumination.

* We represent an approach to recovered the spatially varying BRDF
from a small set of images (6~10 images) under general distant il-
lumination.

The rest of the paper is organized as follow: Section 2 explains the reflec-
tion model and discusses the reflection of a surface with spatially varying
BRDF. Section 3 describes our method of surface recovery under controlled
illumination conditions. Section 4 describes our method of inverse reflecto-
metry under general illumination conditions. The effectiveness of our algo-
rithms is supported by experimental results presented in Section 5. Conclu-
sions are presented in Section 6.

2. Reflection Model

In this section, we will describe the reflection model of surfaces, and dis-
cuss the problems for estimating spatially varying BRDF from sparse im-
ages.

2.1. Dichromatic Reflection Model

Figure2 Dichromatic reflection model.

An opaque dielectric material without multi-lay structure is composed by
a supporting substrate into which colored pigment particles are embedded as
shown in Figure 1. The reflection of opaque inhomogeneous dielectric ob-
jects can be modeled as a linear combination of diffuse and specular reflec-
tion, which known as the dichromatic reflection model. The light reflected
directly at surface cause specular reflection. The refracted ray is diffused by
the pigment particles and produces an isotropic distribution of scattered light
resulting in diffuse reflection. The BRDF f at a location x can be ex-
pressed as

f(x;a-)l’a-;o)=-fd(x;a-)l’a-)o)+f;(x;a-)l)a—)o): (1)

where @, and @, are the incident and outgoing directions, respectively.
fi(x,0,8,) and f,(x.&,,®,) arethe diffuse and specular BRDFs,
respectively. In this paper, we denote color vectors by using a bold symbol,
eg f={/,./;./,} Thediffuse BRDF can be approximated by:

P4(x)
=

[4(6,8,,8,) = o)

intensity

Reflocuon trawfer fonction

Spevutar cnpenient

o tew h
Figure 1 The 2D transfer functions of different points on a textured surface.

where the diffuse refl p4(x) depends on the pign which
determines the diffuse color of the material. f,(x;®,,®,) isa complex
nonlinear function. Truly spatially varying BRDFs vary in both the diffuse
and the specular reflectances. The diffuse- reflectance usually has
high-frequency of variation. However, the specular refl only depend:
on the index of refraction and the surface facet conditions, which would not
change high-frequently. Therefore, the specular refl properties have a
slowly varying nature. In real world, objects are usually composed of one or
afew of different materials'.
2.2. Reflection on Spatial Reflectance Surfaces

‘We consider the incident illumination is distent illumination which allows
us to use the same lighting function regardless of surface location. We con-
sider curved objects, accounting for attached but not cast shedows. Also,
interreflection will be ignored. .

If the light source is a uniform point light source, the radiance at x in di-
rection @, can be represented by:

I(x®,)= f(x:®,,@,")E,

= p"T(x)max[oTw, 7,01 + £, (x;8,',8," )Y max([®, -7,0)1E ©)

IW

la

where we have mixed local (primed) and global (unprimed) coordinates,
f.6,.8,") = f(x,3,',6,' ymax[®, -7,0] is the transfer finc-
tion, which absorbs the clamped cosine term; and & is the intensity of the
point light. 72 is the surface normal. Under general distant illumination,
I(x,®,) can be computed by integrating over all incoming direction of
the hemisphere 2,; as:

Ix@,)= [, L&)fa,)\B,)dd,

-1, L(E)i)p"T(x)max[@,-ﬁ,O]dd)i @

Loy
+[ L@ [, @, Y max(@, -7,0)da,

Tye

! In this paper, we refer to a surface which has the same specular proper-
ties as a material.
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where L(®,) isthe incident radiance.

Let us first consider the case where a surface has only one material, i.e.
the specular reflectance is identical for the surface. The transfer function of a
point an the surface can be expressed by replacing f,(x; @;,,) with
[:(8,@,) as:

- Py(%)
T

f(xa,.8,')= max[@, - 7,01+ f(@,',@,") max[@, -7i,0], (5)

Figure 1 illustrates the transfer functions in 2D at different points on a tex-~
tured surface, where 6, is the angle between 7 and the half vector of
@, and @,. Asshown in Figure 1, the transfer functions with respect to
the diffuse reflectance component have large variations, and those with
respect to the specular reflectance component have a complicated nonlinear
characteristic. Hence, it is necessary for recovery algorithms to estimate the
BRDF of each point on the surface. Recovering the reflectance with sparse
images is numerically ill-conditioned.

For a spatial reflectance surface, the reflection function on the surface has
high-frequency variations because of its diffuse reflectance component.
With sparse images, if we can extract the specular term from the various
BRDFs, the estimation problem will not be ill-conditioned because the
specular BRDF (SBRDF) has a slowly varying nature.

3. Surface Recovery under Controlled Iumination

In the section, we explain how to resolve the problem under controlled il-
lumination. We first describe a method to extract the specular reflection from
an input image set. Then, we introduce an algorithm to recover the shape
and spatially varying BRDF of an object from the images. Our input is four
image of an object taken under different single point sources at a fixed view-
point. The light sources are known.

3.1. Specular Reflection Component Extraction

Under single point illumination, we can solve the problem with four im-
ages. We denote the k¥ illuminant by the vector &* = ¢*@/ , where &*
is the illumination irradiance and & is the incident direction. Since any
three of the incident illumination directions are linearly independent, the four
illuminants can be expressed as follows:

A8+ A+ £E +A'E =0, ©

4-[¢]=0, m
where [¢]=(&' -+ &) is the illumination matrix, the coefficient
vector A=(A' A*) can be computed directly from the known
illumination for each color ch 1. B , for an
diffuse reflection is a linear function of its incident illumination, we can
derive from Eq. 7 that any non-shadowed Lamb set of imadi
I,) should satisfy:

AQyw =L 41850 ®

hadowed point, the

Iy=Uy -

Figure 3 Extraction of specular reflection components. Left: Four input
images of a textured ball. Right: Resultof A.-1.

Therefore, in accordance with Eq. 3, we can remove the diffuse terms of a
non-shadowed irradiance set 7=(I' - I') by multiplying I(x)
by the coefficient A as:

AT =A- (T +1,, (N =4-T (0. ©

Thus, we can directly extract the specular components for the unshadowed
points without any complex and fragile separating process. Figure 3 shows
that after multiplying the four images by A , the diffuse reflection terms are
offset, where A depends on only the light set.

With the specular reflection components extracted, the problem of data
inadequacy is resolved. We can robustly recover the slowly varying specular
reflectance with the unshadowed points when the surface geometry is
known. Cc tly, we can address the ill-conditioned problem for spa-
tially varying BRDF with the sparse images.

3.2. Estimation of the Surface Model

In this section, we introduce an algorithm to recover a full surface model
with four images. We first describe how to use the chromatic points to re-
cover the specular refl P eters and then explain the algorithm
used to recover a surface model by using the specular reflectance.

In order to recover the surface geometry from the color information of
pixels, we assume that the surface is satisfied with the NIR model []. We
assume that the specular refl remains invariable for a surface, while
allowing that the diffuse reflectance varies arbitrarily over a surface. We will
explain how to cope with varying specular BRDFs in Section 4.

3.2.1. Recovering Specular Reflectance with Chromatic
Points

According to the NIR model, the specular reflection component has the
same spectral distribution. The irradiance I(x,@,) can be expressed by
rewniting Eq. 3 as:
Pa(x)

n

1(x®,)= max[@, 7,00 + £,(x:®,,®,' ) max(@, -7,0)¢

—_ I,
Iy b

10
If the chromaticity of a pixel is different from that of the illumination, the
geometric information can be directly obtained from these pixels by using
the cues of color information.
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We first consider the case that the color of the k™ illumination
= 88 ispurewhite,ie. & =& =& =& . According 1o Eq. 10,
we can simply remove the specular term from the irradiance I* using:

i* (x) = I¥ (x) = It (x) = E4b(x) max[@] -7,0]
b(x) = Py, () = Pg, (%),

where p, ={p,,.Pus Pus} is the diffuse reflectance in RGB space, u is
the maximum color channel of the imadiance I(x) , and v is the minimum
channel, ie. I, =max/min{l, 1,1, }.Eq. 11 can be extended to the
general case of a known illumination to obtain the following:

k
281k () = Eb(x) max[@F -7,0],

o v (%) = &, b(x) max[@; 7,0} a
b(x) =Py, (X) = Pa, (%),

an

) =I5 ()~

where the intensity i‘(x) has identical geometrical information to
I, (x) under the k® illumination. Using 7 =(i' -+ i*)" obtained
from Eq. 12, the surface nommal for an unshadowed point can be recovered
by:

(i = (£,1718.D 716177,

CI=@ - &7 & =¢laf,
where [£,] isthe illumination matrix of channeluand b(x) isa scale.
3.2.2. Chromatic Point Selection

Rather than all of the chromatic pixels, we only. use the reliable pixels, for
which the intensities of the maximum and minimum channels are distinctly
different. If the difference between the two channels is small, the variation in
irradiance due to geometrical affection becomes sensitive to noise in the
images.

Eq. 9 and Eq. 13 are only satisfied when the four irradiances of a point are
non-shadowed. Since, for any non-shadowed irradiance set, A4, 7(x)
should be 0, where 4, is the coefficient vector of channel u. In the algo-
rithm, we detect shadows and noise by an appropriate threshold of
A,-i(¥):if A, -7(x) exceeds a threshold, we will not chose the
point.

3.2.3. Estimation of SBRDF

13)

For a surface with many chromatic points, we can obtain a sufficient
number of samples with the recovered surface nomals to estimate the
SBRDF robustly. Many different BRDF models with different strengths and
weakness have been proposed. We denote the SBRDF model by
f(0:®,0,), where O is the fit parameter set of the SBRDF, and
define the specular pixels i(x)EZ-i(x). The square error between a
given SBRDF and a specular measurement is computed as follows:

error((x), £,(9))
2
=2 (ic(x)—Z‘jAff,,c@ :@f',amf':ﬁ] :
k=1 .

c=r,g.b

14)

The SBRDF then can be computed using a nonlinear minimization algo-
rithm:

£isy-iof the selected Revonstucted 7 ¢33 -~ 5
Figure 4 SBRDF recovery with the specular image and the selected chro-
matic points.

£,(®)=argmin Y error(1(x), f,(®)), s
xeM

where M are the selected chromatic points on the surface. In Figure 4, the
plotan the left shows the f(x) of the selected chromatic points, where the
x and y axes are the elevation and azimuth angles of the surface nommals,
respectively. The plot on the right shows the reconstructed distribution of
I(x) with the recovered SBRDF, which is estimated using a Leven-
berg-Marguardt optimizing elgorithm. In practice, because of camera noise,

we recommend the least-median-of-sqp hnique, rather than the
least-sqt hnique, for ing real images.

The advantage of the proposed method is that without any separating
process, we can directly derive and fit the specular components to the most
suiteble model. In contrast to methods that fit available pixels to a full reflec-
tion model, which simply treats specular components as outliers in estima-
tion, the specular reflectance can be robustly estimated using the proposed
method.

3.24. Recovering the Full Surface Model

The estimation of the surface parameters at local points is no longer an
ill-conditioned problem when the SBRDF has been obtained.

The specular reflection for the chromatic points can be computed with
known surface nommal. By subtracting the specular reflection companent
from the imadiance, the diffuse reflection component can be retrieved. Con-
sequently, the diffuse reflectance can be computed by Eq. 3:

Py (x)=

d 16,
argminy (1() - I, (9) - 245 maxgg* 7 0%, o

= T
For the points, of which neither the diffuse reflectance nor the surface nor-
mal is known, estimating these parameters from the set of pixel intensities is
equivalent to resolving the nonlinear equations of Eq. 3. We first recover the
surface normal, which should satisfy the following:
QY 1ED Y T (0) - I, (o)) x7i =0,

K S.mke = Ek = an
I, .(x)=f,(v:@;",0," ymax[{" -71,0).

The surface normal can then be computed using a minimization algorithm:
i = argmin((&) (D€ T )~ T,..cNx7A) (B
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Subsequently, the diffuse reflectance can be recovered with Eq. 16. Given
the normals, the surfice shape can be reconstructed by using the method of
Frankot and Chellappa [8] for a continuous surface.

4. Inverse Reflectometry under Complex Ilumination

In this section, we explain the spatially varying BRDF recovery under
general distant illumination. We first introduce a method to' extract the
specular reflection component under general illumination. Then, we de-
scribe an algorithm to recover a truly spatially varying BRDF model of a
surface which consists of multiple materials.

The input of our algorithm consists of the object geometry, a small set of
images taken at a fixed viewpoint under different illumination conditions,
and the environment maps of the illuminations. We consider real materials
with spatial variation in both the diffuse and the specular reflectance. We
assume that the illumination has high-frequency components in order to be
ableto reconstruct BRDF perfectly.

4.1. Specular Reflection Component Extraction

According to the work of [1] and [18], Lambertian reflection on a surface
can be accurately approximated by the low-dimensional linear subsy
canstructed by spherical hameonic functions. We denote spherical harman-
ics by ¥, (1=0,1,--;m=—1--,I) . Then, the illumination can be
expressed by spherical harmonics as L(®,)= Yo Yomr , Lot 1 (3,) -
The diffsse reflection term of Eq. 4 then is given by:

(x) o m=l ' ~
Ly@ =223 Y oL,

T Eome-1 19)
where the coefficient @, vanishes for odd values of />1, and even
terms fall off very rapidly as O(/**) (see, eg. [1]). Therefore, the diffuse
reflection can be approximated with just a few low order harmonics:

L Pa(x) Ll =
Iy(x)= ——7;——2 > a,L,Y,, 7). (20)
1=0 m==1
We define ¥, (x.7)=(p,(x)/m)a Y, (7) and L, =L, . where
k=1x(l+1)+m+1.Eq.20 can be written as:

Tyr () zil,,}i(x,ﬁ), N=T+1)> @y
k=1

We take N+1 images under different lightings, anduse I/ to denote the
* illumination. €/ =(L - L) is defined as the vector of its N low
harmonics coefficients which can be computed with the known illumination.
The diffuse reflection component under j® illumination then can be ex-
pressed by rewriting Eq. 21 as:

L=~ G - F,en). @

Assuming that the N low order harmonics terms of any N incident light-
ings are linear independent, the € s of the N-+1 lightings can be expressed
as follows:

A€ 4+ AT =0, @3)

or written as:
‘le(h’ﬂ) '[é‘](mnx" =0, @)

where the coefficient vector A=(4' - A™) can be computed
from the illumination harmonic coefficient matrix [€]= (2. NP ) ""y .
Since the diffuse reflection can be linear represented by the basis of the
harmonic function, we can derive from Eq. 22 that any diffuse reflection set
ofintensities Ty = (I - I25'f should satisfy:

AT, 0=A€1Fcn - Fenf =0 @)

Therefore, in accordance with Eq. 4, we can remove the diffuse reflection
companent by multiplying the irradiance set T(x)= (I LIPS )’
by the offset vector A asfollows:

AT =A-[y)+1,. )= AT (. @

As aresult, we can directly derive the specular component by multiplying
the sparse image set by A, without any complex and fragile separating
process. The diffuse reflection terms which have high-frequency variations
are offset, and we obtain an image which includes only the specular reflec-
tion component of the measurements. We refer to the image as the specular
image. For a convex object without cast shadows and interreflections, the
offset coefficient A anly depends on the lighting set.

With the specular reflection component extracted, we can resolve the
problem of data inadequacy for sparsc images. For a surface with uniform
specular properties, we can robustly recover the specular reflectance from
the specular image with all the points over the surface. In the case of a sur-
face with multiple materials, since specular reflectance properties have
slowly varying nature, we can obtain enough specular irradiance samples of
a material to esti its specular reflectance. Cc itly, we can
the ill-conditioned problem for BRDF recovery with sparse images.

3.3,

4.1.1. How many images at least should we require?

According to the results of [1] and [16], more than 99% of the energy can
be captured by I' =2 (N =9), ie. diffuse reflection can be accurately
approximated by the 9D linear subst d by spherical harmonic
functions. A straightforward method is to use 10 images under different
lighting conditions, and to compute the offset vector A with the spherical
harmonic coefficient matrix [2- ] of the illuminations. However, the 9D
approximaticn is held for the whole sphere of possible normal. At a fixed
viewpoint, we have only the upper hemisphere of normals which should
produce an approximation with lower dimension as Ramamroothi has dis-
cussed in [16). In this case, we can compute an optimal basis of the diffuse
reflection space for a specific object under the light set with SVD method,
and obtain A by using the basis. Empirically, diffuse reflection under a
fixed viewpoint lies very close to a 5D subspace, i.c. at least 6 images are
required.

4.2. Fitting Process for Multiple Materials

In this section we will explain how we estimate the BRDFs for a surface
composed of multiple materials.
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4.3. SBRDF Model
‘We use the Lafortune model [ 12] in our work. We consider only isotropic
materials in the clustering process. The Lafortune model for isotropic sur-

faces is expressed as:
f; (‘T)/' »&.’.7 I) = z(c.\y,[ (wl;:'a)o,x .mly,wa,y') + Cz.lwlx wo.x l)’ ’
1
@7

Where @,' and @,' are the incident and outgoing directions in the
surface local coordinate systems, respectively. gy G and yrare  the pa-
rameters for lobe 1 of the SBRDF.

4.4. Clustering Algorithm
For the points of the same material, they should have an identical SBRDF.

‘We employ a cluster process inspirited by [13] to cluster the specular meas-
urements under the distant illumination condition. In our method, however,

each cluster comresponds to a material i.e. a SBRDF. Since specular reflec-
tance properties have a slowly varying nature, it is rational to generate clus-
ters comesponding to SBRDF. In contrast, [13] is according to BRDF, which

can not be applied for highly colorful surfaces.
The clustering algorithm is shown in Figure 6. We define the specular

pixels T=A-T, the lighing Le A-L, and the SBRDF f = f,.
The square error between a given SBRDF J and a specular measurement

is computed as follow:
(ic(x) S RACRIACRA )max[a'i,'-r?,O]dw‘,')'.
b

error; (x)= z
@8

car.g.

We value the quality of the approximation in a cluster A using the
@9

S NI

x€A, c=r,g,b

relative square error, defined as:
error(A ) = Z error; x)/
xeA, ’

We first estimate a SBRDF with an initial cluster consisting of all specular
pixels. Then we go into the splitting step to split the cluster into two new

clusters each with a different SBRDF model.
4.4.1. Splitting

We denote a SBRDF model by f(5;®,.@,), where & is the pa-
rameter set of the model. We need to compute the direction of maximum

:.’ * wgN
& Lay

:: » L2

3

H

R T

vy v
EERLT

Bamamagy g,

as

@
P

Figure 5 The reflectance parameters of a one lobe Lafortune BRDF
approximation for all 100 samples in the MIT/MERL database.

variance in the parameter space in order to generate two new SBRDFs to
split the parameters space. Instead of complex calculations, we propose a
new method to generate the SBRDFs by taking advantage of the form of the

Lafortune model.
One lobe Lafortune model is used in the splitting step which is sufficient
for the cluster splitting procedure. The ¥ of the Lafortune model is
(CgsC,,7), where 7 is the specular expanent, G,y and C, indicate the

off-specularity of the lobe. As shown in Figure 5, C,, and C; remain close at
the value of one for most materials, especially when ¥ is big. On the other
hand, vy changes much with different materials. Consequently, we can con-

sider generally 'y has the maximum variance in the parameter space. There-
fore, we construct the two initial SBRDFs of the splitting step as:
(€, Cour +1,6,,8,), and f7(C,,,C,,7-1,6,,8,).
After the initialization, the specular pixels from the original cluster A
are assigned into the new clusters A% and A, according to their dis-
tance error,(x) to the two SBRDFs f* and FF . Then, new
SBRDF parameters of f**' and f**' are fitted again to the specular
pixels in each the cluster A% and A’,. We iterate the reclustering and
fitting until the resulting BRDFs and clusters have converged. The super-
script k denotes the iteration number.

Figure 6 Split process. The initial SBRDF is split into two new SBRDFs.
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4.4.2. Reclustering

Having the new clusters and the new SBRDFs, we can re-group all the
specular pixels and estimate an exact full Lafortune model for each cluster.
This global reclustering is repeated until the SBRDFs are convergent. Clus-
tering process will finish when Zlerror(Al) is smaller than some €, or
the desired number of materials is reached. Otherwise, the cluster with the
largest relative square error is chose to split the next.

4.5. Recovering the Full BRDF
With the specular properties obtained, we can recover the diffuse reflec-
tance at each point from the given data. By subtracting the specular compo-
nent from the pixel intensity, the diffuse component 74,(x) is obtainable
by using Eq4. According to Eq.22, the diffiise reflectance then can be com-
puted by:
p,(x) = argminerror(p,(x))
R PR PA)EE =\\2
=argmin ) (TIy ()= F4=23 3 o LY, (7).
k=1

1=0 m=-1

(30

In cur algorithm, we remove the two brightest I},.(x) and two darkest
one which canry the large errors from the set, and use the middle 5 of
I, (x) tocompute p,(x) withEq30.

5. Results

In this section, we show our experimental results of our implements of the
proposed methods. The objects in our experiments have highly textured and
colorful surfaces, which are very different from those used in the previous
study [13). In the experiments, a DELL PWS530 (CPU: Pemtium4 Xeon
22 GHz x 2; Memory: 2GB) was used.

5.1. Results of Surface Recovery under Controlled Lighting
We first show the results of our Photometric Stereo method under con-

(b) Comparison of the surface nomals recovered by
the proposed method (feft) and by Coleman and Jain’s
method (right)

(a) Diffuse map

(c)Needle image (d) Reconstructed surface

Figure8 Results fora colored ball.

Figure 7 Comparison of an original image to an image rendered with
recovered parameters. L: Original image. M: Rendered image. R: Dif-
ference

trolled lighting with four images.
5.1.1. Results for Simulated Objects

We tested the proposed algorithm on a number of simulated objects,
which allowed us to verify the accuracy of the algorithm and compare the
obtained results to ground tuth data.

We used the RADIANCE rendering system [21] to produce four input
photographs of an object under a point source from different directions. The
simulated cbjects were rendered with the isotropic Ward's reflection model:
Ps(x) , ,  exp(-tan’f, /a’)

T ‘ 4ma® Jeosb), cosb, ’

f(x0,,0,)= m
where 6,, 6, and 6, are the geometrical angles, p,(x) is the
diffuse reflectance, and o, and @ are the specular reflectance parame-
ters. In other words, Ward’s SBRDF can be expressed as
1P, 0):8,,8,).

First, the complete set of results for a textured ball is presented. One of the
four input images is shown in Figure 10(eft). The SBRDF was robustly
estimated from the chromatic points as described in Section 3.2. With the
specular reflectance, the diffuse reflectances and the surface normals are
recovered. The total running time is approximately 15 seconds, where the
image size is 256*256. Figure 8(a) and (c) show the diffuse albedo map and
the needle map, respectively. Figure 8(d) shows the surface shape recovered
from the normals. The specular refl f are listed in Table 1.
In Figure 8(b), the proposed method is compared with that of Coleman and
Jain, which uses the same input images. The method of Coleman and Jain
failed to recover the surface normals for the locations at which highlights
overlap. In addition, some errors occurred in highlight/shadow detection. In
contrast, the surface normals were recovered comectly by the proposed
method.

We also tested the proposed algorithm with a marble ball and a synthetic
orange. While the surface of the marble has complex variation in diffuse
reflectance, the surface of the orange has high-frequency spatial variation in
the surface normal. Figure 10 shows the recovered diffuse reflectance map
for the marble ball and the normal map for the orange. The original and
recovered BRDF parameters of these objects are listed in Table 1. The algo-
rithm successfully recovered the surface parameters for both objects.
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(a)L:Marbleball R: diffuse reflectance »(b)L:Olmgeball.R:na'mslmap
Figure 10 Results fora marble ball and an orange.

Table 1 Comparision b trueand d BRDF parameters of
the simulated objects.
Pa Ps <
Marble True / .100 | 056
ball Estimated / 098 | 056
Textured Tiue / 050 | 015
ball Estimated / 056 | 015
Orange True .600,.200,.010 | .050 | 010
ball Estimated .589,.195,010 | .053 | 014

Having recovered the BRDF and the surface nommnal, we can render ob-
jects under new views and lightings. Figure 7 shows the rendering result
compared to the original result. Figure 7(right) shows the difference between
the rendering and the original images. The errors in the difference image
occur on the edges of different-colored segments as a result of the integra-
tion process of the rendering system.

5.1.2. Results for a Real Scene

We also tested the proposed method on real objects. The images were
captured using a CCD camera (Canon EOS-20D) with no gamma corec-
tion, the parameters of which were computed by the Calibration Toolbox of
Matlab. Four PLP (60 W) halogen lamps were set approximately 2 meters
from the objects (diameter < 20 cm), which were used as point sources. The
illuminations were i by an. illuminometer (Konica Minolta
CL-200). ' :

An apple made of wax is used in this experiment. In order to avoid satu-
rated pixels, we used the input images in a high-dynamic range radiance
model. Four high dynamic range radiance images were acquired from two
exposures for the apple. Figure 9(a) shows two of the input images for the
apple, respectively. The overlapped highlights among the input images can
be seen in both cases.

The diffuse reflectance map and the surface shape recovered by the pro-
posed method are shown in Figure 9(b) and (d), respectively. Figure %(c)
shows the rendering results using the recovered surface model under the
same conditions as the input images. There is qualitative agreement, with the
highlights similar in area, brightness and position over the surfaces, which
verifies the cc d surface | ters. The rendering
results under the novel lightings and views are shown in Figure 9 (e).

of the

() Rendered (same view, same lighting) (d) Surface 3D shape

(¢) Rendered (novel view, novel lighting). Left: local illumina-

Figure 9 Results of an apple

S5.2. Results of Inverse Reflectometry under Complex
Lighting .
We tested the proposed approach for recovering BRDF under general il-

lumination on simulated objects which allowed us to verify the accuracy of
the algorithm.

521, RaultsAfor a surface with one material

Firstly, we tested the proposed algorithm on a highly textured sphere with
one material by using 9D spherical harmaenic approximations. We produced
10 input object images under different illuminations by using the environ-
ment maps in [7). The images are rendered with an isotropic tow-lobe La-
fortune model. The input to our algorithm consists of the surfaces geometry,
and the 10 sets of the object images and the comesponding environment
maps. The input sets are shown in Figure 11.

We first computed the 9 lighting coefficients for each illumination condi-
tion. Sequentially, the offset vector 4 from the lighting coeficient set.
Then, the input image set [I]= (i e I, m)’ was multiplied by
A in order to remove the diffuse reflection components in the images,
where I denotes all the pixel sets in the images. Figure 11(right) shows
the specular image A-[7] and the specular environment map A-[L].
respectively. We can see the varying diffuse reflections have been offset in
with the simple linear computation. 4-[T] was used asthe
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Environment
map

Object images

‘ St. Peters
The 10 inputimage sets

Figure 11 The specular reflection comp extraction with 110 mages by using 9D spherical harmonic approximation of the diffuse reflection field.

(a) L: approximation of specutar componert. M: real specular component. R: approximation error

(b) Diffuse reflectance map "(c) L: original image. R: rendered image
Figure 12 Results for a surface with one material

Table 2. Comparison of SH (9D) and SVD (5D). The first column stands for the quality of approximation for
the diffuse reflection component. The other columns stand for the parameters of a two-lobe Lafortune model.

—~

A1) | Cyy C Ny Co2 Ca N,

KA-Ty @gb) | cgb) | teb) [ Ggb) | Ggb) | ¢ab)
1119, | (1012, | (1590, | 1053, | 0.710, | (1177,
SH 99.89% | -L121, | 1013, | 1543, | -1064, | 0672, | 9143,
-1123) | 1017 | 1532) | -1.084) | 0630) | 6643)
1129, | (1.014, | (1406, | (-1.081, | (0.544, | (89.02,
SVD 99.46% 21120, | 1016, | 1495 | -1.047, | 0781, | 1145,
-1122) | 1.019) | 153D | -1.062) | 0715) | 89.53)
1118, | (1013, | (1587, | (-1.053, | (0.695, | (1112,
Truth / 2118, | 1015 | 1565 | -1064, | 0662, | 8892,
-1120) | 1019) | 1546) | -1084) | 0627) | 6522)

Method
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(c) Diffuse refiectance map

i (b) L: the original material distribution pattem. R : the
(@) Specularimage | vered clsters for dferent materinls

(d) L: rendering image. R: original image.

Figure 13, Results for s surface with multiple materials

Table 3. Recovered BRDF parameters of the surface with multiple
materials

5.2.2. Results for a surface with multiple materials

‘We tested the proposed algorithm on a highly textured sphere with three
different materials to verify the efficiency of the proposed clustering algo-
rithm. We used 9D spherical harmonic approximation for extracting the

Material | C,, C N
Est. Tru. Est |Tmn | Est | T
A |r |-1052 | -1.056 | 0.883 | 0.881 | 2829 | 29.50
g | -1.054 0.883 2848
b | -1055 0.896 34.96
B |r |-1033 | -1.034 | 0960 | 1.007 | 2399 [ 2359
g | -1.034 0959 2382
b | -1.034 0959 2363
C |r |-1007 | -1.007 | 1007 | 1.007 | 621.9 | 6220
g | -1.007 1.007 6218
b | -1.007 1.007 6224

approximation of A-[I,,.] o recover the SBRDF. Figure 12(a) com-
pares the extracted component e is the real specular component A4 -[I] to
the real specular component A -[I,,__]. The difference between A-[I]

and A-[T,,] isshown in Figure 12(a right). The SBRDF was estimated
from the specular reflection image and the environment map by using a
Levenberg-Marguardt optimizing algorithm, which is shown in Table 2.
And the diffuse reflectances (Figure 12b) were recovered, sequentially.
Figure 12c shows the rendering result with the recovered parameters com-
pared to the original one.

We also test the proposed algorithm using SVD approximation from 6
images. A 5D optimal basis was computed from the surface normals and the
illumination conditions with SVD. The comparison of the estimating results
with the two approximation methods is presented in Table 2. As Table 2
indicates, the reflectance model can be recovered successfully by using the
proposed algorithm with both the approximation methods. The estimations
of ¥, for the higher frequency reflection lobe have larger emors comparing
with the others. 9D spherical harmonic basis shows a better approximation
than 5D SVD.

pecular component. One of the ten input object images is shown in Figure
13(d right). The original distribution pattem of the three materials is shown
in Figure 13 (b left), where the red, yellow and blue parts denote the differ-
ent materials. The result of A-[T] is shown in Figure 13(a). We inputted
the value of 3 as the maximum cluster number. After the proposed fitting
process had been finished, we cbtained a compact expression for the spa-
tially varying BRDF model of the surface including a diffuse refl

map shown in Figure 13(c), a set of clusters shown in Figure 13 (b right) and
the corresponding set of the SBRDFs represented in Table 3, which shows
that the proposed method can efficiently recover the whole BRDF model
from the sparse image set. Figure 13(d) represents the rendering result by
using the recovered reflectance model.

6. Conclusions

The main goal of this paper is the appearance acquisition for the real ob-
jects, in particular the objects with spastically varying BRDFs.

The paper addressed the problem for spatial reflectance recovery using a
very sparse image set. By taking advantage of the low-dimensional charac-
teristic of diffuse reflection functions, we can removed the high-frequency
varying terms from the BRDFs by using a sparse set of images with a linear
combination method. Since the specular properties have a slowly varying
nature, we can robustly estimate the spatial specular reflectance from the
observations, and acquire a high-quality appearance of spatially varying
BRDF. We proposed a set of techniques and algorithms to address the
ill-conditioned problem for sparse images in spatial reflectance recovery. In
the following, we briefly summarize our algorithms.
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First, we proposed a four-source Photometric Stereo method under con-
trolled lighting, We assume the diffuse reflectance varies arbitrarily over the
surface while the specular reflectance remains identical. (The assumption of
specular reflectance is removed in Section 4). Since the unshadowed diffuse
reflection field is a 3D linear space, we can use four single-light images to
remove the varying diffuse term with a linear combination. Then, the iden-
tical specular reflectance can be robustly recovered from all of the unshad-
owed points. And the diffise reflectance can be recovered at each point
subsequently. In previous work, inverse reflectometry methods either exploit
the diffuse measurements of points by changing view pointing, or use a
large number of images at fixed viewpoint to estimate directly. Our method
provides a new recovery approach for observations at a fixed viewpoint.

We then discuss the spatial reflectance recovery for real objects under
general distant illumination. Variations are allowed in both the diffuse and
the specular reflectance. The truly spatial reflectance recovery with vary
sparse images has not been achieved under general illumination by any
previous techniques. Under general distant illumination, the complefte Lam-
bertian reflection field can be approximated by a 9D linear subspace. Thus,
the illconditioned problem for sparse images can be addressed by using a
approximation of low-dimensional subspace (6~10). And spatial SBRDFs
can be recovered by an efficient cluster fitting process. To estimate the
specular reflectance, we anly need to fit SBRDF to a specular image, which
substantially simplifies the fitting process. As a result, we can effectively and
robustly recover a spatial varying BRDF model under arbitrary distant illu-
mination.

Efficient acquisition of high-quality models is mode possible by our tech-
niques since they demand only a very small image set. The idea of removing
the low-dimensional reflection terms might be more generally applied to
invelée rendering, which can speed up many current inverse reﬁderihg
processes.
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