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概要

本論文では対象物の三次元形状をより正確に復元するために、回転・平行移動からなる剛体変換による従来の位置合わせ手
法について調査し、最も正確な位置合わせ手法を設計する。位置合わせが正しく行われるためには、データノイズやデータの
初期位置に対するロバスト性が求められる。実際に実装した位置合わせ手法の正確さを実証するため、従来手法との位置合わ
せのふるまいを比較し、また推定された剛体変換のパラメタを定量的に評価した。また、剛体変換だけではモデリングや形状
比較などを行うのに十分ではないため、変形を伴う位置合わせを考える必要がある。本論文ではロバストな位置合わせを拡張
し、剛体変換と形状パラメタを同時に推定する手法とその応用例を提案する。本手法では、変形のメカニズムから厳密に定義
できる変形式が得られるものと仮定する。

キーワード: ロバスト位置合わせ,同時位置合わせ,形状パラメタ推定
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Abstract

In this paper, we investigate conventional registration implementation, consisting of rotation and translation, to design the most precise
registration so as to accurately restore the 3D shape of an object. To achieve the most accurate registration, our registration imple-
mentation needs the robustness against data noise, or initial pose and position of data. To verify the accuracy of our implemented
registration, we compare the registration behavior with the behavior of conventional registrations, and evaluate the numerical accuracy
of transformation parameter obtained by our registration.
However, registration by rigid-body transformation is not enough for modeling and shape comparison: registration when deformation
is needed. In this paper, we extend our robust registration to simultaneously estimate the shape parameter as well as the rigid-body
transformation parameter. This extension method assumes that the deformation is formulated strictly from the deformation mechanism.
We additionally introduce its applications of our extention method.

Keywords: robust registration, simultaneous registration, shape parameter estimation
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1 Introduction

Recently, progress has been made in restoring the accu-
rate 3D shapes of objects in the real world using computer
graphics. In this research, a laser range sensor is usually
used to capture the 3D shape data of an object. However,
the shape data is just partial because of the view limitation
of the sensor at one scanning. In order to reconstruct the
whole shape of the object, therefore, it is necessary to re-
store the neighboring status of partial data that can com-
pose the whole shape of the object. This restoration process
involves registration among 3D data.

Registration among 3D data is usually achieved by rigid-
body transformation consisting of translation and rotation.
This is implemented by the iterative minimization frame-
work of the squared sum of the distance between closest
points among overlapping 3D data of point cloud (Iterative
Closest Point, ICP). There are various kinds of implemen-
tation according to the purpose of the procedure.

In this paper, we investigate conventional registration im-
plementation to design the most precise registration so as to
accurately restore the 3D shape of an object. In our design
of registration implementation, the top priority is its accu-
racy, even if its computation cost could be expensive as far
as the computation complexity is within the limit of the cur-
rent computer platform. To achieve this, our registration im-
plementation needs the robustness against data noise, or ini-
tial pose and position of data. To verify the accuracy of our
implemented registration, we compare the registration be-
havior with the behavior of conventional registrations, and
evaluate the numerical accuracy of transformation parame-
ter obtained by our registration.

However, registration by rigid-body transformation is not
enough for modeling and shape comparison: registration
when deformation is needed. In this paper, we extend our
robust registration to simultaneously estimate the shape pa-
rameter as well as the rigid-body transformation parame-
ter. This extension method assumes that the deformation is
formulated strictly from the deformation mechanism. Us-
ing this extension framework, we implement a deformation
registration to estimate the shape parameter from the shape
measurement data of a mathematical plaster model made at
the end of the 19th century.

The proposed deformation registration pays attention to
the significance of estimated parameter as well as the con-
vergent registration result. To remove the distortion of
data obtained by the sensor suspended beneath the balloon
(Floating Laser Range Sensor, FLRS), we exploit our defor-
mation registration for the distortion rectification, regarding
the movement of FLRS during scanning as shape parame-
ter. In each implementation, we evaluate the accuracy of the
estimation of the shape parameter.

2 Related Work

2.1 Iterative Closest Point Algorithm

Automatic registration we consider here needs to give the
initial pose and position resulting in the optimal registra-
tion. This acquisition of initial pose and position can be
achieved by a user through Graphic User Interface (GUI).

However, initial registration through GUI is, at most, the
result that the user subjectively and visually regards as the
optimal one, so the closest points in this stage might not be
the closest points in the optimal registration result. In an
ICP algorithm framework, therefore, the point correspon-
dence in between neighbor data sets is taken as the closest
point temporally in the current registration status, and then
the registration is gradually improved. These two steps, the
point correspondence and registration improvement, are it-
eratively repeated until the optimal registration is reached
[1].

The straightforward quantative function, which we call
“objective function” here, is defined as follows:

f (t,R) =
∑

i

||Rxi + t − yi ||2, (1)

where t translation vector,
R rotation matrix,
xi ith point in the transformed data set,
yi the corresponding point (closest point) ofxi .

The registration problem is to find the parameter vectort
andR in this function.

The above equation is formulated just for one pair of data
sets, but multiple neighbor data sets are considered in some
implementations. In this case, the quantative function is
again shown as follows:

f (t,R) =
∑

j

∑

i

||Rxi + t − y ji ||2, (2)

where t translation vector,
R rotation matrix,
xi ith point in the transformed data set,
y ji the corresponding point (closest point)

of xi in the j th neighbor data set.

After obtaining their parameter set at each iterative step,xi

can be updated tox′i as follows:

x′i = Rxi + t. (3)

2.2 Registration Strategies

The above ICP algorithm was proposed by Besl and McKay
[1], and became the most fundamental framework for 3D
data registration. This algorithm framework reduces reg-
istration to the minimization problem of the distance sum
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between the corresponding data by the iterative calculation.
The function minimization with respect to the transforma-
tion parameter leads the optimal one which represents the
plausible transformation between the aligning data sets, for
example, three translation and three rotation parameters in
the case of the rigid-body transformation. This framework
assumed that two data sets were aligned, and that the shape
of a transformed data set was the partial one of the neighbor
data set. Currently it is extended in various way in order to
handle multiple data sets and to pursue the robustness and
the speed of convergence.

We can classify them from the viewpoint of the regis-
tration ordering, matching unit, point correspondence, error
metric, and outlier elimination.

2.2.1 Registration Ordering

In the registration of multiple sets of 3D data, the ordering
affects the convergence of the final result. The sequential
ordering chooses a corresponding pair of data sets at each
iteration for the registration, and repeats this process until
all the data sets are aligned [2] [3] [4] [5]. Its computation
cost is lower because only two data sets are handled at each
registration. However, it is susceptible to registration failure
since the registration errors are locally accumulated and this
causes the local discrepancy of the registration result.

In contrast, the simultaneous ordering aligns all the data
together at each iteration. Although its computation cost
is higher, it enables more accurate registration because the
registration error is distributed globally. Consequently, we
adopt the simultaneous ordering.

In relationship to the equation (2), registration ordering
determines how many data setsy ji is considered for the reg-
istration of the transformed data. In the case of sequential
registration,j is unity. Namely, only one neighbor data set
is considered for the registration data. Simultaneous regis-
tration considers all of the corresponding datay ji , in which
j does vary.

2.2.2 Matching Unit

Matching unit determines the point sampling. The matching
unit of the ICP algorithm has two kinds: All-points match-
ing uses all points of a data set. Feature-points matching
uses only points satisfied with some condition, for exam-
ple, only high-curvature points.

Assuming that one-to-one correspondence exists among
all the feature points, the feature-points matching usually
does not change their correspondence at any iteration [6]
[7]. So it cannot achieve the accurate registration in the
case in which the correspondence cannot be taken precisely.
Even if it changes their correspondence, the feature points
are unreliable when the range data has considerable noise,
because the feature points are derived by some differential
operation.

The all-points matching updates the correspondence so
that it can be more plausible as the iteration proceeds [1]
[8], and therefore can achieve more accurate registration.
Hence, our registration uses all-points matching.

2.2.3 Point Correspondence

Point correspondence determines how the corresponding
xi , y ji is chosen in equation (2). There are many implemen-
tations in finding corresponding pairs.

As described in Section2.1, the typical ones are nearest
neighbor correspondence [1] [8] and normal direction cor-
respondence [9]. Nearest neighbor correspondence is taken
as the nearest pair in Euclidian space.

Normal direction correspondence is taken as the near-
est pair in the normal direction of a point, and they are
time-consuming. In contrast, laser ray direction correspon-
dence can reduce the computational cost drastically [5] [10]
[11]. This correspondence is taken in the direction of a laser
ray emitted from the sensor in 3D point measurement. In
[11], its search computation mainly depends on the graph-
ics hardware. In the case of normal and laser ray direction
correspondence, the correspondence is taken between the
point xi and the point (y ji ) on the plane hit in the laser di-
rection of the pointxi . Since the plane is calculated by the
differential operation, so lots of wrong correspondences are
caused because of the data noise.

Registration accuracy and convergence speed change
greatly according to their point correspondence, and
Rusinkiewicz et. al. quantatively evaluate this in [12]. Pay-
ing attention to the difference of these convergence char-
acteristics, [4] adopts the hybrid correspondence of nearest
point-to-point and point-to-plane. The top priority in our
implementation is a registration accuracy, so we employ the
nearest neighbor correspondence because the accuracy is
guaranteed for the registration of various classes of shape
in this correspondence.

2.2.4 Error Metric

The error metric depends on what kind of valuexi is.
Namely,xi may represents a position vector, or a color (red,
blue, green: RGB) vector associated with the point.

In most implementations, the euclidian distance of the
matching point is mainly used [9] [10]. Some other algo-
rithms adopt such additional information as the surface nor-
mal and curvature [13], the reflectance (the reflection ratio
of the laser ray) [14] and color of the captured point as the
error metric [15] in order to make up for the inaccuracy of
point coordinate. In our implementation, we use only the
euclidian distance.
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2.2.5 Outlier Elimination

To cope with outlier, such as data noise and wrong point
correspondence in an initial registration, we need to recon-
sider the objective function. The straightforward function is
represented as follows:

E(p) =
∑

i, j

zi j (p), (4)

where

p = (t,R), (5)

zi j (p) = ||Rxi + t − y ji ||2. (6)

In this straightforward least-square (LS) objective function,
noise leads to an imprecise registration of 3D data, because
the exact correspondences between the noisy data are un-
known. Any erroneous correspondences must be eliminated
before registration, and a thresholding is often used to elim-
inate such false correspondences [5] [3] [4]. The threshold
value can be determined as a fraction of the standard devi-
ation,σ, to the errors in the data [16]. Typically, it is set
to greater than or equal to3σ. This is the simplest method,
but it is unreliable method because elimination is affected
by the binary classification of the threshold value.

Better outlier elimination can be provided by M-
estimation [17] [14], since probability distribution of the er-
ror is considered. M-estimation maximizes the probability
by minimizing a function of the form

E(p) =
∑

i

ρ(zi(p)),

whereρ(z) is an arbitrary function of the errorszi in the data
set. The M-estimator is the maximum-likelihood estimator
such that the probability distributionP is equivalent toE(zi).

We can find the parametersp that minimizeE by taking
the derivative of E with respect top and setting the deriva-
tive to 0.

∂E
∂p

=
∑

i

∂ρ

∂zi
· ∂zi

∂p
=

∑

i

w(zi)zi
∂zi

∂p
= 0, (7)

where w(z) =
1
z
∂ρ

∂z
.

This equation shows that the weight is added to the straight-
forward least-square objective function.

A Lorentz function is used as the M-estimator; a Lorentz
function can be represented as:

ρ(zi(p)) = log

(
1 +

1
σ2

zi(p)

)
. (8)

In practice, the weight is imposed at the differential opera-
tion stage, as follows:

∂ρ

∂p
=
∂ρ

∂z
· ∂z
∂p

=
1

2σ2 + z
· ∂z
∂p
. (9)

Wheeler summarized the registration behavior according to
the probability distribution in M-estimator in [18].

2.3 Deformation Registration

In this paper, we propose the extended framework of the
conventional registration algorithm to allow the shape de-
formation during registration process. This kind of reg-
istration, namely, deformation registration, has been re-
searched in such field as the medical imaging, and the
target object for the registration is mainly soft tissues.
They adopt similarity [19], affine [13], geometric hashing
[20], quadric/superquadric [21], and displacement-field-
based transformation [22] so that their deformation works
well for any kind of target shape.

These methods can be generally adopted in shape mod-
eling and fitting. However, if the deformation is strictly de-
fined by some parameterized formulation derived form the
deformation mechanism, the deformation is much more ac-
curate when using its formulation than when derived from
their methods. The parameters obtained from our strict for-
mulation carry with them the essential information about
the cause and origination of the deformation. So our frame-
work pays as much attention to the obtained parameters as
to the appearance resulting from the deformation. In this
point, our aim is different from theirs. So in our assumption
that the shape changes are strictly represented with a mathe-
matical formula including some variable parameters and its
formula is known a priori, we formulate the generally ex-
tended registration which allows the 3D data to be deformed
and determines both the deformation and the translation and
rotation parameters.

3 Robust Determination of Transla-
tion and Rotation Parameters

3.1 Robust Simultaneous Registration Algo-
rithm

Based on the previous section, here we explain the details
of our designed registration. As a preprocess, multiple data
sets are initially aligned. In iterative process, the followings
are done:

• Constructing kd-trees of data sets.
• Searching nearest neighbors using kd-trees.
• Minimizing the objective function (squared sum of near-

est neighbor distance) to find the better (optimal) regis-
tration parameter.

• Updating data sets according to the obtained registration
parameter.

The above process is repeated until the optimal registration
is reached.

This kind of algorithm is usually time-consuming, and
most of the computation cost depends on searching the cor-
responding point. We have already proposed the effective
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kd-tree algorithm for nearest neighbor search [23], and we
adopt it in our designed registration.

3.2 Minimization of Objective Function for
Parameter Estimation

3.2.1 Derivation of Descent Gradient

Our registration algorithm aligns all data sets simultane-
ously so as to minimize the squared sum of nearest neighbor
point-to-point distances. The objective function is repre-
sented as follows:

E(p) =
∑

i

∑

j

ρ(zi j (p)), (10)

where

p = (t,q), (11)

zi j (p) = ||R(q)xi + t − y ji ||2, (12)

ρ(zi j (p)) = log(1+
1
2

zi j (p)), (13)

t : translation vector,
R(q) : rotation matrix corresponding to quaternionq,
xi : ith point in the data set of interest,
y ji : the corresponding point ofxi

in the jth measured data.

As for its rotation matrix, we use a quaternion representa-
tion of 3 Degrees Of Freedom (DOF).

Using error metricE(p), we compute the parametersp
which fulfill the following equation:

popt = arg min
p

E(p). (14)

For the gradient-based solution of our non-linear optimiza-
tion, the descent gradient is:

∂E
∂p

=
∑

i

∑

j

∂ρ(zi j )

∂zi j
· ∂zi j

∂p

=
∑

i

∑

j

w(zi j )zi j
∂zi j

∂p
, (15)

where w(zi j ) =
1
zi j
· ∂ρ(zi j )

∂zi j
.

If we evaluate∂zi j/∂p by an identity quaternionqI , we can
represent∂zi j/∂p as

∂zi j (p)

∂p
= 2(R(q)xi + t − y ji )

∂(R(q)xi + t − y ji )

∂p

∣∣∣∣∣∣
qI

=

[
2(xi + t − y ji )

4C(xi)T(xi t − y ji )

]
(16)

=

[
2(xi + t − y ji )
4xi × (t − y ji )

]
, (17)

because the (negative) gradient of quaternion at an identity
quaternionqI is obtained by equation (18).

∂(R(q)xi)
∂q

∣∣∣∣∣
qI

= 2C(xi)
T . (18)

From the obtained descent gradient, the conjugate gradient
is calculated so that all the obtained gradient is guaranteed
to be orthogonal. Transformation vectorp is acquired us-
ing the conjugate gradient [24] [25] [26] and line minimiza-
tion method with a combination of golden ratio bracketing
(golden section search) and parabolic fits.

3.3 Evaluation

In this section, we quantify the effectiveness of our robust
registration on the basis of four issues by comparing pre-
vious registration methods. First, we argue the merits of
adopting a simultaneous strategy. Second, we discuss the
effectiveness of using stochastic outlier elimination to in-
crease the robustness of the technique. Third, to evaluate
the effectiveness of these two steps, we evaluate the overall
estimation accuracy of our registration.

3.3.1 Simultaneous vs. Sequential Ordering

In this evaluation, we align seven partial data sets of the Fu-
goppe Cave in simultaneous and sequential strategies. The
upper figure in Figure1 shows the initial state of these data
sets. They are slightly shifted among the overlapping data.
The middle and lower figures in Figure1 respectively show
the registration result in simultaneous vs. sequential order-
ing. The sequential registration we used is basically the
implementation proposed by [2]. In order to observe only
the effect of simultaneous and sequential strategies, how-
ever, this sequential registration uses M-estimator for out-
lier elimination.

In sequential registration, we must determine the data
pairing of alignment targets such that they are exactly over-
lapping each other. Sequential registration considers pair-
ing only two data sets at a time, and assumes that the reg-
istration works well among each pair of data sets. So if
the transformation is determined in one data set, it is trans-
formed together with the rest of the data.

Good registration is visible as evenly mottled pattern in
overlapping area because of slight differences in sampling
and because of the random noise, even if the area has an
identical shape.

Comparing simultaneous registration methods, sequen-
tial registration introduces local discrepancies (between the
yellow and cyan-blue data sets, for example). The detailed
observation is shown in Figure2. In the lower figures, the
green color indicates areas of little difference (less than 1
[cm]), while the red and blue colors indicate areas of larger
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difference (more than 1 [cm]). Simultaneous registration re-
sults in almost no difference, by comparison; simultaneous
registration is clearly better.

3.3.2 Straightforward Least Square Registration vs.
Robust Registration

In this investigation, we align the data sets of two ancient
mirrors that were cast from the same mold. They have local
differences in their shapes.

The initial pose and position between them is shown in
Figure3. They are aligned using straightforward LS regis-
tration as well as robust M-estimator registration. The for-
mer is the registration proposed by [16], and the latter is our
implemented registration. The registration result is shown
in Figure4. Figures in the first row show the convergence
result.

Figures in the second and third row, respectively, show
the convex and concave areas of one mirror vs. the other
when the length between each corresponding point is ex-
ceeded by the setting threshold. This threshold is respec-
tively set to 0.5 and 0.25 [mm] in the second and third row.
In the second row, the upper circular area has more con-
cave area when using an M-estimator, but the lower area
has more convex area otherwise. Similarly in the third row,
the left area has more convex area in the M-estimator re-
sult, but the right area has more convex area otherwise. As
shown in the numerical results, the green area, regarded as
an area of no difference in shape, is 51.7 and 49.6 percent
of the total in the middle, and is 77.0 and 77.3 percent in the
lowest, respectively, in the case for which the thresholds are
0.25 and 0.5. This result shows that the outlier area is auto-
matically recognized and ignored in the registration process
in order to align as much area as possible.

3.3.3 Estimation Accuracy of Translation and Rota-
tion parameters

In this investigation, we align two data sets capturing the
face of a tower at Bayon ruin in Cambodia (Figure5-(a)).
To consider the registration of the actual measurement data,
we created two data sets from the same measurement data
by sub-sampling the different points. Figure5-(b) shows the
appearance of two superimposed data, which is regarded as
the correct registration between them.

To create the initial position states of two data sets – orig-
inal and transformed data sets – the transformed data set is
translated and rotated, then it is realigned to the original
data. The estimation accuracy of the registration parame-
ter is regarded as the difference between the amount of the
translation and rotation of the transformed data set in its ini-
tial state and that of the registration result.

The initial position of transformed data set is set to three
steps in translation and rotation respectively. It is translated
to± 0.5 [m] in each axis, and is rotated to± 30 [deg] around
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Figure 1:Registration results in simultaneous and sequen-
tial strategies. The upper figure shows the initial state of
partial 3D data. The middle and lower figures respectively
show the registration results in simultaneous and sequential
strategies.
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Figure 2:Detailed observation of registration results in si-
multaneous and sequential strategies. The upper figures
show the whole appearance of registration results in simul-
taneous (left) and sequential (right) strategies. The lower
figures show the detail of the overlapping area between
them. The green shows no difference (less than 1 [cm]),
while the red and blue show larger differences (more than 1
[cm]).

all the direction that can be represented as the combination
of -1, 0, and 1 in each axis. As a result, the number of trans-
lation settings is 26 (27 (33) minus 1 (to remove the trivial
translation (0, 0, 0))). In rotation, the number of rotation
axes is 26 (27 (33) minus 1 (likewise, to remove the “rota-
tion” axis (0, 0, 0))), but half of these axes are symmetrical
with respect to the coordinate origin (For example, (-1, 1,
1) and (1, -1, -1)), so the actual number of rotation axes is
13. In each axis, transformed data set is rotated 30 [deg]
in clockwise and counter-clockwise directions, so the num-
ber of rotation settings is 26. Combining translations and
rotations, we have 676 cases (26× 26).

As a numerical result, we show twelve parameter sets
which are considered typical of all the estimation results,
in Figure6. In this figure, “x-t 0.5” means 0.5 [m] trans-
lation alongx axis, and “x-r 30” means 30 [deg] rotation
aroundx axis. When the initial translation and rotation is
set as shown in the translation and rotation axes (e.g. x-t

Figure 3:Initial pose and position between two mirrors. In
this figure, The yellow mirror is slightly translated and ro-
tated against the red. (Data Informant: Kashihara Institute
of Archaeology and Tokyo National Museum.)

0.5, x-t -0.5, ..., z-t -0.5, x-r 30, x-r -30, ..., z-r -30), the
difference between each true initial parameter and the cor-
responding estimated parameter with respect to each axis
(Translation alongx axis, Translation alongy axis, Trans-
lation z axis, Rotation around estimated axis) is shown on
the vertical axis (e.g. 0,± 0.1, ...). This figure shows the
translation and rotation estimation errors of our registration
is respectively within 0.05 [m] and 0.5[deg].

Of our 728 cases, 694 result in good registration. Be-
cause we can easily observe large position differences in
these 34 cases, our registration seldom fails if the initial po-
sition estimate is manually improved.

In addition, we investigate the result of two implemen-
tations proposed by [11] (laser ray direction, point-to-plane
correspondence, thresholding) and [16] (nearest neighbor,
point-to-point, thresholding) by aligning 728 pairs of data
set in the same condition as the above. In the first registra-
tion method [11], 483 result in good registration. Observing
the registration process, the convergence of this registration
looks slow until the optimal registration is acquired. And in
the second registration method [16], 715 result in good reg-
istration. These pairs are completely superimposed in all
area each other, so it looks preferable not to employ the op-
eration for outlier elimination. To verify this, we create and
align the partial shape data sets as shown in Figure7. The
initial setting of translation and rotation is the same as the
above. Then in our registration, 343 result in good registra-
tion, while 335 result in good registration in the registration
[16]. Though our initial setting is rough in this evaluation,
our implementation can prove to be more robust than [16],
if the detail evaluation is done.
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Figure 4: Convergence results of two mirrors. Figures in
the first row show the convergence result, and figures in the
second and third row show the convex and concave areas of
one mirror against the other when the length between each
corresponding point is exceeded by the setting threshold,
regarded as shape difference. (Data Informant: Kashihara
Institute of Archaeology and Tokyo National Museum.)

4 Extension of Rigid-body Transfor-
mation

In this section, we first generally extend the rigid-body
transformation to allow deformation during a registration.
Therefore, estimated parameters include those which affect
their shape in addition to six parameters of the pose and po-
sition in a conventional registration. In later sections, we
adopt this extended framework to solve each problem.

4.1 Simultaneous Determination of Registra-
tion and Deformation Parameters

Our proposal assumes that the deformation can be rep-
resented by a parameterized mathematical formula whose

Figure 5:Data used in this evaluation. In (a) in this figure,
the size of each unit square is 0.1 by 0.1 [m]. Here, positive
axes of x-axis and y-axis are respectively set to the right and
upper direction, and the positive direction of z-axis is set to
the front direction, perpendicular to this figure.
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Figure 6: Estimation errors in translation and rotation for
each initial position.

form is known a priori, but whose parameters are unknown.
Our goal is to simultaneously determine these deforma-

tion, translation, and rotation parameters by comparing the
target data to transform with its corresponding data. We do
this using an ICP framework: translation and rotation pa-
rameters are determined in a minimization paradigm. If we
fix the translation and rotation parameters, determination
of the deformation parameter becomes an iterative shape
matching problem. Thus, we can handle all parameter de-
terminations in a unified minimization framework.

We extend the parameter estimation of the registration
formulation to add the shape parameter by extending the ob-
jective function in equation (12). Therefore,zi j (p) in equa-
tion (12) is transformed into:

zi j (p) = ||R(q)g(xi , k) + t − y ji ||2, (19)

where p = (t,q, k),
g(xi , k) : deformation function of pointxi

with respect to parameterk.
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Original Data

Transformed Data

Superimposing

Area

Figure 7:Partial data used to compare the registration result
of ours and [16]

Our rigid-body registration is designed to be robust, and
here we adopt the same strategy as in Section3. In this
extended framework, we consider the registration of multi-
ple data sets. The algorithm in this framework is the same
as shown in Section3.1.

In the ICP based registration algorithm, the acquisition of
the valid initial parameter is important for the optimal reg-
istration result. In our implementation, the initial transfor-
mation parameter is set manually, using GUI, with accuracy
good enough to reach a true optimum.

4.2 Minimization of Objective Function for
Parameter Estimation

Summing up our strategy in this framework as a numerical
formulation, the minimization function is as follows:

E(p) =
∑

i

∑

j

ρ(zi j (p)), (20)

where

p = (t,q, k), (21)

zi j (p) = ||R(q)g(xi , k) + t − y ji ||2, (22)

ρ(zi j (p)) = log(1+
1
2

zi j (p)), (23)

t : translation vector,
R(q) : rotation matrix corresponding to

quaternionq,
k : shape parameter,
xi : ith point in the data set of interest,
g(xi , k) : deformation function of pointxi with

respect to parameterk,
y ji : the corresponding point ofxi in the jth

measured data.

Again, we compute the parameterp to satisfy the following
equation:

popt = arg min
p

E(p). (24)

To calculatep, we also use the gradient-based solution. The
descent gradient is computed as follows:

∂E
∂p

=
∑

i

∑

j

∂ρ(zi j )

∂zi j
· ∂zi j

∂p

=
∑

i

∑

j

w(zi j )zi j
∂zi j

∂p
, (25)

where w(zi j ) =
1
zi j
· ∂ρ(zi j )

∂zi j
,

∂zi j (p)

∂p
= 2(R(q)g(xi , k) + t − y ji )

∂(R(q)g(xi , k) + t − y ji )

∂p

∣∣∣∣∣∣
qI

.

(26)
Using this descent gradient, the conjugate gradient is

adopted similarly in Section3.

5 Shape Parameter Estimation of
Mathematical Model

5.1 Mathematical Model : Revolution Sur-
face of Catenary

As a main topic in this chapter, we estimate the shape pa-
rameter of certain mathematical model made of plaster in
order to examine its manufacturing accuracy (Figure8).
This model is a cultural asset; it was manufactured in Ger-
many at the end of the 19th century for educational pur-
poses. It has been displayed in our university museum.

This object has no documentation, and we are interested
in identifying the shape parameters the makers used in man-
ufacturing it. We wish to estimate deformation parameters
by applying our extended registration framework algorithm
to both measured data sets and the data set computed by
mathematical formula, in order to evaluate the manufactur-
ing accuracy of the plaster model.

Using our estimated parameters, we also wish to remake
more accurate model for comparison, because both histo-
rians and the mathematicians are interested in the level of
manufacturing skill extant in those days. Our target is the
model that is called “revolution surface of catenary”.

5.2 Mathematical Formula and Experimen-
tal Result

The surface generated by rotating a 2D catenary is shown in
Figure8-(1). Such a surface always has azimuthal symme-
try. Besides scale parameter (l), there are two parameters
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catenary

X

Y

Z
(1)

(3)

(2)

Figure 8: (1) A Mathematical model and (2) its ideal rep-
resentation used in our experiment. It has the constant neg-
ative curvature on all points of their surface. (Data Infor-
mant: Prof. Toshitake Kohno (Graduate School of Mathe-
matical Sciences, The University of Tokyo.))

(a, b) involved in the generation of such surfaces. The nu-
merical formula is as follows:

shape parameter k = (a,b, l) (0 < b ≤ a),

g(xi , k) = (lφ(v) cosu, lφ(v) sinu, lψ(v)), (27)

where 0 ≤ u ≤ 2π, −a · sinh−1
(a
b

)
≤ v ≤ a · sinh−1

(a
b

)
,

φ(v) = bcosh
(v
a

)
, ψ(v) =

∫ v

0

√
1− b2

a2
sinh2

( t
a

)
dt.

(28)
In the following, let

f (a,b, t) =

√
1− b2

a2
sinh2

( t
a

)
. (29)

Therefore,

ψ(v) =

∫ v

0
f (a,b, t)dt. (30)

In a rigid-body transformation as shown in equation (3),
point of interestxi is updated tox′i , andx′i to x′′i at the next
step, according to estimated parameters as follows:

x′i = Rxi + t, (31)

x′′i = R′x′i + t′. (32)

In the pattern of the target model, the calculated data are de-
termined only by a shape parameter. In other words,g(xi , k)
is actuallyg(k): xi is not needed. In this case, updating is
usually performed as follows:

x′i = Rg(xi , k) + t, (33)

x′′i = R′Rg(xi , k + k′) + t + t′. (34)

� ��� ��� ����	�
���
�������	�
���� ��� 
�� ���������������������������! �" #

Figure 9:The initial state and result of the parametric data.

In the case of updating pattern as shown in equation (32),
the descent gradient is obtained by evaluating the rigid-
body rotation at an identity quaternion (qI ) for all param-
eters. This numerical representation is as follows:

∂zi j (p)

∂p
=


2(g(xi , k) + t − y ji )
−4g(xi , k) × (t − y ji )

2(g(xi , k) + t − y ji )
∂(g(xi ,k))

∂k

 . (35)

But otherwise, the updated rigid-body rotation is not re-
flected if it is evaluated atqI for all parameters. So we
evaluate the rigid-body rotation atqi just for the rigid-body
rotation parameter as shown in the following:

∂zi j (p)

∂p
=


2(Rg(xi , k) + t − y ji )
−4g(xi , k) × (t − y ji )

2(Rg(xi , k) + t − y ji )R
∂(g(xi ,k))

∂k

 . (36)

The 3D shape of the plaster model was captured using a
VIVID 900 (KonicaMinolta) range finder. The data sets
were initially aligned using a manual process via Graphic
User Interface (GUI). Initial shape parameter was also man-
ually estimated. Figure9 shows the registration result, and
it was well-behaved and convergent. The shape parameters
were estimated as follows:

a = 0.0568, b = 0.0237, l = 0.996.

5.3 Evaluation

Our estimation is affected by various kinds of errors: range
data measurement errors; initial registration errors; and the
errors in the manually input initial shape parameter. We
have already reported how the accuracy of our estimated
parameter depended on such errors by using synthesized
data computed using known parameters and adding Gaus-
sian noise [27].

Additionally, here we investigated the combined effects
of an initial translation, rotation, and specified shape pa-
rameter. The initial shape parameter(a,b, l) of the calcu-
lated data was set to five steps around each truth value. In
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Figure 10:Reproduced metallic mathematical model.

particular,a, b, and l were set to 0.03, 0.04, 0.05, 0.06,
0.07, to 0.01, 0.015, 0.02, 0.025, 0.03, and to 0.7, 0.85, 1.0,
1.15, 1.3. Initial translation and rotation were exclusively
set to three steps as follows: translation to 0.01, 0.02, and
0.03 [m] alongx andz axes, and rotations of 10, 20, and
30 [deg] around thex axis. This results in 124 deformation
cases (125 (53) minus 1 (0.05, 0.02, 1.0: the truth value)).
There are 9 translation and rotation cases, so there are 1116
(124 × 9) cases to investigate. Altogether, therefore, we
investigated 1249 (124 + 9 + 1116) cases.

Of these 1249 cases, 991 result in the correct registra-
tion. Judging from these results, a registration tends to fail
if there is too much difference between the initial and truth
values. These data sets are obviously different in their shape
and position; these differences might be easy to cancel be-
cause the user can immediately recognize a deficiency and
re-run the algorithm after improving the initial shape pa-
rameter and position estimates.

5.4 Reproduction of Mathematical Model

Using our algorithm of shape parameter estimation, another
mathematical model of Dini’s Surface was reproduced in
metal by Yamada Seiki Co.,ltd. [28] under the supervi-
sion of an artist, Mr. Hiroshi Sugimoto [29]. Yamada Seiki
Co.,ltd successfully generated the 3D Shape of the original
model with high accuracy (Figure10), and Mr. Sugimoto
held an exhibition of the work at the Mori Art Museum at
Roppongi Hills.

In this way, our algorithm can create CAD (computer-
aided design) primitives and compressed 3D shape data
faithful to the original shape, and as a result, we can refine
or alter the shape as desired.

6 Registration for Range Data Ob-
tained by Floating Laser Range
Sensor

6.1 Floating Sensing System

To obtain 3D measurement data for large objects, a laser
range sensor (LRS) mounted on a tripod is often used. Un-
fortunately, it often happens that some part of a large object
is invisible from the ground. In order to scan these invisi-
ble faces, a scaffold might be built nearby. However, this
involves time and expense, and moreover, some surfaces
might still not be visible due to space limitations for this
scaffolding, lack of a viable superstructure, and so forth.

We have developed a novel 3D measurement system [30].
Our system digitizes objects from the air while being sus-
pended beneath a balloon. Although our system is free from
high frequency vibration like that caused by helicopter en-
gines, there still remains low frequency movement due to
the floating balloon which distorts the data. However, this
movement can be modeled as simple trajectory by regarding
the movement as the swing of a pendulum.

Our system consists of two main processes: scanning
and registration. For the 3D scanning of visible surfaces
from the ground, we use an LRS mounted on a tripod on
the ground, as usual. To scan facets invisible from the
ground, such as the rooftop of a building, we have devel-
oped and tested a Floating Laser Range Sensor (FLRS). The
FLRS data contains distortion caused by the swing motion
of the balloon during scanning, but our extended registra-
tion framework can be applied to remove this to rectify the
data.

6.2 Floating Laser Range Sensor

Our FLRS system consists of a scanner unit, a controller
and a personal computer (PC). These three units are sus-
pended below a balloon.

Our scanner unit includes a laser range finder especially
designed to be hung from a balloon. Our design require-
ments were that the unit be compact and lightweight enough
to be carried by a balloon, and that it be fast enough to min-
imize the influence of the balloon’s normal swing.

The scanner unit includes a spot laser radar unit and two
mirrors. We chose to use the LARA25200 supplied by Z+F
Inc. as a laser radar unit because of its high sampling rate
(maximum 625,000 [points/sec]).

6.3 Inter- and Intra-Scanning Registration

6.3.1 Assumption and Formulation of FLRS Motion

In order to align data sets from the FLRS, we distinguish
between two different types of movement, “inter-scanning”
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and “intra-scanning”. Inter-scanning movements provide
different views of a scene, and are equivalent to a series
of rigid-body transformations. But the FLRS moves during
the acquisition of each range data set; this intra-scanning
movement of the sensor distorts the measurement data. Our
extended registration framework enables the rectification of
this distortion; we can represent this motion as a deforma-
tion parameter.

The motion of FLRS during scanning depends on the fol-
lowing:

• Its initial velocity
• Its initial angular velocity
• Any acceleration generated by external force
• Any angular acceleration generated by external moments

We can ignore the influence of translation and angular ac-
celerations because our FLRS needs only one second to
scan a frame. Therefore, we consider FLRS movement to
have constant velocity in translation and rotation, without
changing its rotation axis during a frame. Under this as-
sumption we set up the deformation equation in equation
(19).

Figure11shows positional relationship in intra-scanning
registration. Here,Ou means the origin of the camera co-
ordinate system for the case in which FLRS does not move
during a scan, andOd means the origin of the camera co-
ordinate system at the timeτi . (Note that0 ≤ τi ≤ 1; one
measurement can require up to a second.)

Assuming that the FLRS moves during scanning,τi is the
time elapsed since the first point was captured. Then FLRS
acquires a 3D pointau in the camera coordinate systemu
(i.e., ad in the camera coordinate systemd). Because the
measurement point is actually recorded in the camera coor-
dinate systemu, the translation vector and rotation matrix
from the coordinate systemu to the coordinate systemd at
timeτi arevuτi andRd←u(τi), respectively.

If the corresponding point ofau is bu in the world coor-
dinate systemw, then the error in this registration can be
represented as

zi = ||Rw←uau + Tu − bu||2. (37)

If the FLRS moves during acquisition, the measurement
point is captured from the origin of the camera coordinate
Od at the measurement timeτi . Therefore in the coordinate
systemu,

au = ∆R−1
d←u(τi)ad + vuτi . (38)

Notice thatR−1
d←u(τi) is equal toRu←d(τi).

Substituting equation (38) for equation (37),

zi = ||Rw←u(∆R−1
d←u(τi)ad + vuτi) + Tu − bu||2. (39)

In this case, the geometric functiong(xi , k) is represented
as follows:

g(xi ,pintra) = ∆R−1
d←u(τi)xi + vτi , (40)

wherepintra include the state of the intra-rotation axis, its
angular velocity, and the intra-translation (v).

In addition to the parameters of the rigid-body transfor-
mationRw←u, Tu, we have to estimate the deformation pa-
rameter of∆R−1

d←u(τi), vu.
Intra-rotation is represented by the description of the ro-

tation axis and angular velocity, but these parameters can-
not be obtained in the same way as the rigid-body rotation
solution which involved a quaternion derivative. In case
of rigid-body rotation, the rotation axis description is first
calculated, and then the amount of rotation around this cal-
culated axis can be determined by the quaternion normal-
ization. This rigid-body rotation is common to the whole
data. But intra-rotation does change with the timeτi at each
i-th point, namely, it must be represented as a function with
respect toτi .

To remedy this problem, we represent∆R−1
d←u(τi), by al-

lowing m andω be the rotation axis and angular velocity
respectively, as follows:

∆R−1
d←u(τi) = ∆R−1

d←u(m, ωτi) =[
(1− cosωτi )mx2 + cosωτi (1− cosωτi )mxmy − (sinωτi )mz (1− cosωτi )mzmx + (sinωτi )my

(1− cosωτi )mxmy + (sinωτi )mz (1− cosωτi )my2 + cosωτi (1− cosωτi )mymz − (sinωτi )mx
(1− cosωτi )mzmx − (sinωτi )my (1− cosωτi )mymz + (sinωτi )mx (1− cosωτi )mz2 + cosωτi

]
,

(41)

where
m = (mx,my,mz) and ||m|| = 1. (42)

6.3.2 Parameter Gradient of Objective Function

In this inter- and intra-registration, we likewise cannot up-
date the geometric point in the same way as in the case
of rigid-body transformation. If a 3D pointx is iteratively
changed tox′ andx′′ by a rigid-body transformation(R, t)
and(R′, t′), the relationship betweenx andx′ is:

x′ = Rx + t, (43)

x′′ = R′x′ + t′. (44)

However, assuming that a 3D pointx is iteratively changed
tox′ andx′′ by this inter- and intra-registration(R,∆R, v,T)
and (R′,∆R′, v′,T′), the equation above is not valid. be-
causex′ andx′′ expand to the following:

x′ = R(∆Rx + vτ) + T, (45)

x′′ = R′R{∆R′x + (v + v′)τ} + (T + T′). (46)

In rigid-body transformation, the descent gradient is ob-
tained by evaluating the rigid-body rotation at an identity
quaternion (qI ) for all parameters, but that method cannot
be used here because of the updating problem as described
above. Specifically, the updated rigid-body rotation is not
reflected if it is evaluated atqI for all parameters. So we
evaluate the rigid-body rotation atqI only for rigid-body
rotation parameters.
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Figure 11: Positional relationships in the case of intra-
scanning registration.Ow, is the origin of the world coordi-
nate system,Ou the camera coordinate system origin when
the measurement starts, andOd is the camera coordinate
origin when the measurement is finished. Capital and small
letters are respectively concerned with the world coordinate
and each camera coordinate shown by their subscript.

To derive the descent gradient in the non-rigid case, we
replacingRw←u, ∆R−1

d←u(τi), ad, vu, τi , Tu, andbu with R,
∆R(τi), xi , v, τi , T, andy ji in equations (39) and (40) to
obtain the following:

zi = ||Rg(xi ,pintra) + T − y ji ||2, (47)

g(xi ,pintra) = ∆R(m, ωτi)xi + vτi , (48)

where

pintra = (v,m, ω). (49)

6.4 Experiment

As an experiment on an actual case, we executed our algo-
rithm on the data of the Bayon temple. In this experiment,
we aligned the corresponding data captured by our FLRS
and Cyrax 2500. The latter data set was scanned from the
stable ground so that there was no movement during scan-
ning, and we assume that it is sufficiently reliable. The de-
tails of the data set and the registration process are respec-
tively shown in Figures12 and13. You can see that our
algorithm aligned and fitted the FLRS’s data well in com-
parison to the Cyrax2500’s data.

Inside

Entrance

Corridor

Roof

Tower

Figure 12: Detail of Bayon Data. This range data is the
partial shape of the Bayon temple in Cambodia.

6.5 Evaluation

To evaluate the accuracy of the algorithm, we aligned the
two data sets used in the accuracy evaluation of our rigid-
body transformation parameter (See Section3.3.3). One
data set is regarded as a data set without distortion, and
the other as being deformed according to equation (40).
This latter data set is equivalent to the quality of a data set
obtained by FLRS. We considered the position difference
(inter-translation and inter-rotation: rigid-body translation
and rotation) of our two data sets.

The initial intra-transformation (intra-translation and
intra-rotation) of pseudo-FLRS data was manipulated in
five steps: exclusive translation to±0.5, ±0.25, and 0 [m/s]
in each axis, and exclusive rotation to±20, ±10, and 0
[deg/s] around each axis. In this scenario we assume
the rotation axis is known. The number of actual intra-
transformation cases are therefore 168 because the number
of only intra-translation, only intra-rotation, and combined
intra-transformation is respectively 12 (4 (±0.5 and±0.25)
× 3 (each axis)), 12 (4 (±20 and±10) × 3 (each axis)), 144
(12 × 12). (The effect of a varying initial rotation axis is
investigated later.)

Next, the effects of inter-transformation (inter-translation
and inter-rotation) are considered. The initial inter-
transformation was manipulated in three steps: transla-
tion to ±0.1 and 0 [m], and rotation to±5 and 0 [deg].
In this case, the number of inter-transformation is 12 be-
cause the number of only inter-translation and only inter-
rotation is 6 (2 (±0.5) × 3 (each axis)) and 6 (2 (±5) ×
3 (each axis)). Thus, the total number of evaluation pat-
tern is 2169 (144 (only intra-transformations) + 12 (only
inter-transformations) + 144× 12 (combination of intra-
and inter-transformation)).

As a numerical result, we show 24 evaluation results
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Figure 13: Range images in our registration process: A
range image of FLRS (yellow) is aligned and fitted onto
the corresponding range image of Cyrax 2500 (red) simul-
taneously.

on behalf of all the estimation results in Figures14 and
15. Figures 14 and 15 respectively investigate the ef-
fects of only inter-transformation as well as only intra-
transformation on parameter estimation. In these figures,
“x-t” means translation alongx axis, and “x-r” means rota-
tion aroundx axis. Judging from these figures, the resulting
errors of inter-translation, inter-rotation, intra-translation,
and intra-rotation are respectively within 0.15 [m], 2.2
[deg], 0.11[m/s], and 1.9 [deg/s]. It can be seen that inter-
transformation errors tend to have more effect on parameter
estimation than that of intra-transformation.

For estimation evaluation of an intra-rotation axis, a data
set in which intra-translation is set to -0.25 [m] alongzaxis
(= (0, 0, 1))and intra-rotation is set to -10 [deg] is aligned to
the data set without distortion. Then, we set the initial intra-
rotation axis to (0.00, 0.50, 0.87 (=

√
3

2 )). After registration,
estimated axis of intra-rotation is (0.00, 0.48, 0.88). There-
fore, the intra-rotation axis can be reasonably estimated by
our method, with its resulting appearance visibly close to
the truth (Figure16). However, the initial estimate must
be somewhat close to the truth or wrong convergence may

Inter-translation x
Inter-translation y

Inter-translation z

Intra-translation v_x
Intra-translation v_y

Intra-translation v_z

Inter-translation 

Intra-translation 
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-0.1
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5
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Figure 14:Estimation errors of parameters for each initial
inter-transformation.

Inter-translation x
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Intra-translation 

[m, deg, m/s, deg/s]

x-t

0.25
x-t

-0.25
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y-t

-0.25
z-t

0.25
z-t

-0.25
x-r

10
x-r

-10
y-r

10
y-r

-10
z-r

10
z-r

-10Intra-Transformation

Figure 15:Estimation errors of parameters for each initial
intra-transformation.

result.
Of 2196 cases, we considered 1860 cases resulted in

good registration. Generally speaking, as long as the initial
error of inter-translation, inter-rotation, intra-translation,
and intra-rotation is respectively within±0.5 [m], ±5 [deg],
±0.25[m/s], and±20[deg/s], the registration result will be
accurate, even if these effects are combined.

7 Conclusion and Future Work

In this thesis, we proposed the robust simultaneous registra-
tion of 3D shape data. This registration reduces the solution
of a nonlinear equation to iteratively minimize the distance
between a pair of corresponding 3D data sets. As a prepa-
ration for designing the registration algorithm, we analyzed
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Figure 16:Registration result in the case which the different
parameter of intra-rotation axis is initially set.

the merits and demerits of conventional methods, and to de-
sign the most accurate registration algorithm, we adopted
the simultaneous ordering, all point matching, closest point-
to-point distance, and M-estimator for outlier elimination.

To verify the robustness of our registration against the
initial position and the measurement noise, we evaluated
the estimation accuracy of registration parameter, compar-
ing the registration result between our method and conven-
tional registration. To summarize our implemented registra-
tion, it can align only the identical part of superposing 3D
shape data robustly because of the use of M-estimator, and
can restore even complex shape since simultaneous strategy
is employed.

Moreover, we extended our registration, namely, rigid-
body transformation, to enable registration among 3D data
that can deform each other through some known mathe-
matical formula. This extended method requires determin-
ing more parameters concerned with shape than just the six
translation and rotation parameters. It can solve the rigid-
body transformation and shape parameter in a unified man-
ner. Here we assumed that the shape changes are strictly
defined by some parameterized formulation derived from
the deformation mechanisms.

We employed our extended registration to estimate the
shape parameter from the shape measurement data of math-
ematical plaster models. We successfully estimated their
parameters and reproduced a metallic replica model of the
original Dini’s Surface with high accuracy. We verified
the estimation accuracy through a simulation-based experi-
ment.

We also applied our extended registration to registration
among range images obtained by the laser range sensor sus-
pended beneath a balloon. In contrast with a conventional
3D sensing system, this registration needs to rectify the dis-
tortion due to the movement during measurement. We also
evaluated the estimation accuracy of FLRS movement, and
the applicable limitation.

In our future work following, we have some goals for
improving our system. The first is to automatically de-

termine the initial pose and position among aligned data
sets. This automatic determination would enable totally au-
tomatic registration among 3D data sets. The problem is
how to lead the initial state for our system to work well.

The next goal is to align deformable data without rigid
(undeformable) data. In this thesis, we always assumed the
registration between rigid data and deformable data. This
problem here may also be how to determine the initial pose,
position, and shape parameter as described above.

The applications we proposed here are only a few of the
possible applications, and we are trying to develop an ap-
plication to generate the CAD primitives under the shape
parameter estimated from the range image. This applica-
tion will convert the range images into the properly approx-
imated CAD data sets. The benefit of this application is to
be able to compress the range images which usually consist
of numerous 3D points and polygons. We intend to apply
our framework widely to various classes of problem.
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