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Registration and Deformation of 3D Shape Data through
Parameterized Formulation

Tomohito Masuda Katsushi lkeuchi
University of Tokyo University of Tokyo

Abstract

In this paper, we investigate conventional registration implementation, consisting of rotation and translation, to design the most precise
registration so as to accurately restore the 3D shape of an object. To achieve the most accurate registration, our registration imple-
mentation needs the robustness against data noise, or initial pose and position of data. To verify the accuracy of our implemented
registration, we compare the registration behavior with the behavior of conventional registrations, and evaluate the numerical accuracy
of transformation parameter obtained by our registration.

However, registration by rigid-body transformation is not enough for modeling and shape comparison: registration when deformation
is needed. In this paper, we extend our robust registration to simultaneously estimate the shape parameter as well as the rigid-body
transformation parameter. This extension method assumes that the deformation is formulated strictly from the deformation mechanism.
We additionally introduce its applications of our extention method.

Keywords: robust registration, simultaneous registration, shape parameter estimation
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1 Introduction 2 Related Work

. . 2.1 Iterative Closest Point Algorithm
Recently, progress has been made in restoring the accu-

rate 3D shapes of objects in the real world using compufitomatic registration we consider here needs to give the
graphics. In this research, a laser range sensor is usuéiffal pose and position resulting in the optimal registra-
used to capture the 3D shape data of an object. HoweWdN. This acquisition of initial pose and position can be
the shape data is just partial because of the view limitatidghieved by a user through Graphic User Interface (GUI).
of the sensor at one scanning. In order to reconstruct th&lowever, initial registration through GUI is, at most, the
whole shape of the object, therefore, it is necessary to f@sult that the user subjectively and visually regards as the
store the neighboring status of partial data that can co@ftimal one, so the closest points in this stage might not be

pose the whole shape of the object. This restoration proct¥ closest points in the optimal registration result. In an
involves registration among 3D data. ICP algorithm framework, therefore, the point correspon-

] ] ) ) . dence in between neighbor data sets is taken as the closest
Registration among 3D data is usually achieved by rigiffaint temporally in the current registration status, and then

body transformation consisting of translation and rotatiofie reqistration is gradually improved. These two steps, the
This is implemented by the iterative minimization framé&sqint correspondence and registration improvement, are it-

work of the squared sum of the distance between closggliely repeated until the optimal registration is reached
points among overlapping 3D data of point cloud (lteratiyg;

Closest Point, ICP). There are various kinds of implemen-rp,q straightforward quantative function, which we call
tation according to the purpose of the procedure. “objective function” here, is defined as follows:

In this paper, we investigate conventional registration im-
plementation to design the most precise registration so as to f(t.R) = Z IRx; +t = yill?, (1)
accurately restore the 3D shape of an object. In our design i
of reg|strat!op |mplement§tlon, the top priority is |t§ accu- were t  translation vector,
racy, even if its computation cost could be expensive as far R rotation matrix
as the computation complexity is within the limit of the cur- . L ’
rent computer platform. To achieve this, our registration im- Xf Ithh point in thedt.ransfqrmecli data set., "
plementation needs the robustness against data noise, or ini- yi the corresponding point (closest pointpe:
tial pose and position of data. To verify the accuracy of olihe registration problem is to find the parameter vettor
implemented registration, we compare the registration lzexdR in this function.
havior with the behavior of conventional registrations, and The above equation is formulated just for one pair of data
evaluate the numerical accuracy of transformation paramsets, but multiple neighbor data sets are considered in some
ter obtained by our registration. implementations. In this case, the quantative function is

However, registration by rigid-body transformation is ndt9ain shown as follows:

enough for modeling and shape comparison: registration f 2

S . t,R) = RX; +t —v;ll%, 2
when deformation is needed. In this paper, we extend our tR) Z ZJ IR Vil 2)
robust registration to simultaneously estimate the shape pa-

rameter as well as the rigid-body transformation parame-ywhere t translation vector,

i

ter. This extension method assumes that the deformation is R rotation matrix,

formulated strictly from the deformation mechanism. Us- xi  ith pointin the transformed data set,

ing this extension framework, we implement a deformation yji the corresponding point (closest point)
registration to estimate the shape parameter from the shape of x; in the j th neighbor data set.
measurement data of a mathematical plaster model made at

the end of the 19th century. After obtaining their parameter set at each iterative step,

) ) ) . can be updated tf as follows:
The proposed deformation registration pays attention to

the significance of estimated parameter as well as the con- X = RXj +1t. (3)
vergent registration result. To remove the distortion of

data obtained by the sensor suspended beneath the bal ; ; :

(Floating Laser Range Sensor, FLRS), we exploit our def(?r)'-% Registration Strategies
mation registration for the distortion rectification, regardinghe above ICP algorithm was proposed by Besl and McKay
the movement of FLRS during scanning as shape paratjii§; and became the most fundamental framework for 3D
ter. In each implementation, we evaluate the accuracy of thea registration. This algorithm framework reduces reg-
estimation of the shape parameter. istration to the minimization problem of the distance sum
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between the corresponding data by the iterative calculationThe all-points matching updates the correspondence so
The function minimization with respect to the transformdhat it can be more plausible as the iteration proceéfs [
tion parameter leads the optimal one which represents [Bg and therefore can achieve more accurate registration.
plausible transformation between the aligning data sets, ftence, our registration uses all-points matching.

example, three translation and three rotation parameters in

the case of the rigid-body transformation. This framework

assumed that two data sets were allgned, and that th(_a SP?E% Point Correspondence

of a transformed data set was the partial one of the neighbor

data set. Currently it is extended in various way in order Epo

?handle rr:jult;plen(ii/at? sr(?ts and to pursue the robustness )% . is chosen in equatiof). There are many implemen-
€ speed ol convergence. . tations in finding corresponding pairs.

We can classify them from the viewpoint of the regis- _ ) . )
tration ordering, matching unit, point correspondence, errorS described in SectidB.1, the typical ones are nearest
metric. and outlier elimination neighbor correspondendé] [I8] and normal direction cor-

' respondenceéd]. Nearest neighbor correspondence is taken

as the nearest pair in Euclidian space.

Normal direction correspondence is taken as the near-
In the registration of multiple sets of 3D data, the orderirgst pair in the normal direction of a point, and they are
affects the convergence of the final result. The sequentiedle-consuming. In contrast, laser ray direction correspon-
ordering chooses a corresponding pair of data sets at edehce can reduce the computational cost drastica]lfL0]
iteration for the registration, and repeats this process uffiill]. This correspondence is taken in the direction of a laser
all the data sets are aligne®] [[3] [4] [B]. Its computation ray emitted from the sensor in 3D point measurement. In
cost is lower because only two data sets are handled at gdd}, its search computation mainly depends on the graph-
registration. However, it is susceptible to registration failures hardware. In the case of normal and laser ray direction
since the registration errors are locally accumulated and tbisrespondence, the correspondence is taken between the
causes the local discrepancy of the registration result. pointx; and the pointy) on the plane hit in the laser di-

In contrast, the simultaneous ordering aligns all the datsction of the poink;. Since the plane is calculated by the
together at each iteration. Although its computation cadifferential operation, so lots of wrong correspondences are
is higher, it enables more accurate registration becausedaesed because of the data noise.

registration error is distributed globally. Consequently, we Registration accuracy and convergence speed change
adopt the simultaneous ordering. greatly according to their point correspondence, and
In relationship to the equatiof2), registration ordering Rusinkiewicz et. al. quantatively evaluate thisi@] Pay-
determines how many data sgisis considered for the reg-ing attention to the difference of these convergence char-
istration of the transformed data. In the case of sequentigteristics, 4] adopts the hybrid correspondence of nearest
registration,j is unity. Namely, only one neighbor data s{oint-to-point and point-to-plane. The top priority in our
is considered for the registration data. Simultaneous regiﬁp|ementation isa registration accuracy, sowe emp|0y the
tration considers all of the corresponding dgfain which nearest neighbor correspondence because the accuracy is
j does vary. guaranteed for the registration of various classes of shape
in this correspondence.

int correspondence determines how the corresponding

2.2.1 Registration Ordering

2.2.2 Matching Unit

Matching unit determines the point sampling. The matching _

unit of the ICP algorithm has two kinds: All-points match2.2.4  Error Metric

ing uses all points of a data set. Feature-points matching

uses only points satisfied with some condition, for examibe error metric depends on what kind of valgeis.

ple, only high-curvature points. Namely,x; may represents a position vector, or a color (red,
Assuming that one-to-one correspondence exists am&H¢e: green: RGB) vector associated with the point.

all the feature points, the feature-points matching usuallyln most implementations, the euclidian distance of the

does not change their correspondence at any iterd@pn atching point is mainly use®] [[L0]. Some other algo-

[7]. So it cannot achieve the accurate registration in thithms adopt such additional information as the surface nor-

case in which the correspondence cannot be taken precigalgl and curvaturell3], the reflectance (the reflection ratio

Even if it changes their correspondence, the feature poiotghe laser ray)14] and color of the captured point as the

are unreliable when the range data has considerable naser metric([lL5] in order to make up for the inaccuracy of

because the feature points are derived by some differenpiaint coordinate. In our implementation, we use only the

operation. euclidian distance.
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2.2.5 Outlier Elimination 2.3 Deformation Registration

To cope with outlier, such as data noise and wrong pointthis paper, we propose the extended framework of the
correspondence in an initial registration, we need to rec@enventional registration algorithm to allow the shape de-
sider the objective function. The straightforward function fermation during registration process. This kind of reg-
represented as follows: istration, namely, deformation registration, has been re-
_ - searched in such field as the medical imaging, and the
Ep) = Zz.,(p), ) target object for the registration is mainly soft tissues.
N They adopt similarity[19], affine [13], geometric hashing
where [20], quadric/superquadrid2fl], and displacement-field-
p (t,R), (5) based transformatiof2®] so that their deformation works
2 (D) 2 6) well for any kind of target shape.
! ' These methods can be generally adopted in shape mod-
In this straightforward least-square (LS) objective functiogling and fitting. However, if the deformation is strictly de-
noise leads to an imprecise registration of 3D data, becagiged by some parameterized formulation derived form the
the exact correspondences between the noisy data aregéformation mechanism, the deformation is much more ac-
known. Any erroneous correspondences must be eliminage@ate when using its formulation than when derived from
before registration, and a thresholding is often used to elifieir methods. The parameters obtained from our strict for-
inate such false correspondencgs[B] [4]. The threshold mulation carry with them the essential information about
value can be determined as a fraction of the standard deE cause and origination of the deformation. So our frame-
ation, o, to the errors in the datd . Typically, it is set work pays as much attention to the obtained parameters as
to greater than or equal . This is the simplest method,to the appearance resulting from the deformation. In this
but it is unreliable method because elimination is affectg@int, our aim is different from theirs. So in our assumption
by the binary classification of the threshold value. that the shape changes are strictly represented with a mathe-
Better outlier elimination can be provided by Mmatical formula including some variable parameters and its
estimation|LL7] [14], since probability distribution of the er-formula is known a priori, we formulate the generally ex-
ror is considered. M-estimation maximizes the probabiliténded registration which allows the 3D data to be deformed
by minimizing a function of the form and determines both the deformation and the translation and

E(p) — Z,O(Zi (p))’ rotation parameters.
i

wherep(2) is an arbitrary function of the errogsin the data 3 Robust Determination of Transla-
set. The M-estimator is the maximum-likelihood estimator

such that the probability distributidPis equivalent t&(z). tion and Rotation Parameters
We can find the parametepsthat minimizeE by taking
the derivative of E with respect wand setting the deriva-3.1 Robust Simultaneous Registration Algo-

IRX;i +t—Yiji

tive to 0. rithm
oE dp 0z 07
- = Z = A = ZW(Zi)Zi_ =0, (7) Based on the previous section, here we explain the details
op — 0z, Op - ap . ) . .
! ' of our designed registration. As a preprocess, multiple data
where w2) = _6_p. sets are |.n|t|ally aligned. In iterative process, the followings
z0z are done:
This equation shows that the weight is added to the straight- )
forward least-square objective function. e Constructing kd-trees of data sets.

A Lorentz function is used as the M-estimator; a Lorentz S€arching nearest neighbors using kd-trees.
function can be represented as: ¢ Minimizing the objective function (squared sum of near-

1 est neighbor distance) to find the better (optimal) regis-
o(z(p)) = log (1 + _22‘(p))' (8) tration parameter.
o e Updating data sets according to the obtained registration

In practice, the weight is imposed at the differential opera-parameter.

tion stage, as follows: i ) . . .
The above process is repeated until the optimal registration

9p = dp 0z = 1 % (9) Isreached.

op 0z op 20%+z Op This kind of algorithm is usually time-consuming, and
Wheeler summarized the registration behavior accordingnost of the computation cost depends on searching the cor-
the probability distribution in M-estimator iiig]. responding point. We have already proposed the effective
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kd-tree algorithm for nearest neighbor seai2g|[and we because the (negative) gradient of quaternion at an identity

adopt it in our designed registration. quaterniory, is obtained by equatiofi).
3.2 Minimization of Objective Function for %g)x‘) =2C(x)". (18)
q

Parameter Estimation

3.2.1 Derivation of Descent Gradient From the obtained descent gradient, the conjugate gradient
is calculated so that all the obtained gradient is guaranteed
Our registration algorithm aligns a” data sets Simultanﬁ'j be OrthogonaL Transformation Vecmris acquired us-
ously so as to minimize the squared sum of nearest neighp@fthe conjugate gradieri24] [25] [26] and line minimiza-
point-to-point distances. The objective function is reprgon method with a combination of golden ratio bracketing

sented as follows: (golden section search) and parabolic fits.
E() = > > p(zi (), (10)
P 3.3 Evaluation
where In this section, we i i
, quantify the effectiveness of our robust
p = (tq) (11) registration on the basis of four issues by comparing pre-
2 vious registration methods. First, we argue the merits of
2i(p) = IIR(@xi +t-y;ll (12) adopting a simultaneous strategy. Second, we discuss the
p@zi(P) = log(1+ %zi,-(p)), (13) effectiveness of using stochastic ogtlier elimination to in-
crease the robustness of the technique. Third, to evaluate
) the effectiveness of these two steps, we evaluate the overall
t :  translation vector, _ ~ estimation accuracy of our registration.
R(gq) : rotation matrix corresponding to quaternign
Xi . ith point in the data set of interest,
Yii . the corresponding point of 3.3.1 Simultaneous vs. Sequential Ordering

in the jth measured data. In this evaluation, we align seven partial data sets of the Fu-

As for its rotation matrix, we use a quaternion represenggeppe Cave in simultaneous and sequential strategies. The

tion of 3 Degrees Of Freedom (DOF). upper figure in FigurBl shows the initial state of these data
Using error metricE(p), we compute the parametgos sets. They are slightly shifted among the overlapping data.
which fulfill the following equation: The middle and lower figures in Figul&respectively show
i the registration result in simultaneous vs. sequential order-
Popt = arg nglnE(p). (14) ing. The sequential registration we used is basically the

) . ] ~_ implementation proposed bi2][ In order to observe only
For the gradient-based solution of our non-linear optimizgie effect of simultaneous and sequential strategies, how-
tion, the descent gradient is: ever, this sequential registration uses M-estimator for out-
JE op(z;) 0z lier elimination.
» ZZ ?J : a_pJ In sequential registration, we must determine the data
P ' pairing of alignment targets such that they are exactly over-
0z lapping each other. Sequential registration considers pair-
2 2. WaE o (15)
]

ing only two data sets at a time, and assumes that the reg-
istration works well among each pair of data sets. So if
1 dp(z;) the transformation is determined in one data set, it is trans-
where  Wz;) = 2 oz formed together with the rest of the data.
Good registration is visible as evenly mottled pattern in
overlapping area because of slight differences in sampling
and because of the random noise, even if the area has an

If we evaluatedz;/op by an identity quaternion,, we can
represendz;/op as

0z AR(Q)X +1 — Vi identical shape.
% = 2R@x +t-yj) R@ D Vi) Comparing simultaneous registration methods, sequen-
o tial registration introduces local discrepancies (between the
_ [ 2(xi +t-yiji) ] (16) yellow and cyan-blue data sets, for example). The detailed
4C(xi)T (xit - yji) observation is shown in Figu In the lower figures, the
_ [ 2(x +t-yji) } a7 green color indicates areas of little difference (less than 1
- axi x (t-yj) |’ [cm), while the red and blue colors indicate areas of larger
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difference (more than ). Simultaneous registration re-
sults in almost no difference, by comparison; simultaneous
registration is clearly better.

3.3.2 Straightforward Least Square Registration vs.
Robust Registration

In this investigation, we align the data sets of two ancient
mirrors that were cast from the same mold. They have local
differences in their shapes.

The initial pose and position between them is shown in
Figurel@ They are aligned using straightforward LS regis-
tration as well as robust M-estimator registration. The for-
mer is the registration proposed 6], and the latter is our
implemented registration. The registration result is shown
in Figurel Figures in the first row show the convergence
result.

Figures in the second and third row, respectively, show
the convex and concave areas of one mirror vs. the other
when the length between each corresponding point is ex-
ceeded by the setting threshold. This threshold is respec-
tively set to 0.5 and 0.25n] in the second and third row.

In the second row, the upper circular area has more con-
cave area when using an M-estimator, but the lower area
has more convex area otherwise. Similarly in the third row,
the left area has more convex area in the M-estimator re-
sult, but the right area has more convex area otherwise. As
shown in the numerical results, the green area, regarded as
an area of no difference in shape, is 51.7 and 49.6 percent
of the total in the middle, and is 77.0 and 77.3 percent in the
lowest, respectively, in the case for which the thresholds are
0.25 and 0.5. This result shows that the outlier area is auto-
matically recognized and ignored in the registration process
in order to align as much area as possible.

3.3.3 Estimation Accuracy of Translation and Rota-
tion parameters

In this investigation, we align two data sets capturing the
face of a tower at Bayon ruin in Cambodia (Fig{t€a)).
To consider the registration of the actual measurement data,
we created two data sets from the same measurement data
by sub-sampling the different points. Figlii€b) shows the
appearance of two superimposed data, which is regarded as
the correct registration between them.

To create the initial position states of two data sets — orig-
inal and transformed data sets — the transformed data set is
translated and rotated, then it is realigned to the original

Sequential Strategy

data. The estimation accuracy of the registration paranfégure 1: Registration results in simultaneous and sequen-

ter is regarded as the difference between the amount of tié strategies. The upper figure shows the initial state of

translation and rotation of the transformed data set in its ipartial 3D data. The middle and lower figures respectively

tial state and that of the registration result. show the registration results in simultaneous and sequential
The initial position of transformed data set is set to thre&rategies.

steps in translation and rotation respectively. It is translated
to+ 0.5 [m] in each axis, and is rotated #030 [ded around
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Whole

Figure 3:Initial pose and position between two mirrors. In
this figure, The yellow mirror is slightly translated and ro-
tated against the red. (Data Informant: Kashihara Institute
of Archaeology and Tokyo National Museum.)

Overlapping Area

0.5, x-t-0.5, ..., z-t -0.5, x-r 30, x-r -30, ..., z-r -30), the

' difference between each true initial parameter and the cor-
Simultaneous Strategy Sequential Strategy responding estimated parameter with respect to each axis
(Translation along axis, Translation along axis, Trans-
Figure 2: Detailed observation of registration results in Sjation z axis, Rotation around estimated axis) is shown on
multaneous and sequential strategies. The upper figutes vertical axis (e.g. 0t 0.1, ...). This figure shows the
show the whole appearance of registration results in simgthnslation and rotation estimation errors of our registration
taneous (left) and sequential (right) strategies. The lowegrespectively within 0.05f] and 0.5fedg.
figures show the detail of the overlapping area between
them. The green shows no difference (less thaendl)]  Of our 728 cases, 694 result in good registration. Be-
while the red and blue show larger differences (more thagduse we can easily observe large position differences in
[cm). these 34 cases, our registration seldom fails if the initial po-
sition estimate is manually improved.

In addition, we investigate the result of two implemen-

all the direction that can be represented as the Combinatﬂ.gﬁbns proposed b\’ﬂ_;ﬂj (laser ray direction' point_to_plane
of '1, 0, and 1 in each axis. As a result, the number of traré%'rrespondence, thresho|ding) a|‘1[ﬁ][(nearest neighbor,
lation settings is 26 (273f) minus 1 (to remove the trivial point-to-point, thresholding) by aligning 728 pairs of data
translation (0, 0, 0))). In rotation, the number of rotatioget in the same condition as the above. In the first registra-
axes is 26 (273) minus 1 (likewise, to remove the “rotation method(L1], 483 result in good registration. Observing
tion” axis (0, 0, 0))), but half of these axes are symmetric@e registration process, the convergence of this registration
with respect to the coordinate origin (For example, (-1, fboks slow until the optimal registration is acquired. And in
1) and (1, -1, -1)), so the actual number of rotation axestffe second registration methdtf], 715 result in good reg-
13. In each axis, transformed data set is rotatedd&@][ jstration. These pairs are completely superimposed in all
in clockwise and counter-clockwise directions, so the NURrea each other, so it looks preferab|e not to emp|0y the op-
ber of rotation settings is 26. Combining translations aggation for outlier elimination. To verify this, we create and
rotations, we have 676 cases (2&@6). align the partial shape data sets as shown in FigurEhe

As a numerical result, we show twelve parameter sétdtial setting of translation and rotation is the same as the
which are considered typical of all the estimation resulbove. Then in our registration, 343 result in good registra-
in Figure[@ In this figure, “x-t 0.5” means 0.51] trans- tion, while 335 result in good registration in the registration
lation alongx axis, and “x-r 30” means 30ded rotation [16]. Though our initial setting is rough in this evaluation,
aroundx axis. When the initial translation and rotation isur implementation can prove to be more robust tHd, [
set as shown in the translation and rotation axes (e.g. ikthe detail evaluation is done.
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Convergence Result

=0.5[mm]

Threshold

0.25[mm]

Threshold

Rotation around estimated axis
Translation along z axis
Translation along y axis
Translation along x axis

_ : R S
(@) .
Figure 5:Data used in this evaluation. In (a) in this figure,
the size of each unit square is 0.1 by Qri.[Here, positive
axes of x-axis and y-axis are respectively set to the right and
upper direction, and the positive direction of z-axis is set to
the front direction, perpendicular to this figure.

(1) M-Estimator (2) LMS

Figure 4: Convergence results of two mirrors. Figures in
the first row show the convergence result, and figures in {58re 6: Estimation errors in translation and rotation for
secom_j and th|rd row show the convex and concave areag &fh, initial position.
one mirror against the other when the length between each
corresponding point is exceeded by the setting threshold,
regarded as shape difference. (Data Informant: Kashihara
Institute of Archaeology and Tokyo National Museum.) form is known a priori, but whose parameters are unknown.
Our goal is to simultaneously determine these deforma-
tion, translation, and rotation parameters by comparing the
. .. target data to transform with its corresponding data. We do
4 Extension of ngld'bOdy Transfor- thisg,J using an ICP framework: translatliaon an((‘jJ rotation pa-
mation rameters are determined in a minimization paradigm. If we
fix the translation and rotation parameters, determination
In this section, we first generally extend the rigid-bod9f the deformation parameter becomes an iterative shape
transformation to allow deformation during a registratiofatching problem. Thus, we can handle all parameter de-
Therefore, estimated parameters include those which afféminations in a unified minimization framework.
their shape in addition to six parameters of the pose and po¥Ve extend the parameter estimation of the registration
sition in a conventional registration. In later sections, wWermulation to add the shape parameter by extending the ob-

adopt this extended framework to solve each problem. jective function in equatioril)). Thereforez;(p) in equa-
tion (2 is transformed into:

4.1 Simultaneous Determination of Registra- z;(p) = IR@)9(xi, k) +t =yl (19)
tion and Deformation Parameters
where p= (t,q.k),
Our proposal assumes that the deformation can be rep- g(xi,k) :  deformation function of poin;
resented by a parameterized mathematical formula whose with respect to parametér
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Original Data Again, we compute the parameteto satisfy the following
equation:

Popt = arg nginE(p). (24)

To calculatep, we also use the gradient-based solution. The
descent gradient is computed as follows:

oE 0p(zj) 0z
" Ll

0z
= L2 @Ea (25)
i
Transformed Data
9p(zj)
Figure 7:Partial data used to compare the registration result where  wz;) = zj ’ 0z

of ours and(1§]
AR(@)g(xi, k) +t - y;)
op

9z (p)
ap

= 2(R(a)g(xi, k) +t - yji)
(26)
Our rigid-body registration is designed to be robust, a”@Jsing this descent gradient, the conjugate gradient is
here we adopt the same strategy as in Se@lorin this adopted similarly in Sectid8
extended framework, we consider the registration of multi-
ple data sets. The algorithm in this framework is the same
as shown in Sectiddl , 5 Shape Parameter Estimation of
In the ICP based registration algorithm, the acquisition of .
the valid initial parameter is important for the optimal reg- Mathematical Model
istration result. In our implementation, the initial transfor- ] ]
mation parameter is set manually, using GUI, with accuragyl ~Mathematical Model : Revolution Sur-
good enough to reach a true optimum. face of Catenary

As a main topic in this chapter, we estimate the shape pa-

4.2 Minimization of Objective Function for rameter of certain mathematical model made of plaster in
Parameter Estimation order to examine its manufacturing accuracy (Fig8ye

] o _This model is a cultural asset; it was manufactured in Ger-

Summing up our strategy in this framework as a numeriGghny at the end of the 19th century for educational pur-

This object has no documentation, and we are interested
E(p) = Z Zp(z” (P)), (20) in identifying the shape parameters the makers used in man-
i

ufacturing it. We wish to estimate deformation parameters
by applying our extended registration framework algorithm
to both measured data sets and the data set computed by
p (t, g, k), (21) mathematical fforhmul?, in orde:jt(T evaluate the manufactur-
2 ing accuracy of the plaster model.
2i(p) IR(@)g04, k) + t =yl (22) Using our estimated parameters, we also wish to remake
p(zjP) = log(l1+ }Zaj(p)), (23) more accurate model for comparison, because both histo-
2 rians and the mathematicians are interested in the level of

where

manufacturing skill extant in those days. Our target is the

t . translation vector, . N . .
: . X . model that is called “revolution surface of catenary”.
R(q) . rotation matrix corresponding to
quaterniorg,
k :  shape parameter, 5.2 Mathematical Formula and Experimen-
Xi . ith point in the data set of interest, tal Result
g(xi,k) : deformation function of poirnt; with
respect to parametés The surface generated by rotating a 2D catenary is shown in
Yii . the corresponding point of in the jth FigurelB-(1). Such a surface always has azimuthal symme-
measured data. try. Besides scale parametdy), there are two parameters
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Figure 8: (1) A Mathematical model and (2) its ideal rep
resentation used in our experiment. It has the constant
ative curvature on all points of their surface. (Data Inf
mant: Prof. Toshitake Kohno (Graduate School of Math

matical Sciences, The University of Tokyo.))

Initial Pose and Position

Convergence Result

Figure 9:The initial state and result of the parametric data.

In the case of updating pattern as shown in equaf&@), (

n%§- descent gradient is obtained by evaluating the rigid-
d
O -

y rotation at an identity quaternioq,] for all param-
gters. This numerical representation is as follows:

. 2(9(xi, k) +t —y;i)
02i(p) _ [ gl K) x (t - y,) ] e
%» 2((xi, k) +t -y ji)—ﬁ(ggﬂ’k»

(a, b) involved in the generation of such surfaces. The nu-

merical formula is as follows:
shape parameterk =(a,b,l) (0O<b<a),
g(xi, k) = (I¢(v) cosu, Ig(v) sinu, ly:(v)), (27)

where O<u<2r, -a-sinh? (E) <v< a-sinh‘l(é),

b b
(V) = bcosh(g), Y(v) = j;v A/1- Z—ESinl“F(g)dt.
(28)

In the following, let
b2 . t
fabt) = 4/1- gsmhz(a).

Y(v) = fo ’ f(a, b, t)dt.

(29)

Therefore,
(30)

In a rigid-body transformation as shown in equati@), (
point of interesk; is updated to</, andx{ to x{” at the next

step, according to estimated parameters as follows:

x
Il

RX; +1, (31)
X! R'X +1. (32)

But otherwise, the updated rigid-body rotation is not re-
flected if it is evaluated at}, for all parameters. So we
evaluate the rigid-body rotation gt just for the rigid-body
rotation parameter as shown in the following:

ii 2(Rg(xi, k)+t—y'i)
azaj—(p) - A, K) x (£~ Y)) ‘ . (36)
P | 2Rgx, k) + t -y RALE)

The 3D shape of the plaster model was captured using a
VIVID 900 (KonicaMinolta) range finder. The data sets
were initially aligned using a manual process via Graphic
User Interface (GUI). Initial shape parameter was also man-
ually estimated. Figuri@ shows the registration result, and

it was well-behaved and convergent. The shape parameters
were estimated as follows:

a=0.0568 b=00237 [|=0.996

5.3 Evaluation

Our estimation is affected by various kinds of errors: range
data measurement errors; initial registration errors; and the
errors in the manually input initial shape parameter. We
have already reported how the accuracy of our estimated

In the pattern of the target model, the calculated data are ggrameter depended on such errors by using synthesized

termined only by a shape parameter. In other wayfls, k)

data computed using known parameters and adding Gaus-

is actuallyg(k): x; is not needed. In this case, updating isian noiseZ7).

usually performed as follows:

x
Il

i Rg(xi, k) +1,
X' = R'Rog(x,k+K)+t+t.

(33)
(34)

Additionally, here we investigated the combined effects
of an initial translation, rotation, and specified shape pa-
rameter. The initial shape parametarb, ) of the calcu-
lated data was set to five steps around each truth value. In
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6 Registration for Range Data Ob-
tained by Floating Laser Range
Sensor

6.1 Floating Sensing System

To obtain 3D measurement data for large objects, a laser
range sensor (LRS) mounted on a tripod is often used. Un-
fortunately, it often happens that some part of a large object
is invisible from the ground. In order to scan these invisi-
ble faces, a scaffold might be built nearby. However, this
involves time and expense, and moreover, some surfaces
might still not be visible due to space limitations for this
Figure 10:Reproduced metallic mathematical model. scaffolding, lack of a viable superstructure, and so forth.
We have developed a novel 3D measurement sys3€m [
Our system digitizes objects from the air while being sus-
pended beneath a balloon. Although our systemis free from

particular,a, b, and| were set to 0.03, 0.04, 0.05, 0_06l)igh frequency vibration like that caused by helicopter en-
0.07, t0 0.01, 0.015, 0.02, 0.025, 0.03, and to 0.7, 0.85, 1gmes, there still remains low frequency movement due to
1.15, 1.3. Initial translation and rotation were exclusivelf€ floating balloon which distorts the data. However, this
set to three steps as follows: translation to 0.01, 0.02, dR@vement can be model_ed as simple trajectory by regarding
0.03 [m] alongx andz axes, and rotations of 10, 20, anghe movement as the swing of a pendulum.
30 [ded around thex axis. This results in 124 deformation Our system consists of two main processes: scanning
cases (12558) minus 1 (0.05, 0.02, 1.0: the truth value))@nd registration. For the 3D scanning of visible surfaces
There are 9 translation and rotation cases, so there are 11@@ the ground, we use an LRS mounted on a tripod on
(124 x 9) cases to investigate. Altogether, therefore, vie ground, as usual. To scan facets invisible from the
investigated 1249 (124 + 9 + 1116) cases. ground, such as the rooftop of a building, we have devel-
. . oped and tested a Floating Laser Range Sensor (FLRS). The
_ Of these 1249 cases, 991 result in the correct regisiRg gata contains distortion caused by the swing motion
tion. Judging from these results, a registration tends to fgfli1a palioon during scanning, but our extended registra-

if there is too much difference between the initial and trum)n framework can be applied to remove this to rectify the
values. These data sets are obviously different in their sh

and position; these differences might be easy to cancel be-

cause the user can immediately recognize a deficiency and

re-run the algorithm after improving the initial shape p#.2 Floating Laser Range Sensor
rameter and position estimates.

Our FLRS system consists of a scanner unit, a controller
and a personal computer (PC). These three units are sus-
pended below a balloon.

Our scanner unit includes a laser range finder especially
5.4 Reproduction of Mathematical Model designed to be hung from a balloon. Our design require-
ments were that the unit be compact and lightweight enough

Using our algorithm of shape parameter estimation, anotlﬁ%,Pe carried by a balloon, and that it be fast enough to min-

mathematical model of Dini's Surface was reproduced pize the influence_: qf the balloon’s normal swing. ,
metal by Yamada Seiki Co.,Itd.28 under the supervi- The scanner unit includes a spot laser radar unit and two

sion of an artist, Mr. Hiroshi Sugimot2g]. Yamada Seiki Mirrors. We chose to use the LARA25200 supplied by Z+F
Co.,ltd successfully generated the 3D Shape of the origifj4f- S @ laser radar unit because of its high sampling rate
model with high accuracy (FigufED), and Mr. Sugimoto (Maximum 625,000foints/sed).

held an exhibition of the work at the Mori Art Museum at

Roppongi Hills. 6.3 Inter- and Intra-Scanning Registration

In this way, our algorithm can create CAD (compute%_g_l Assumption and Formulation of FLRS Motion
aided design) primitives and compressed 3D shape data

faithful to the original shape, and as a result, we can refilmeorder to align data sets from the FLRS, we distinguish
or alter the shape as desired. between two different types of movement, “inter-scanning”
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and “intra-scanning”. Inter-scanning movements provigeherepinra include the state of the intra-rotation axis, its
different views of a scene, and are equivalent to a seraygular velocity, and the intra-translatior).(

of rigid-body transformations. But the FLRS moves during In addition to the parameters of the rigid-body transfor-
the acquisition of each range data set; this intra-scannmgtionRy,.,, Ty, we have to estimate the deformation pa-
movement of the sensor distorts the measurement data. uneter ofARa}_u(Ti), Vy.

extended registration framework enables the rectification ofintra-rotation is represented by the description of the ro-
this distortion; we can represent this motion as a deformation axis and angular velocity, but these parameters can-

tion parameter. not be obtained in the same way as the rigid-body rotation
The motion of FLRS during scanning depends on the faelution which involved a quaternion derivative. In case
lowing: of rigid-body rotation, the rotation axis description is first

calculated, and then the amount of rotation around this cal-
culated axis can be determined by the quaternion normal-
ization. This rigid-body rotation is common to the whole
data. But intra-rotation does change with the timat each

Pﬁ% point, namely, it must be represented as a function with
We can ignore the influence of translation and angular giespect tar;.

celerations because our FLRS needs only one second tdo remedy this problem, we represeﬁrRaiu(ri), by al-
scan a frame. Therefore, we consider FLRS movementiawing m andw be the rotation axis and angular velocity
have constant velocity in translation and rotation, withotgspectively, as follows:

changing its rotation axis during a frame. Under this as-

Its initial velocity

Its initial angular velocity

Any acceleration generated by external force

Any angular acceleration generated by external mome

. . . . . -1 -1
sumption we set up the deformation equation in equation ARy y(7i) = ARy (M, wri) =
m . 1- coswr,)mxz + Coswrj @a- co&ur,)mxmyz— (sinwrj)mz (1 - coswrj)mzmy + (sinwrj)my
. .y . e . 1- ) + (sinwry)! @a- wTj) + wT| - i) — (sinwrj) .
Figurelllshows positional relationship in mtra-scannm[; (1 commmme ~ Sier)my (L cosunmymes (Snonimx (Lo cosumme? + coson
registration. HereQ, means the origin of the camera co- (41)

ordinate system for the case in which FLRS does not move
during a scan, an@y means the origin of the camera cowhere
ordinate system at the time. (Note thatO < 7; < 1; one m = (my,m,,m;) and [m|| =1 (42)
measurement can require up to a second.)
Assuming that the FLRS moves during scannings the 632 Parameter Gradient of Objective Function
time elapsed since the first point was captured. Then FLRS
acquires a 3D poind, in the camera coordinate system In this inter- and intra-registration, we likewise cannot up-
(i.e., ag in the camera coordinate systedp Because the date the geometric point in the same way as in the case
measurement point is actually recorded in the camera cd¥figid-body transformation. If a 3D pointis iteratively
dinate systenu, the translation vector and rotation matrighanged to andx” by a rigid-body transformatio(R, t)
from the coordinate systemto the coordinate systethat and(R’.t’), the relationship betweenandx’ is:
timet; arevyr; andRy_y(t), respectively. ,
If the corresponding E)o?nt cﬁfis by ilzlthe world coor- X' = Rx+t, (43)
dinate systenw, then the error in this registration can be X' = RX+t. (44)

represented as ) o )
However, assuming that a 3D poixts iteratively changed

Z = |[Rweudy + Ty — byl% (37) tox’ andx” by this inter- and intra-registratidiR, AR, v, T)

. . and (R’, AR’,Vv’, T"), the equation above is not valid. be-
If the FLRS moves during acquisition, the measuremecrguse(, andx” expand to the following:

point is captured from the origin of the camera coordinate
Oy at the measurement time Therefore in the coordinate NG R(ARX + V1) + T, (45)

sySterTu' 1 ’ ’ / ’
_ X" = R'RAR'X+(v+V)r}+(T+T). 46
ay = ARGZ (11)ag + VuTi. (38) { (vavim + - @9
Notice thatRa}_u(Ti) is equal toRy_q(7i). In rigid-body transformation, the descent gradient is ob-
Substituting equatior3g) for equation[B7), tained by evaluating the rigid-body rotation at an identity

” ) quaternion ¢) for all parameters, but that method cannot
Z = [IRweu(ARgCy(ri)ad + vuti) + Tu=bull”. (39) pe ysed here because of the updating problem as described
In this case, the geometric functigxi, k) is represented above. Spe_ci_ﬁcally, the updated rigid-body rotation is not
as follows: reflected if it is evaluated aj, for all parameters. So we
evaluate the rigid-body rotation g only for rigid-body
9(Xi, Pintra) = ARgiu(ri)xi + VT, (40) rotation parameters.

0 3020


島貫
テキストボックス
－302－


a,
a

Y. Ay ’ X,

A y Y,

Vw(Vu) Od
O, < z,
T, S
Zu ARd<—u( Ti )
Ty
> X
0O, v

z

w

Tower

Roof

Corridor

Inside
Entrance

Figure 12: Detail of Bayon Data. This range data is the
partial shape of the Bayon temple in Cambodia.

Figure 11: Positional relationships in the case of intra6 5 Evaluation

scanning registratiorQ,, is the origin of the world coordi-

letters are respectively concerned with the world coordinzbtgta set is regarded as a data set without distortion, and

and each camera coordinate shown by their subscript.

the other as being deformed according to equatid). (
This latter data set is equivalent to the quality of a data set
obtained by FLRS. We considered the position difference

To derive the descent gradient in the non-rigid case, Water-translation and inter-rotation: rigid-body translation

replacingRwcu, ARG (1i), a4, Vu, 7i, Ty, andby with R,
AR(t), Xi, v, 7i, T, andyj in equations[9) and E0) to
obtain the following:

z = |IRY(Xi, Pintra) + T = Yjill% (47)
9(Xi, Pintra) = AR(M, wTi)X; + vTi, (48)

where

Pintra = (V, M, w). (49)

6.4 Experiment

and rotation) of our two data sets.

The initial intra-transformation (intra-translation and
intra-rotation) of pseudo-FLRS data was manipulated in
five steps: exclusive translation #0.5, +0.25, and 0 fn/g]
in each axis, and exclusive rotation #20, +10, and O
[deg/s] around each axis. In this scenario we assume
the rotation axis is known. The number of actual intra-
transformation cases are therefore 168 because the number
of only intra-translation, only intra-rotation, and combined
intra-transformation is respectively 12 (4Q.5 and+0.25)

x 3 (each axis)), 12 (420and+10) x 3 (each axis)), 144
(12 x 12). (The effect of a varying initial rotation axis is
investigated later.)

Next, the effects of inter-transformation (inter-translation
and inter-rotation) are considered. The initial inter-

As an experiment on an actual case, we executed our alg@nsformation was manipulated in three steps: transla-
rithm on the data of the Bayon temple. In this experimeriipn to +0.1 and 0 fn], and rotation to+5 and 0 ped.

we aligned the corresponding data captured by our FLRSthis case, the number of inter-transformation is 12 be-
and Cyrax 2500. The latter data set was scanned from @aéise the number of only inter-translation and only inter-
stable ground so that there was no movement during scegiation is 6 (2 £0.5) x 3 (each axis)) and 6 (26) x
ning, and we assume that it is sufficiently reliable. The dé-(each axis)). Thus, the total number of evaluation pat-
tails of the data set and the registration process are resfiet is 2169 (144 (only intra-transformations) + 12 (only
tively shown in Figure§2 andI3 You can see that ourinter-transformations) + 144 12 (combination of intra-
algorithm aligned and fitted the FLRS’s data well in con@nd inter-transformation)).

parison to the Cyrax2500’s data.

As a numerical result, we show 24 evaluation results
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Figure 14:Estimation errors of parameters for each initial
inter-transformation.

[m, deg, m/s, deg/s]

Figure 13: Range images in our registration process: A
range image of FLRS (yellow) is aligned and fitted onto
the corresponding range image of Cyrax 2500 (red) simul-
taneously. o
025 g5 Jpo ¥ ~ Inter-translation z

zt

t

-0.25 XTI xr Inter-translation y
0.25 25 10 10 31/5' Y zp Y Inter-translation x

. 10
Intra-Transformation -10

on behalf of all the estimation resuits in Figuid and Figure 15:Estimation errors of parameters for each initial
05 Figures[I4 and[I83 respectively investigate the ef- 9 ' P

; ; . _intra-transformation.
fects of only inter-transformation as well as only intra-
transformation on parameter estimation. In these figures,
“x-t" means translation along axis, and “x-r” means rota-
tion aroundx axis. Judging from these figures, the resultingsult.
errors of inter-translation, inter-rotation, intra-translation, Of 2196 cases, we considered 1860 cases resulted in
and intra-rotation are respectively within 0.161] 2.2 good registration. Generally speaking, as long as the initial
[ded, 0.11]m/s], and 1.9 fleg/s]. It can be seen that inter-error of inter-translation, inter-rotation, intra-translation,
transformation errors tend to have more effect on paramedad intra-rotation is respectively withi0.5 [m], +5 [ded,
estimation than that of intra-transformation. +0.25[m/9g], and+20[deg 9], the registration result will be

For estimation evaluation of an intra-rotation axis, a da@acurate, even if these effects are combined.
set in which intra-translation is set to -0.2%8][along z axis
(= (0, 0, 1))and intra-rotation is set to -1@dd is aligned to
the data set without distortion. Then, we set the initial intrgdz ~ Conclusion and Future Work
rotation axis to (0.00, 0.50, 0.87 §)). After registration,
estimated axis of intra-rotation is (0.00, 0.48, 0.88). Therethis thesis, we proposed the robust simultaneous registra-
fore, the intra-rotation axis can be reasonably estimatedtlmn of 3D shape data. This registration reduces the solution
our method, with its resulting appearance visibly close ¢ a nonlinear equation to iteratively minimize the distance
the truth (Figurdlg). However, the initial estimate mustbetween a pair of corresponding 3D data sets. As a prepa-
be somewhat close to the truth or wrong convergence nrasion for designing the registration algorithm, we analyzed
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termine the initial pose and position among aligned data
sets. This automatic determination would enable totally au-
tomatic registration among 3D data sets. The problem is
how to lead the initial state for our system to work well.

The next goal is to align deformable data without rigid
(undeformable) data. In this thesis, we always assumed the
registration between rigid data and deformable data. This
problem here may also be how to determine the initial pose,
position, and shape parameter as described above.

The applications we proposed here are only a few of the
) _ _ ) ) _ possible applications, and we are trying to develop an ap-
Figure 16:Reg|strat|on r_esultl_n t_he_ case which the d'ﬁere'ﬂﬂication to generate the CAD primitives under the shape
parameter of intra-rotation axis is initially set. parameter estimated from the range image. This applica-
tion will convert the range images into the properly approx-
imated CAD data sets. The benefit of this application is to

the merits and demerits of conventional methods, and to §&-2P!e to compress the range images which usually consist
sigh the most accurate registration algorithm, we adopf¥ghumerous 3D points and polygons. We intend to apply

the simultaneous ordering, all point matching, closest poifid! framework widely to various classes of problem.
to-point distance, and M-estimator for outlier elimination.

To verify the robustness of our registration against t%
initial position and the measurement noise, we evalua eoc:knOWIedgement
the estimation accuracy of registration parameter, COMPAY- jike to thank Professor Toshitake Kohno (Gradu-

ing the registration result between our method and CONVERE School of Mathematical Sciences, The University of
tional registration. To summarize our implemented registr. 5kyo), Professor Yoshiaki Nishino I\}Is Mito Ikemizu

oot oottty becasos o1 e s of b oo, e Unversiy Museum, The Universiy of Tokyo), M
shape data robustly because of the use ot M-estimalor, gig,q,; Sugimoto (Artist), and Mr. Yasuhiro Yamada (Ya-

can restore even complex shape since simultaneous strajeg¥ - seiki Co. Ltd.) for their cooperation in my research
is employed. activities. '
Moreover, we extended our registration, namely, rigid-
body transformation, to enable registration among 3D data
that can deform each other through some known matfReference
matical formula. This extended method requires determin-

ing more parameters concerned with shape than just the §i§ p.J. Besl and N.D. McKay. A method for registration

translation and rotation parameters. It can solve the rigid- of 3-d shapeslEEE Transactions on Pattern Analysis
body transformation and shape parameter in a unified man- and Machine IntelligenceVol. 14, No. 2, pp. 239—

ner. Here we assumed that the shape changes are strictly 256, February 1992.
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the deformation mechanisms. [2] G. Turk and M. Levoy. Zipped polygon meshes from
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