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Abstract The objective of this work is to estimate 3D human pose from a monocular image. We propose a novel
retrieval-combination approach that exploits the wide capability of example-based approaches and the flexibility
of parts-based approaches. Instead of storing and searching for similar full-body examples, we adopt a half-body
representation (i.e., upper-body and lower-body) to reduce a large full-body database into a compact half-body
database that has good generalization ability to recover millions of poses by valid half-body combinations. For a
given input image, half-body candidates are first retrieved from databases by partial shape matching. Valid half-
body combinations of these candidates are selected based on a learned combination constraint, and then we choose
the optimal combination(s) in a coarse-to-fine evaluation method. We show good experimental results of pose
estimation for both synthetic and real images. Our approach has lower computational and space complexities than
example-based approaches and ensures better realistic 3D pose estimates than parts-based approaches.

1 Introduction ever, recovering a 3D human pose is a challenging prob-
lem due to the high dimensionality of state space, parts
Estimating a human body pose from a monocular im- occlusion, clothes variation, unknown body orientation

age is important for such image understanding appli- and so on. Existing approaches to this problem can be

. . L categorized into three types: Parts-based approa
cations as recognition of human activities, markerless & o th P s pproaches

motion capturing, and virtual reality applications. How- search for possible limb poses and find the optimal com-



bination(s) of parts based on constraints of kinematic
relations between body parts [3]. Learning-based ap-
proaches learn a model that directly infers poses from
observable image quantities [5]. Example-based ap-
proaches store a set of training examples whose 3D
poses are known and estimate poses by searching for

training images that resemble input images [6].

However, most existing approaches are not appropri-
ate for the estimation of a wide range of 3D human
poses. Learning-based approaches can only deal with
a limited set of typical human poses. Parts-based ap-
proaches are able to deal with large pose variations;
however, the (local) kinematic constraints between ad-
jacent body parts cannot ensure that limb poses will be
combined into a (globally) realistic 3D pose. Example-
based approaches may be a good choice when millions
of examples are available, but high computational and
space complexities restrict their use.

In this work we propose a retrieval-combination ap-
proach that exploits the extensive capability of example-
based approaches and the flexibility of parts-based ap-
proaches. Instead of storing and searching for similar
Jull-body examples, we use a half-body representation
(ie.. upper—bddy and lower-body) to reduce a large full-
body database into a compact half-body database that
has good generalization ability for recovering millions
of poses by valid half-body combinations. Since any
half-body pose is actually a valid combination of parts,
the problem of invalid combinations of parts that oc-
curred in parts-based approaches can be largely avoided.
On the other hand, by using a half-body representa-
tion and an efficient retrieval-combination strategy, our
approach outperforms examples-based approaches in
terms of lower computational and space complexities.

The rest of this paper is organized as follows. Section
2 gives an overview of our approach. From Sections 3 to
6, we detail the main steps of our approach: half-body
retrieval, invalid combination pruning, and coarse and
fine evaluations. Section 7 describes the experiments
performed and discusses our results. Finally, Section 8
contains a conclusion and future research directions.

2 Overview of Our Approach

We represent 3D human poses by 51D vectors includ-
ing 3D locations for each of 17 key body joints. The
input image is a human silhouette. For a given input
image, we estimate the 3D human pose by efficiently
looking for optimal half-body combination(s) from a
database of half-body poses.

The query image is first processed to generate a set
of data including a normalized silhouette, contour, Dis-
tance Transform (DT), and image features (i.e., Hu Mo-
ment). With these data as input, we estimate 3D human
poses in the following four steps:

Half-body Pose Retrieval Compute chamfer distance
from every upper-body contour in the database to the
input contour, and sort all database contours in ascend-
ing order of computed distances. The top & ranked con-
tours are marked as upper-body candidates. Similarly &
lower-body candidates also are retrieved.

Invalid Half-body Combinations Pruning Among all
possible combinations -from retrieved half-body candi-
dates, prune invalid ones by checking whether they sat-
isfy the learned constraints of half-body combinations.
Coarse Evaluation of Valid Combinations Sort the re-
maining valid half-body combinations in ascending or-
der of the approximate symmetric chamfer distances be-
tween the combinations and the input contour. The top
ranked combinations are marked as candidate combina-
tions. ‘

Fine Evaluation of Candidate Combinations Re-sort
the candidate combinations based on fine matching for
contour, silhouette, and structural cues. Given this fi-
nal ranking, we select the highest or a few top ranked
combination(s) as the pose estimale.

3 Half-body Pose Retrieval

We use chamfer distance [1] to retrieve the half-body
poses for a given query image. Chamfer distance is
an efficient tool to measure dissimilarity between con-
tours because it does not explicitly make point corre-



spondences between contours and yet is robust again
minor misalignment in position and scale. Moreover,
chamfer distance can allow -matching partial to whole
contours. We use this advantage to retrieve half-body
candidate poses from the database.

3.1 Half-body Pose Database

The database consists of a large number of half-body
poses and corresponding CG renderings. The database
was created from a set of motion capture data taken from
a public website [4]. From a total of 13, 000 motion data
frames, 1247 key frames were evenly selected includ-
ing walking, running, playing basketball, and dancing.
With a famous animation and 3D character design pack-
age called Poser [2], for each selected key frame, upper-
body and lower-body poses were respectively rendered
from 12 equal-spaced virtual cameras, yielding 14, 964
upper-body and 14,964 lower-body human silhouettes.
Subsequently, contours and DTs were derived from sil-
houettes. All of these data — including silhouettes, con-
tours, and DTs, plus 3D poses — were stored in the
database. For space efficiency, silhouettes and contours
were stored in an efficient format, recording only the lo-
cation information of the foreground pixels. The upper-
body pose was composed of 3D locations for 10 upper-
body joints and the lower-body pose for the remaining 7
lower-body joints.

3.2 Chamfer Distance

We denote query contour @ = {q} and the half-body

contour in database T = {t}, both represented by a set
(T.Q)

of points on the boundary. Chamfer distance d, >

is
calculated by taking the mean distance of all points in T
to their closest points in Q:

1
dTD — N min ||t - gl 1
cham NT;‘IGQH q“ (9]
where N is the number of points in T and || - || can

be any norm, e.g., Euclidian, Cityblock, etc. Cham-
fer distance d{1'?) can be efficiently computed by first

cham

evaluating the DT of contour @) using a two-pass algo-
rithm proposed in [1]. The value of each pixel in the
DT equals the closest distance from that pixel to contour
Q. 7-DT, which truncates a large distance by threshold
value 7, is more frequently used in practice. By substi-
tuting 7-DT of contour Q.

T —_— 1 1 p—
DT3(t) = min(min It - ol 7). @
into (1), chamfer distance has new form
T - 1 r
dcham NT teZT DTQ(’) (3)

where a simple lookup operation replaces the time-
consuming min operation in (1).

3.3 Retrieving Half-body Candidates

Chamfer distances are computed from all half-body
examples in the database to the query contour. We sort
the database examples in ascending order of computed
distances, and then select the top k ranked examples as
candidates for upper- and lower-bodies.

However, choosing irrelevant half-body poses for the
simple but. imperfect chamfer distance is likely. For
instance, some upper-body contours might happen to
match the lower-body part of the query contour. Con-
sequently, many irrelevant half-body poses may be mis-
takenly chosen as candidates. We handle this problem
by considering a sufficient number of candidates. In
current retrieval step, only sufficient relevant half-body
candidates must be found, regardless of how many ir-
relevant ones are included. Subsequent steps can prune
the irrelevant half-body candidates using further match-
ing. We found that retaining several hundred half-body
poses as candidates is usually sufficient.

4 Pruning Invalid Combinations

After retrieving half-body candidates, we deter-
mine the optimal half-body combination(s) generated

by these candidates. However, exhaustive searching



through hundreds of thousands of possible combina-
tions requires intensive computation. Fortunately, most
combinations are invalid 3D human poses and can be
efficiently ruled out under a combination constraints
learned from database examples.

In this work the combination constraints are repre-
sented simply as a 2D table C: the value of each en-
try Cj; is binary indicating whether the combination of
upper-body pose ¢ and lower-body pose j forms a valid
full-body pose. Based on deviation of body orienta-
tion and similarity of pose, we determine the combina-
tive lower-body poses for every upper-body pose in the
database. The algorithm details are omitted due to the
space limitation.

Combination constraint allows about 10 million
valid combinations. Under this constraint, in general
10,000 ~ 30, 000 valid combinations remain from hun-
dreds of thousands of exhaustive (unconstraint) combi-

nations.

5 Coarse Evaluation

This step aims to coarsely evaloate valid half-body
combinations by which we choose a set of candidate
combinations. Coarse evaluation is based on the sym-
metric chamfer distance between the query contour and
the contour of combination. The symmetric chamfer
distance is just the sum of bi-directional chamfer dis-
tances, defined as

D(UL.Q)

cham

- ULQ) | JQuL)

cham cham °

C))

where UL denotes the contour of half-body combina-
tions. Symmetric chamfer distance generally outper-
forms the (directed) chamfer distance used in retrieval
steps.

Computing the exact syinmetric chamfer distance of
10,000 ~ 30,000 combinations creates an issue of
high computational cost because it involves a set of
time-consuming operations, including half-body silhou-
ette combination, contour extraction, and DT calcula-
tion. However, we can resort to an approximate dis-

tance that can avoid such time-consuming operations.
The idea is simple.
combination as the union of half-body contours, that is,

We approximate the contour of

UL ~ UUL. When upper-body and lower-body figures
are completely separated, the contour of combination
equals the union set of half-body contours. Although
more frequently equalization does not hold true due to
half-body overlapping, the approximation is reasonable

because overlapping is not severe in most cases.
JULQ

Consequently, chamfer distance d;, "’ is approxi-

mated as

UL, 1 T T
dlen = (2 DI5()+ Y DIG(D), )
uel lel
where 3° .y DT (u) and 3°, ; DTG (!) are two quan-

tities already calculated during the retrieval step.
(Q.UL)

cham

On the other side, chamfer distance d is ap-

proximated as

d2UD ~ oY min(DT}(q). DT (). ©)
q€Q
which involves several hundred min operations.
Apparently, the above approximate symmetric cham-
fer distance is very efficient to compute. We rank valid
half-body combinations in ascending order of computed
approximate distances. Then a sel of top ranked combi-
nations is chosen for further fine evaluation.

6 Fine Evaluation

Given the short list of remaining candidate combina-
tions, we want to re-rank them based on fine matching,
which involves three types of distances: edge, silhou-
ette, and structural cues.

Edge Distance Edge distance is the approximate sym-
metric chamfer distance plus an additional correspon-
dence penalty. Since chamfer distance does not ensure
uniform- point correspondence between two contours,
we introduce a penalty to punish unbalanced correspon-
dence, defined as

NIClL

(UL.Q) _q_.
NUL®

corres

C ={c|argmin ||c—z|| Ve € UL} (7)
c€Q

—84—



where NICl« is the number of unique points in the set
of corresponding points C' and NV’ is the number of
points on combined contour U L. Set C' can be obtained
effortlessly because the correspondence information for
@ has been already stored during the calculation of DT.
The pi%:5%y)
for computational efficiency.

Silhouette Distance The silhouette of half-body combi-

can be obtained likewise, but it is not used

nation is computed by pixel-wise logical OR operation
on two half-body silhouettes. Silhouette distance is pro-
portional to the nonoverlapping area, defined as

AREA(SVL A 59)

p@UL
max(AREA(SR)AREA(SUL))’

silhouette —

(8

where SYL and S9 denote the silhouettes of half-body
combination and query, respectively.

Structural Distance We also use Hu moment to char-
acterize the structural information of silhouettes. The
distance is defined as

_ [ Zi2i(R2 - hUL)e
- 10 '

where A? and hUL are 10 Hu moments derived from
silhouettes S9 and SUZL, respectively.
The overall distance is the weighted average of the

peyuL)

structure

)]

above three distances:

D@YD) 4 5, (ULQ) 4 g 1y(QUL)

cham corres silhouctte

+’YD(Q’UL)

structure»

(10

where weight coefficients A, 3, and « are set appropri-
ately as 0.5, 1.5, and 2.0 through cross validation.

We re-rank half-body combinations in ascending or-
der of overall distance. From the ranked results, we
choose the highest or top ranked combinations as the
pose estimate.

7 Experiments

To evaluate our method’s performance, we conducted
experiments using both synthetic and real images. The
synthetic image experiment provided a quantitative
evaluation to our method because 3D ground truth poses

are known. The real image experiment shows the gener-
alization ability of our method because a wide range of
3D poses are included, and variations in clothing, body
size, and view angle complicate the estimation task. In
the experiments, 800 high ranked upper-body and 300
high ranked lowerJ—body poses were. selected in the re-
trieval step' and fed into the coarse evaluation step. Next
100 high ranked half-body combinations were selected
to go through fine evaluation.

7.1 Experiment with Synthetic Images

We quantitatively evaluated our method using k-fold
cross validation on synthetic images. The dataset of syn-
thetic images (created from identical motion data with
a half-body database) is divided into 7 subsets (around
2100 samples in each subset). In each trial, one of the 7
subsets is used as the test set, and corresponding half-
body data are excluded from the database during re-
trieval. Then average error over all 7 trials is computed.

The root mean square error (RMSE) of all 3D joint
positions (divided by the number of joints) is calculated
between the ground truth and the selected combination
of half-body poses. To better analyze the resulting er-
rors, we calculated reference error by taking the mean
of RMSE errors of successive pose pairs in the database.
Since the database is created from motion data, succes-
sive poses usually resemble each other. We chose 95%
from all pairs with lower error to exclude outliers.

We evaluated performance in two manners; rank-1
(highest rank) combination, and the best of top 5 ranked
combinations (based on ground truth). Fig.1 shows av-
erage errors obtained with/without fine evaluations for
full body, upper/lower body, and parts. Clearly the er-
rors incurred by the top 5 are generally lower than ref-
erence error. Table | presents the ratio of good estima-
tion for each case, as in Fig.1. Here, pose estimation is
judged good if error between it and ground truth is lower
than reference error. It can be concluded from the data in
Table | that fine evaluation generally gains 2 points of
performance improvement over coarse evaluation; the



& 1 Rack-| (Course siepy

} [ s of Top3 (Cone siep)
? [ JRank-1 tFine weps

‘ (B Boui of Top$ (Finc sicp)

| I Ret. cvor of mmilar poses.

-,

TETEAL]

Right A Left A Righiles ' Lefi Leg

Body  Upper ody Lower Body  Torso

[59 1: Performance evaluation using cross validation

# 1: Ratio of good pose estimation

Method Coarse Evaluation | Fine Evaluation |
Rank-1 Top5 | Rank-1 | Top5
Full Body 55% 67% 5% | 69%
Upper Body | 59%. 70% 60% | 72%
Lower Body | 67% 75% 67% | TT%
Torso 63% 75% 65% | 76%
Right Arm | 59% | 73% | 61% | 74%
Left Arm 62% 74% 63% 75%
RightLeg | 68% | 76% | 68% | 77%
Left Leg 66% 76% 66% | 76%

best of top5 significantly outperformed rank-1 by 11
points on average. The achieved ratios of good estima-
tion are less than 80%, which does not mean poor per-
formance because the chosen reference error is a very
strict value. We conducted a random selection experi-
ment by randomly choosing 5 poses from the database
and then selecting the minimum error based on ground
truth. We achieved 25 good estimations out of 10, 000
trials. "In other words, the ratio of good estimation by
random selection is 0.25%.

7.2 Experiment with Real Images

We also conducted an experiment on a set of 155 real
images collected using Google’s image search engine.

| The test images involve a variety of sports: basketball,

dance, football, tennis, figure skating, etc. We first used
graphic software to semi-automatically extract silhou-
ettes. Many of these images were difficult (even for peo-
ple) to infer the underlying 3D human poses from only
silhouettes. The segmented images were automatically
normalized using a regression-based method (that is not
described here due to the space limitation). To avoid the
problems of inverse body orientation, we assume that
body orientation is known to be outward or inward of
the image plane.

Fig.2 shows examples of estimation results obtained
by our method. For each test image, 3D. rendering of
the rank-1 combination is shown, and its view rotated
90 degree is also shown to clearly observe 3D render-
ing. Notice that, even though a large amount of in-
formation for describing human body poses was lost
in normalized silhouettes, the results are visually close
to what can be considered the right pose for input im-
ages. Good estimations are commonly achieved for
lower-body poses, but biased estimates of upper-body
poses sometimes result from high occlusion. See such
examples as Figs.2(b), 2(d), and 2(e) in the silhouettes
where arms are strongly occluded and precisely estimat-
ing upper-body pose is quite difficult. However, when
we consider more combinations than orﬂy the rank-1
combination, clear improvements are achieved. Fig.3
shows such example. In the figure, the Jast three boxes
in turn show rank-1, rank-2, and rank-3 combinations.
We found that the rank-3 combination is clearly much
closer to the right pose than the rank-1 combination.

Since there are no ground truth poses for these real
images, we can only subjectively evaluate the quality
of resulting estimations. We built a browser-based rat-
ing system that presents the top 3 ranked combinations
for each test image to participants who subjectively find
the best of three combinations and rate the quality with
four levels: grear (4 points) when the estimate is en-
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[4] 2: Examples of (Rank-1 based) 3D pose estimation on real images. In each set of images, the first two are the

original image and the normalized silhouette, and the last two are the CG rendering of the estimated pose and the

view rotated 90 degree, respectively.

SR

K 3. An example showing better estimation in latter

ranked combinations

tirely consistent to human perception, good (3 points)
when one half-body estimation is good but the other
is less biased, and average (2 points) when one half-
body estimation is good but the other is strongly biased,
and bad (1 point) when no good half-body estimation
is found. A summary of the subjective evaluations are
shown in Fig.4. The average rate over all test images is
2.7 points. The evaluation for some categories such as

figure skating is good, although unrelated to the action
categories used in the database. However, some other
categories such as kung fu and golf are not so good due
to indistinct contour (caused by image downsampling or
occlusion) and very complex poses. Perhaps this perfor-
mance is promising, considering the complexity of the
task and the simple image information used.

7.3 Time and Space Complexities

The method was mainly implemented using Matlab 7.
Some -algorithms such as half-body retrieval and coarse
evaluation are implemented by C++. The PC for run-
ning the experiments had an Intel Pentium 4 CPU run-
ning at 3.2 GHz and 1 GB RAM. Computational cost for



3 2: Empirical computational complexity and memory requirement

] Image Proc. | Retrieval | Coarse Eval.

Fine Eval.

DTs Constraints | Silhouettes | Contours

| 005s 0.14s 0.45s 0.34s

285MB 213MB 34MB 39MB

Subjuctive evaluation of performance on real images

BasehallBashetball Dance Kunglu Skating Foatball Tennis  Table Badminon Goil Ru

[

[X 4: Subjective evaluation of performance on real im-
ages. From left to right: Baseball (14), Basketball (31),
Dance (11), Kung Fu (18), Figure Skating (13), Foot-
ball (32), Tennis (16), Table Tennis (4), Badminton (6),
Golf (4), and Running (6). The number in parenthesis
indicates data size.

the overall process was approximately | second per test
image. Around 600 MB of memory are required to run
this system. Table 2 shows the details of computational
time and memory requirement.

8 Conclusion and Future Work

We presented a retrieval-combination approach for
estimating 3D human pose from a monocular image.
Although only image observations of human silhouettes
are used, our approach produces satisfying results for
a wide variety of human poses. The basic strategy of
our approach retrieves half-body candidate poses for a
given image by partial contour matching. Then under
learned combination constraint, invalid combinations of
half-body candidates are ruled out, and from the remain-

ing valid combinations we efficiently choose the most
likely one or a short list by coarse-to-fine evaluation.

Augmenting the database with many more 3D human
poses and exploring the use of other informative obser-
vations, such as skin color or face-like features, will
further improve performance. Handling a wider range
of complex poses while maintaining computational ef-
ficiency is the main direction of our future research. In
addition, we are interested in applying our approach to
clutter images.
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