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Abstract

This paper presents a technique for recovering the shape of an object from its appearance mani-
fold composed of a set of images that can be taken from a fixed viewpoint camera under a moving
light source. We assume the distant illumination, a convex object shape and the variations of
the object’s appearance under a moving light are caused by the difference in the surface nor-
mals. These input images give an appearance manifold and a dimensionality reduction technique
called "Isomap’ can recover the embedding three-dimensional surface normals of the object from
this appearance manifold. Furthermore, the boundary points are used as the reference points to
transform the result three-dimensional vectors into the true distribution of the surface normals.
The proposed method is available for a wide range of reflectance materials and is easy to imple-
ment. The only requirement for our method is to take the different images of an object under
different lighting directions.

Keywords appearance manifold, appearance profile, Isomap, dimensionality reduction.

1 Introduction object. Always these studies based on the im-
ages need assume that some knowledge about
the scene is given: the illumination is known or
the surface materials are known. Furthermore,
some works can only success in constructing
the shape of a lambertian object. For exam-
ple most of the shape-from-shading approaches

estimate an object’s shape from a single im-

The appearance of an object is determined by
several factors such as illumination, viewing
position, the surface shape and the reflectance
property of the object. Changing any one of
these factors should lead to the object hav-
ing a different appearance. Based on the re-

lation among these factors, in the computer
vision field, some important inverse problems
have been addressed. In the real world, for
most of objects’ appearance, these factors are
related nonlinearly if the object has complex
reflectance properties. Most of the previous in-
verse approaches thus estimate some of these
factors from images of a scene assuming onc or
two of the factors are given. How to construct
the shape of the complex reflectance property
object makes the topic of shape reconstruction

still be a hot research in the computer vision
field.

The previous studies have demonstrated
that the shape of an object can be recovered
from a single image or multiple images of the

age assuming distant illumination and uniform
lambertian reflectance {ZTCS99].

The classical photometric stereo approach
presented in [Hor86, Woo81] recovers the shape
of a lambertian object from multiple images of
the object taken under known light sources.
Photometric stereo has been intensively stud-
ied as a fundamental computer vision problem.
For instance, uncalibrated photometric stereo
approaches estimate the shape of a lambertian
object up to a linear ambiguity under unknown
lighting [BKY99, BJ03]. Some researches ap-
plied other analytic reflectance models to pho-
tometric sterco to deal with non-lambertian
surfaces [NIK90] and the previous approaches
have shown promising results for objects with
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various surface materials. Furthermore, some
approaches use the combination of the photo-
metric stereo and the geometric method to get
a good shape reconstruction result [VH06].

However, as noted in [HS05], real world ma-
terials sometimes have complex appearances
that prevent us from extracting their shapes
by using the analytic reflectance models. To
cope with this problem, the use of a calibra-
tion object was proposed in the early works on
photometric stereo [Sil80, KH86]. A more so-
phisticated example-based photometric stereo
approach [HS05]. can handle the objects with
non-uniform surface materials and do not need
a particular calibration object for each target
object.

Now the question we ask next is, given only
images of an object captured under various
lighting conditions, is it possible to achieve the
shape of the object without any calibration ob-
ject? Is there any information left in the input
images that we can use as reference? Recently,
Koppal and Narasimhan presented a novel ap-
proach for clustering surface normals of a scene
of unknown geometry and surface materials
under unknown illuminations [KN06]. Their
approach shows how effective it is to analyze
the temporal variation in the appearance of a
scene for clustering surface normals for repre-
senting its meaningful geometric structure.

Our proposed method can directly recover
an object’s shape from its appearance changes
under a freely moving unknown light. In the
procedure of shape reconstruction, we need not
to make any analytic reflectance model or to
cluster the surface normals into the groups for
estimating the surface normals. Assuming dis-
tant illumination and a convex object shape,
the temporal variations in the appearance of
the object surface under a moving light source
reflect the difference in the surface normals.
Through analyzing the difference between the
different positions on the object’s surface in
the different appearances, we can make it pos-
sible to discover the shape of the object from
this high-dimensional input appearance mani-
fold. The merit of this proposed method is easy
to implement, do not need complex equipment
and the only requirement is the images of an
object taken from a fixed view position under

different lighting directions. Also no calibra-
tion is required for lights and camera. and the
order of the input images does not affect the
cstimation results.

2 Shape from Appearance
Manifold

Consider a sct of images of an object cap-
tured under n different illuminations seen from
a fixed view point. Let I} be the intensity of a
each pixel or each corresponding surface point
p seen under the ith illumination; then the ob-
servation vector, also known as the appearance
profile, for this point is

=17, I3 1)
From input images with m surface points
{(p=1,---,m), we obtain m observation vec-
tors. Note that observation vectors can be also
thought of as data points in an n-dimensional
vector space, o, = (I¥,---,IF). To exam-
ine the variations in the appearance of surface
points under a moving light source, the obser-
vation vectors are normalized and used as in-
puts for shape recovery. Since both illumina-
tion and viewing directions are consistent over
the object surface, it seems reasonable to think
that the variations of the observation vectors
reflect the distribution of the object’s surface
normals and data points o, lie on a manifold
whose intrinsic reveals the distribution of the
object’s surface normals.

We refer to this manifold as an appear-
ance manifold and use an effective embedding
method to find a three-dimensional embedding
of this appearance manifold. We later investi-
gate the validity of the condition of the ap-
pearance manifold by using analytic reflection
models.

2.1 Embedding of Appearance Man-
ifold

Given high-dimensional input data, the classi-
cal techniques for dimensional reduction such
as principal component analysis (PCA) and
multidimensional scaling (MDS) are able to
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find the intrinsic structure of the data lying
on or near its linear subspace.

In the case of an appearance manifold, how-
ever, the set of n-dimensional input data gen-
erally has nonlinear structures, and thus it is
difficult to discover its low-dimensional embed-
ding by using the above techniques. To reveal
the intrinsic structures underlying an appear-
ance manifold, we employ a nonlinear embed-
ding method, called isometric feature mapping
(Isomap), proposed by Tenenbaum et al. in
[TSL00].

Isomap has been used to find perceptually
meaningful low dimensional manifolds of natu-
ral images, such images of a face with different
poses and lighting directions. Isomap learns a
manifold of input data as a graph by connect-
ing k-nearest neighbors among all data points.
A low-dimensional embedding of this manifold
is estimated such that the geodesic distances
between all pairs of points are preserved even
after dimensionality reduction.

In the case of an appearance manifold, differ-
ences between all pairs of n-dimensional data
points o, are due to differences in their surface
normals. Therefore, if a three-dimensional em-
bedding of this appearance manifold is discov-
ered by Isomap, it should reveal the distribu-
tion of surface normals of the object. This is
the key idea of our algorithm for shape recov-
ery through the appearance manifold.

3 Algorithm

As defined in section 2, for one point p, its cor-
responding appearance profile is remembered
as a vector op: op = (IV,---,I%). If the in-
put images captured under n different illumi-
nations and there are m surface points in one
image, the input appearance manifold can be
seen as m n-dimensional vectors. The surface
normals are estimated from their appearance
manifold as described in the following steps
shown in the figure 1:

1. Discover low-dimensional represen-
tation. The nonlinear embedding
method, Isomap, is employed for discover-
ing three-dimensional structure underly-
ing the appearance manifold (Section 3.1).

m surface points”
appoarance profios:

1 1 1
o, =[I,I;,--1,]
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Figure 1: The main steps of our method

2. Transform outputs into a surface
normal distribution. Since the con-
verged solution from Isomap does not
necessarily correspond to the true distri-
bution of object’s surface normals. We
use the occluding boundary as refer-
ence points to transform the output from
Isomap (Scction 3.2).

3. Estimate shape from surface nor-
mals. The height field of the ob-
ject surface is recovered from the trans-
formed data points by using the relaxation
method.

3.1 Dimensionality Reduction

The dimensionalirty reduction method,
Isomap, can recover the nonlinear embedding
structures from the high-dimensional data and
the results best preserve the intrisic difference
between the vectors in high dimensional space.
A matrix D of distances between all pairs from
op for (p =1,--- ,m) as input. Element (3,7)
of the distance matrix D, denoted as dp(3, 7),
is the distance between o; and 0oj. In our
work, dpr(i, j) is measured using the standard
Euclidean distance. Given a distance matrix,
the Isomap algorithm works as follows:

1. Define a graph G over all data points
op based on the distance matrix. In the
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graph G, points i and j are connected if 7
is one of the k nearest neighbors of j.

2. Initialize geodesic distances dg (4, j) for all
i,j pairs from m data points: dg(i,j) =
du(i,7) if i and j are connected as neigh-
bors, and dg(4,j) = oo otherwise. Then
compute the shortest path distances be-
tween all pairs of points in G by using
Floyd’s algorithm and update the geodesic
distance dg(i, 7).

3. Apply MDS to the matrix that contains
graph distances D¢g: The (i,7) elements
of this matrix are dg(7,7). The MDS al-
gorithm finds a three-dimensional embed-
ding such that the intrinsic geometry of
the appearance manifold is best preserved
even after the dimensionality reduction
[KJ79].

3.2 Transform Solution from Isomap
into Surface Normal Distribu-
tion

There is an important issue when the output
from isomap is used for recovering the object
shape. Although isomap computes a globally
optimal solution, the converged solution does
not necessarily correspond to the true distri-
bution of the object’s surface normals; what
isomap computes is the relative relationships of
its surface normals. The occluding boundary
of the object is used as reference to transform
the output from isomap to the distribution of
surface normals of the object.

The occluding boundary is the curve on the
object surface that is projected as a silhouette
in the input image. Occluding contours of an
object can be found by applying a gradient-
based edge detector to the image of the object.
The surface normal on the occluding boundary
lies in a plane parallel to the image planc.

Let Cy = (b, ¢}, c4) be surface normals of
those boundary points b. Assuming that Cj
are on a plane through the origin (0, 0,0) with
its surface normal (0,0,1), ¢; and ¢} of those
points can be computed as their gradient di-
rections in the 2D image coordinate system de-
fined in the input image. This transforms the
viewing direction w, into the direction (0,0, 1)

as well from the definition of the occluding
boundary.

Let Ep = (eg,eg,elz’) be the output three-
dimensional coordinates of the corresponding
boundary points from Isomap. A transforma-
tion M : R® — R3 is estimated such that the

transformed points M (E}) minimize

D IM(E) - Gyl 2)

all b

where the correspondences between Fp, and C,
are given based on the initial pixel location of
0y, which is maintained through the dimension-
ality reduction process. Then we achieve the
transformation relation matrix T and R from
a set of mapping steps between Cy and Ej. Fi-
nally, we modify the isomap three-dimensional
results I by the equation: RI + T to get the
results. In the process of transformation, the
rotation and transformation matrix in two-
dimensional and three-dimensional space are
used, some optimization problems are solved
by using the function in the MATLAB.

4 Applicable Materials

Since illumination and camera position are as-
sumed to be sufficiently distant from an object,
illumination and viewing directions are consis-
tent over the object surface; then the reflection
equation for a point p when it is illuminated by
the ¢th illumination with unit radiance is

I = fp(wi, ) (rip - ), 3)

where 7, is the surface normal of p, J; and w,
are incident and reflection directions that are
consistent over all surface points of the object,
and fp(W;,w,) represents a bidirectional re-
flectance distribution function (BRDF) of the
point p that represents how much of the inci-
dent light ; is reflected on the object surface
toward .

4.1 Lambertian Surfaces

Let us start with the case where objects have
uniform Lambertian reflectance. The BRDF
for a Lambertian surface is known to be a con-
stant. From (3), the equation for a Lambertian
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surface is given as
IP = kd(n;, - &), %)

where kd is a constant albedo over the object
surface.

Suppose that q and w are two points on
an object surface; then their intensities are
computed from (4) as: I} = kd(ny - &) and
I =kd(ny, - ;) . Comparing these equations,
it can be clearly seen that under the same in-
cident direction wj;, their intensity difference is
caused by the difference between their surface
normals 74 and 1.

Since this is true for all n illumination di-
rections (¢ = 1,---,n), it can be concluded
that the differences in observation vectors 6, =
[IP,.-- , 12" among m surface points result
from their surface normal differences, and thus
points o, construct an appearance manifold.

4.2 Textured Lambertian Surfaces

Suppose that two surface points ¢ and w have
the same surface normal 7, but different dif-
fuse parameters kd, # kd,. From (4), their
intensities under the ¢th illumination are I f =
kdg(7i - ;) and I = kdy(7 - %), and their
observation vectors become

kdl][(ﬁ“ﬁ)v 7(ﬁ'w;b)]T7

kdy, (7 @), (7 w)]T . (5)

Oq =

O
We can see that kd, and kd,, are just scalar val-
ues of the same vector [(7 - &), - - , (7 - Wp)]T
in these equations.

As a result, by normalizing each observation
vector o, by its length ||o,||, the effect of diffuse
parameters kd, or kd,, can be canceled. Ac-
cordingly, the variations in these vectors are
due to their surface normal differences, and
this leads to an appearance manifold for the
textured Lambertian surface.

4.3 Specular Surfaces

The proposed approach can be applied to non-
Lambertian surfaces as well. Let us take sev-
eral reflection models as examples. Supposing
uniform reflectance properties over the object
surface, the intensity of a surface point is com-
puted as

Blinn-Phong model:

n+ 2

=k
1 8 2p

cos” L(I;;, n;) (6)

Torrance-Sparrow model [TS67]:

1 Z(}; 7;)2
8(17« ) exp( 202

) (M

2

Ward isotropic reflection model [War92]:

1 exp(— tan? Z(hs, n;)/az)

GRS

P =k
’ S 4dro?

(8)
where ks is a constant for the specular reflec-
tion component, and ¢ is the standard devi-
ation of a surface slope. ﬁ; is the bisector of
the light source direction wj; and the viewing
direction v, and the function L(ﬁ, ﬁ) computes
the angle between two vectors.

Comparing intensities I for all surface
points (p = 1,--- ,m) illuminated by the ith
illumination from the direction w;, we can
see that only the surface normals 77, differ in
their reflection equations in the case where re-
flectance properties ks, sigma or n are uniform
over the object surface.

This is true for all illumination directions
(i=1,---,n). One can say that the tempo-
ral variations in their appearance also reflect
the differences in their surface normals, and
the appearance changes of the specular surface
should thus construct an appearance manifold.

4.4 Surfaces with both components

If the object surfaces cousist of both uniform
specular and diffuse reflectance components,
the intensities of their surface points. are com-
puted as the addition of its diffuse compo-
nent and specular component from the Dicro-
matic reflection model. Based on our analy-
ses of Lambertian surfaces (Section 4.1) and
specular surfaces (Section 4.3), it can be said
the differences among the observation vectors
are still due to the differences in the surface
normals 73, among p. Our algorithm is there-
fore able to extract the surface normals of ob-
jects with both diffuse reflectance and spec-
ular reflectance properties from their appear-
ance manifold.
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The most complex reflectance model is a tex-
tured specular and diffuse reflectance model.
This type reflectance property object is still a
challenge for our approach.

5 Experimental Results

We have tested our proposed approach for
shape recovery by using both synthetic and
real data.

5.1 Synthetic Data

v do “w
® %% e

blak_ib
ACS

Figure 2: Input images of the CG objects: (1)a
diffuse and texture sphere; (2)a diffuse and specu-
lar sphere;(3)a diffuse and texture pear;(4)a diffuse
and specular pear.

The images of objects with different sur-
face materials are synthetically provided un-
der sparsely distributed 200 light sources based
on the Lambertian and the Torrance-Sparrow
reflection models: (1) a textured lambertian
surface and (2) a surface with both diffuse
and specular reflection components (kd = 0.6,
ks = 0.4, and o = 0.15). Figure 2 shows the
shapes and surface normals of the objects and
some of the input images used for the experi-
ments. Each image contain about 2500 surface
points, and thus 200-dimensional input space
consists of 2500 observation vectors. SurNor-
mal maps are images that store normals di-
rectly in the RGB values of an image.

Three-dimensional embedding of this input
space is estimated by Isomap and then trans-

formed to the distribution of surface normals
of the object by using its occluding boundary
as reference. In the process of dimensionality
reduction, the parameter k that represents the
number of neighbors needs to be adjusted by
using the results.

The recovered shape and surface normals
shown in figured4 and figure5 highly resembile
the ground truth shown in figure3 for both all
four examples. The quantitative evaluation of
the estimated surface normals is provided in
Tablel. Here the root mean square error 4 and
its variance ¢ are computed to evaluate the ac-
curacy. For all examples, p is within 8 degree
with small variances. It can be said from this
that our purely image-based algorithm could
achieve reasonably high accurate without as-
suming any analytic reflection models to de-
scribe the appearance of the objects.

Vi aphas 30 thage

Ve oar 30 shage

Figure 3: True surface normals of the CG objects.

resul 30 ghape w70 shape

Figure 4: Results of the diffuse and texture ob-
jects.
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resiit 30 shape e 30 shape

Figure 5: Results of the diffuse and specular ob-
jects.

shape | diffuse {specular | texture| p g

sphere| Y N Y 0.1474{ 0.030

spherc| Y Y N 10.0606! 0.020

pear Y N Y 10.1390]0.0072 A T T comifk:raoan: Wi dews
pear Y Y N 0.1295(0.0052

Figure 7: Results of a plastic orange
Table 1: Errors of the CG sphere and the CG pear.

5.2 Real objects

The process of testing the real objects is to
set the camera to take the images at regu-
lar intervals as we are waving a light source
around the object from the approximate fixed
distance. Here we need to pay attention to
avoid making the cast shadow on the objects.
This process is easy to implement and do not
need long time.

The orange (plastic), cat (ceramic)is tested
for our method. For each object, 180 ~ 200
images are captured by moving a point light
source around the object. The point light
source and a camera was roughly 1m away
from the object (5 ~ 10cm in diameter). Fig-
ure 6 shows some images for a plastic orange
and the surface normals results are shown by
the color map and 3D shape in the figure 7.
Figure 8 shows some images for a ceramic cat
and the results are shown in the figure 9. Fur-
thermore, interestingly enough, even the finc
details of the shapes, e.g, the tail of the cat,

Figure 8: Some input images of a ceramic cat

result color map

were extracted as we see in the result figures. Ppp—
This shows that how significant it is to use the
appearance changes observed on an object sur- Figure 9: Results of a ceramic cat

face for discovering the object’s shape.
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6 Future Work

We can estimate the objects’ surface normals
based on the objects’ different images in the
different illuminations. But some object such
as a texture object with specular and diffuse
properties is still a challenge object for our
method because these pixels vectors’ differ-
ences are not only caused by the surface nor-
mals. Our method can be suitable by doing
some additional modification for the input im-
ages such as separating the images into spec-
ular part and diffuse part. The theoretical
analysis for the number of required images and
the applicable material types is also the future
work for our research.
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