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Abstract

As recent interests in robotics move to intelligent robot and humanoid, human-robot interaction (HRI) technolo-
gies have become more essential and important. In case of the human being, they interact by recognizing various
cues such as hand sign, face, gesture, speech, and so on. HRI can be accomplished by mimicking this way. Auto-
matic recognition of human action which uses whole body action is required for HRI to communicate naturally and
comfortably. This presents challenging problems, because detecting and tracking 3D human body components, and
describing and modeling human action patterns from the body motion is a complex task. A human subject is firstly
described by a set of features encoding the angular relations between a dozen body parts. Then, the extracted fea-
tures are analyzed by HMM. For verifying the proposed method, we make several experiments using Korea Univer-
sity Gesture Database and apply technologies to interesting applications for HRI. The results and demonstration
show that the proposed method can be effective in HRI, for automatic recognition of human action from motion se-
quences.

1. Introduction

Robotics research is currently supported in a dynamic environment. Traditional robots were used in factories for
the purpose of manufacturing, transportation, and so on. Recently, a new generation “service robots” has begun to
emerge [2, 10]. The United Nations (UN), in their recent robotics survey, divided robotics into 3 main categories:
industrial, professional service and personal service robotics [10]. Many personal service robots are operated by
non-expert users. Therefore, the robot is required to be able to interact naturally with humans, as close as possible to
the way human-human interaction takes place.

There are many gesture recognition systems for HRI [2, 4, §, 7, 8, 12, 13]. However, automatic recognition of
gestures from whole body motion sequence for HRI is rare. Most previous approaches for HRI only recognize static
arm poses, sign language, or command gestures, and cannot recognize gestures defined through specific motion ges-
tures, such as waving a hand, bowing, and so on.

Waldherr et al. [12] introduced a hand command gesture interface for the control of a mobile robot equipped with
a manipulator. A camera was used to track a person and recognize hand gestures involving arm motion. The devel-
oped algorithm is integrated in the mobile robot AMELA, which is equipped with a color camera mounted on a pan-
tilt unit.

Gesture segmentation using continuous video was explicitly attempted by Lee and Kim [5]. Lee and Kim pro-
posed explicit use of a threshold model corresponding to connecting patterns between gestures. Later, Barbic et al.
[1] focused only on the segmentation problem, and proposed three methods, based on Principal Component Analysis
(PCA), probabilistic PCA, and the Gaussian mixture model.

More recently Kahol et al. {4] attempted segmentation of complex human motion (e.g. dancing) sequence. The
HMM was used for individual gesture patterns to spot dance sequences.

Human motion sequences are typically analyzed by segmenting them into shorter motion sequences, called ges-
tures [13]. Gestures are most commonly used for communication among humans, reducing the chances of misclassi-
fying static poses, by using continuous information. Gestures can be divided into two gestures, a communicative
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gesture (a key gesture or a meaningful gesture) and a non-communicative gesture (a garbage gesture or a transition
gesture) [9]. A good gesture recognizer attempts to process this transition motion in a systematic manner. The goal
of this paper is to model transition gestures explicitly. Fig. 1 shows a sample video sequence containing several
atomic gestures.

Transition gesture Sitting on a chair

Figure 1. A motion example consisting of a sequence of key gestures and transition gestures

Among a variety of modeling tools, the Hidden Markov Model (HMM), is chosen. HMM is well-known for its
capability in modeling spatiotemporal variability [5, 6, 7. In this method a HMM is trained to model the variability
of a target pattern. However, in the case of spotting tasks, the problem of treating non-target patterns remains. It is
not straightforward to create a model for unspecified, unclassified, unlabeled patterns occurring between gestures. A
new systematic method of building a model for transition gestures is proposed in this paper.

2. Estimation of 3D Human Body Pose

Linear combinations of prototypes based approach is used to reconstruct 3D human body pose from continuous
depth images. If a sufficiently large number of pairs of a depth, and its 3D body model [14] as are used as prototypes
of the human gesture, an input 2D depth image is reconstructed by a linear combination of 2D depth image proto-
types. The reconstructed 3D body model can be obtained by applying the estimated coefficients to the corresponding
3D body model of the prototypes as demonstrated in Fig. 2. The goal is to find an optimal parameter set & which
best estimates the 3D human body pose from a given depth image. To make various prototypes of 2D depth images
and their 3D body models, data is generated using the 3D human model [14].

The depth image is represented by a vector ¢, =(d,...,d") where n is the number of pixels in the image and 4’ is

a value of a pixel in the depth image. The 3D body model is represented by a vector P =5 7152 (X0 Vs Z,,))T’

where x, y and z are the position of body joint in the 3D world. Eq. (1) explains training data.
D=(d,..d,),P=(ps D, ),S =(8,...55,,) 1)

where m is the number of prototypes and s :(sl’,,,,, s;)T is a silhouette image, s” is a value of a pixel in the silhou-

ette image.

A 2D depth image is represented by a linear combination of a number of prototypes of 2D depth images, and its
3D body model is represented by estimated coefficients of the corresponding 3D body model of prototypes by Eq.
).
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Figure 2. Gesture representation

In order to cluster the prototypes, the algorithm is constructed hierarchically. Given a set of silhouette images, the
depth images and their 3D body models are used for training, these are classified into several clusters. A set of clus-
ter is built in which each has similar shape in 2D silhouette image space. Then, each cluster is recursively divided
into several sub-clusters. To divide training data into sub-clusters, the k&-means algorithm is applied. The hierarchical

model has four-levels as presented in Fig. 3.
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Figure 3. Building a hierarchical human body model database

3. Gesture Feature Representation

3.1. Feature Extraction

The information about body components in 3D allows us to locate various structural feature points around the
body. Among them are the thirteen feature points are selected.

The angle from the vertical axis measured at the center of Mid-Back to each of the feature points are selected as
features. The coordinates of the each body components are projected into x, y and z plane respectively to extract the
features as shown in Fig. 4. The feature vector corresponding to the frame at time ¢ is represented as follows:
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where F, is the three angle values of the 3D human body component at £ and the selected body points are left wrist,

left elbow, left shoulder, right wrist, right elbow, right shoulder, left hip, left knees, left ankles, right hip, right knees,
right ankles.

y
Mid-Back
e ——-
x
-
Right Knee Right Knee Right Knee
yz plane xz plane xy plane

Figure 4. Thirteen feature points extracted from each body component and the definition of angle features
3.2. Feature Clustering

Human motion including gestures can be represented as a sequence of feature vectors. The sequence of feature
vectors constitutes a complex spatiotemporal trajectory in multi-dimensional space. Here the motion trajectory is
considered as a sequence of vectors describing meaningful key gestures and meaningless inter-gesture motion.

Let us write x, « %t” to be a feature. Then a whole trajectory can be represented as a sequence of feature vectors as
X =x,x,x;--x, - Fig. 5 shows sample trajectories of two gestures in low three-dimensional subspace; PCA was done
for visualization.
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Figure 5. Feature trajectories of two gestures in a reduced-dimensional subspace

The first step of feature processing to the gesture analysis is partitioning the feature space. To achieve this goal
we divide a set feature vectors into a set of clusters. This allows us to model the trajectory in the feature space by
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one in the cluster space. Different gestures have different cluster trajectories, even though different simple motion is
in the same cluster in particular time. The technique of EM-based Gaussian mixture model (GMM) is employed as a
means of clustering feature vectors.

4. Gesture Spotting and Recognition
4.1. Gesture and Transition Garbage Model

Since there are strong temporal constraints in gestures, we use left-right models rather than ergodic models for
gesture HMM models [7]. The underlying state sequence associated with the left-right models has the property that
as time increases the state index increases or stays the same, i.e., the states proceed from left to right. Clearly, the
left-right type of HMM has the desirable property that it can readily model signals whose properties changes over
time.

Conversely, the ergodic model for the transition gesture model is used, because it has to be able to represent all
motions. The ergodic model is a fully connected HMM, that is, each state of the model can reach to all other states in
a single transition. However, as the number of states of the transition gesture model increases, the structure of the
transition gesture model will be more complex. This topological structure is simplified by introducing two null states,
ST and ET that have no observations.

4.2. Gesture Spotting Model

In continuous human motion, gestures appear intermittently with meaningless connecting motion. There is no
specific order among different gestures and any knowing when any gesture starts to appear and ends. We have de-
fined the meaningless inter-gesture pattern as garbage. Then one way to define the alternating sequence of gestures
and garbage is to construct a cascade connection of gesture HMMs and a garbage HMM repeatedly. A more effec-
tive structure is a circular interconnection of HMMs: gesture HMMs and then one or more garbage HMMs which
are then connected to the start of the gesture HMMs. In this research, we designed the network shown in Fig. 6. We
can easily expand the vocabulary by adding new key gesture HMM model and rebuilding transition gesture model.
The detail model is described in [13].

[ Touching a knee and wrist
| Raising a right hand

| Walking

Waving a hand

Running

Sitting on the floor

[ Bending

Lying down on the floor
Jumping

Getting down on the floor

Transition gesture model

Transition e gesture model

Figure 6. Key gesture spotting model
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The transition gesture model is used as a confidence measures for gesture spotting. The confidence measure can
be calculated using the transition gesture model as an approximation of P(X).

P(X)=P(X|4s) 3)
where X present an input observation sequences, and j, represents the HMM parameters of the garbage gesture

model.

The transition gesture model emits the meaningless gestures. A gesture is spotted only if the likelihood of the best
gesture model is higher than that of the garbage gesture model, represented by following equation. Let A be a set of
gesture HMMs.

Vg:p(X|A)<p(X|Ag), geA @
where A, Tepresents the HMM parameters of the gesture model.

Therefore, the output likelihood of the transition gesture model can be used as an adaptive confidence measure
for spotting. With the gesture spotting network, the start point and the end points of any gestures are found embed-
ded in the input stream.

To retrieve the single best state sequence, 0, =0,0,,0, 0, the Viterbi likelihood p(0,

1410,

,0% | 4,) with
Q% =4q,q,.,q, beingthe ‘best’ state sequence in each HMM A2 can be computed using the following relation:

OF ()= maxt,m b5 0).8F (bt (0) )

il

with the highest probability along a single path arriving at si at time t and accounting for the first observation as fol-
lowing induction.

68 (j)=max 58, (hafibf (o) (6)
For the backtracking information, /8 ()is used to keep the argument maximizing it for each t and j.
,g(j)=arg§nax5'§](i)a§-', Vj, 2<t<T (7

Finally, to uncover the most likely state sequence after the preceding computation, we must trace back to the ini-
tial state by following the Viterbi path [11].

5. Experimental Results
5.1. Experimental Data

For training the proposed gesture recognition method, KU Gesture database [3] is used. However, we need more
data to test the proposed method so that we generated the gestures for adequate variation. The generated gestures
were based on captured data and characterized by sufficient variation using eigengesture.

5.2. Robot Platform

The robot used in the proposed research, T-Rot, is personal service robot. T-Rot’s aim is to support old men [9,
13]. Old men are not expert at operating robots; therefore, T-Rot is required to be able to interact naturally with old
men, similar to the way human-human interaction takes place. Therefore, T-Rot has various interaction methods to
provide natural interaction between a robot and its users.

As shown in Fig. 7, T-Rot is equipped with two stereo cameras, Videre STH-MDCS2, mounted on a pan-tilt unit.
The cameras are located on T-Rot’s head. The first has a 6 mm focal length and the second has a 12 mm focal length.
The stereo cameras both have a resolution of 320%240. The second camera, with 6 mm focal length, is used to rec-
ognize gestures and the first camera, with 6 mm focal length, is used to recognize a face or object located near T-Rot.
The height of the lens is approximately 1.3 m from the ground. T-Rot does not move when the gesture recognition
module is running, so its body does not tremble. As a result, the captured image from the camera in T-Rot is ade-
quate for recognizing gestures. The optimum distance for recognizing gestures is approximately 2~3 m from the sub-
ject.
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In order to evaluate the proposed whole body gesture recognition in the real world, the proposed method has been
integrated into the T-Rot.

Stereo Cameras
Front View Side View Back View

Figure 7. T-Rot, the robot used in the proposed experiments
5.3. Experimental Results

In general, most spotting tasks involve three types of errors, namely, substitution, insertion, and deletion errors.
An insertion error occurs when the spotter reports a non-existent gesture. A deletion error occurs when the spotter
fails to detect a gesture existing in the input stream. A substitution error occurs when an input gesture is classified
into a wrong category. Following the convention, we measured the system performance in terms of those errors and
the reliability. The overall performance is defined as:

# of correctly recognized gestures

reliability = - - - x100%, 8)
# of input gestures + #of insertion errors
TABLE I
Key gesture spotting results
Gestures N Nuy Npe Nsg N | R(%)
Walking 58 55 2 1 2 91.6
Running 62 59 1 2 3 90.7
Bending 54 54 0 0 0 100.0
Jumping 62 61 0 1 1 96.8
Lying down on the floor 61 58 1 2 2 92.0
Waving a hand 60 59 0 1 1 96.7
Sitting on the floor 62 58 2 2 3 89.2
Raising a right hand 62 62 0 0 0 100.0
Getting down on the floor 61 58 1 2 2 92.0
Touching a knee and wrist | 60 60 0 0 0 100.0
Total 602 584 7 11 14 94.9
N : Number of input gestures
Ny, - Number of correctly recognized gestures
Npg : Number of deletion errors
Ngz : Number of substitution errors
Ni : Number of insertion errors
R : Reliability
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Table 1 shows the detailed result of the spotting test. Note that most of the errors are substitution and insertion er-
rors. The substitution errors imply incorrect classifications, and the insertion errors imply incorrect segmentation and
incorrect modeling of gesture patterns. The overall reliability with equal prior is 94.9 % as shown in the bottom row.

6. Conclusion and Further Research

This paper proposed an HMM-based method of spotting and recognizing gestures embedded in continuous whole
body motion for human-robot interaction. The proposed method employs GMM clustering in feature space, produc-
ing efficient transition gesture models. Feature space clustering and the transition gesture HMM state reduction to-
gether form a highly efficient recognition network. The method of merging two states based on relative entropy and
data dependent weighting allows the model to be more effective at capturing the variability in inter-gesture patterns.
In fact, when compared with a recently proposed method, operating without explicit transition gesture modeling, a
definite advantage was seen. In effect, the proposed transition gesture modeling is believed to be an excellent
mechanism for recognizing gestures, as opposed to transition gesture, and rejecting these transition gestures.

This paper demonstrated that the proposed gesture recognition interface transcends to a much broader range of
personal service robots. Near-term future work includes extending the proposed method for spotting and recognition
of command gestures for HRI.
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