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This paper presents a photometric stereo method for determining an object’s shape from its appearance
manifold by estimating the similarity of appearances observed at points under varying illumination. As-
suming no cast shadows on the object’s surface, we show that for a pair of surface points, the similarity
of their observed intensities under varying illumination is closely related to the similarity of their cor-
responding surface normals. However, if the object is concave, there are cast shadows on the surface
which alter the observed intensity of surface points and result in incorrect similarity estimation. After
using a similarity measure, we find and combine similar vectors to interpolate in areas of cast shadow
to create new observation values, which means that we remove cast shadows in input images. Then
the object’s surface normals can be estimated from the observation vector space using a dimensionality
reduction technique. Unlike most previous shape reconstruction methods, our method does not require

any particular reflectance model which makes it applicable to a wide variety of object materials.

1 Introduction

3D shape reconstruction of an object by photomet-
ric stereo is a central topic in computer vision [19].
The appearance of an object is determined by sev-
eral factors including illumination, the viewing geom-
etry, the surface shape and the reflectance properties
of the object surface. Changing any one of these fac-
tors should change the object’s appearance. Generally
these factors are nonlinearly related to the object’s ap-
pearance, thus it’s an inverse problem to estimate each
of them. Currently most previous methods estimate
some of these factors by assuming that some other fac-
tors are already known. Based on different assump-
tions, different work addresses issues such as 3D shape
reconstruction, reflectance property analysis, and illu-
mination estimation.

Horn introduced the first photometric techniques of
shape from shading in the early 1970s [9], and sub-
sequently there have been many novel approaches to
solve this problem. Zhang and Tsai made a good sur-
vey on shape from shading methods [22]. The classic
photometric stereo approach presented in [9, 21] recov-
ers the shape of a Lambertian object from multiple im-
ages of the object taken under known light directions.
Then some work focuses on extending this approach to
more applications, such as photometric stereo methods
for non-Lambertian surfaces [10, 14, 4, 6] and uncali-
brated photometric stereo [3, 7, 1].

The research above is ideal when a reflectance model
for the object is known. However, in practical sit-
uations object materials are more complex and have
varying reflectance properties on the object surface [5].
According to this idea, Hertzmann and Seitz used cali-
bration objects with known shape as examples instead
of computing a reflectance map [8]. They take images

of one or more example objects with similar materi-
als and known geometry under the same illumination
conditions. Then they estimate the object’s surface
normals by finding the points with the same intensities
on the example objects. In the previous approach, they
assume that the example objects are made of the same
material and need to be calibrated. Recently they im-
proved their approach by using only a small number of
example objects without calibration and extending the
application to non-uniform surface materials. However,
materials which can represent the complex real-world
materials well still need to be sought. In a different ap-
proach, Koppal and Narasimhan proposed a clustering-
based technique to find iso-surface normal clusters of
scene points without requiring knowledge about ma-
terials and lighting [11]. Their approach shows how
effective it is to analyze the temporal variation in the
appearance of a scene to obtain meaningful geometric
structure. However, the limitation of their method is
that the illumination must be continuous with time and
they need another shape reconstruction technique such
as uncalibrated photometric stereo to complete the 3D
shape reconstruction.

In our previous study [16], we proposed a novel pho-
tometric stereo method based on the similarity of the
appearance changes observed at points on its surface
under varying illumination. Assuming a convex ob-
ject under distant illumination and orthographic pro-
jection, we prove that for a pair of surface points, the
similarity of their observed intensity sequence under
varying illumination is closely related to the similar-
ity of their corresponding surface normals. We esti-
mate the similarity of the appearances in the obser-
vation vector space, which contains a manifold that
preserves the surface normals’ geometry. Thus, we use
a dimensionality reduction technique to extract the in-



trinsic geometry from the observation vector space as
captured in geodesic distances on a manifold.

However, if the object is concave, there are cast
shadows on the surface which alter the observed in-
tensities of surface points and result in incorrect simi-
larity estimation in the appearance manifold. The cast
shadow elements among the observation vectors are like
a big missing part with wrong information. To over-
come this problem, we calculate a similarity metric
between observation vectors on the high-dimensional
manifold that can find the similarities of the observa-
tion vectors even when there are cast shadow elements.
We then combine similar vectors by interpolating new
observation values in areas of cast shadow which means
that we remove cast shadows in input images. Then
the interpolated images will be used to estimate the
surface normals’ structure.

Unlike most previous shape reconstruction methods,
we estimate an object’s shape from only a set of im-
ages of the object, and we don’t require any particular
reflectance models, reference objects or light directions
as apriori knowledge, which makes our method appli-
cable to a wide range of materials. Also, our method
is capable of estimating a dense surface normal distri-
bution by analyzing similarities of appearance changes,
as opposed to the finite number of iso-normal clusters
estimated in [11].

Our method will be introduced through section 2.
Section 2.1 analyzes the similarity measure of appear-
ance changes. Section 2.2 and 2.3 explain the influence
of cast shadows and give the algorithm to solve the
problem, respectively. Section 2.4 describes the main
idea and steps of our shape reconstruction method
based on the dimensionality reduction technique. Sec-
tion 3 shows some experimental results of interpolated
images and 3D shape reconstruction. The conclusion
is presented in section 4.

2 Proposed Method

2.1 Manifold-based Photometric
Stereo [16]

Considering a set of images of an object which is cap-
tured under n varying illumination directions, let I;
be the intensity of each surface point p (p = 1,...,m)
under the th illumination, or the ith image. Then
for each surface point p, we can obtain an intensity
sequence vector I, which is known as its observation
vector:

L= [15 12, 1" (1)

On the observed object surface we will obtain m ob-
servation vectors, each of which can be considered a
point in an n-dimensional vector space. This high-
dimensional vector space contains the input appear-
ance manifold, which preserves the appearance changes
observed at the surface points caused by changing illu-
mination. To illustrate the similarity of the observation

vectors is related to the similarity of the surface nor-

mals, we will analyze the similarity measure as follows.
Based on the assumptions above, a normalized ob-

servation vector of pixel p is redefined as below:
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We assume no local effects like cast shadows and
interreflections. Then the brightness of point p under
the i-th illumination is of the form below:

I3 = ppg(0i, O, Dy — Pip) 3)

where pj, is the reflection coefficient of point p, (6}, ¢3,)
and (6, ¢y,) are the incident and viewer directions
defined in the local coordinates according to point p.
g is the function for the amount of the incident light
from the direction (6}, ¢i,) reflected on the point p to
the viewer direction (65, $yp)-

As defined by the global coordinate frame, n, is
the surface normal of surface point p, l;, and v, are
the incident direction of the i-th illumination and the
viewer direction respectively. Since cosfj, = ngli,,,
cosf,, = nlvp, and cos(dl, — ¢hp) = [IHvp —
(L) (82 v}/ [oin cos~- (0T L) sin.cos (02 v, (3)
can be modified into:

I = pog (0, Lip, vp) 4

As distant light and orthographic projection are as-

sumed, the incident direction and the viewer direction

are constant among the different surface points, that
is, lip = 1; and v, = v. Then we rewrite (4) as:

I; = ppg’(nWIhV) (5)

Thus, from (5) we can see that, p, is an independent
reflectance coefficient, then the difference in appear-
ance I, and I, of two surface points p and ¢ is caused
by the differences in their surface normals n, and n,.
Accordingly, we can say that the similarity between
each pair of observation vectors I, and I, is closely
related to the similarity between their corresponding
surface normals.

In the observation vector space, all of the observed
vectors lie on an intrinsic two-dimensional manifold
which preserves the surface normals’ geometry. Note
that the surface normals are described by elevation and
azimuthal angles. Surface normals are defined on a
unit sphere in a three-dimensional space, so if we can
find the three-dimensional embedding among the ob-
servation vector space, then we can obtain the rela-
tionships between surface normals. We use a dimen-
sionality reduction technique to find the intrinsic three-
dimensional geometry of the surface normals, which
will be introduced later.

The form in (3) can represent a wide range of
BRDFs, such as Lambertian, Oren-Nayar [15], Phong
[2], Torrance-Sparrow [18], and isotropic Gaussian [20].



Some BRDFs are not available for this form in (3)
exactly, however, from the results our method is still
able to recover the object shapes reasonably with those
BRDFs.

2.2 Problem with Cast Shadows

In the last section we analyzed the relationship between
the appearance changes at points on the object surface
and their corresponding surfaces normals. From (5)
we concluded that the similarity of appearance changes
is closely related to the similarity of surface normals.
However, the analysis is valid only for convex objects
with no cast shadows. If an object’s shape is concave,
the relationship between the two similarities does not
hold.

Attached shadow

Cast shadow

Figure 1: Cast shadows and attached shadows. n,,
n. are normal vectors of the points in attached
shadow, cast shadow respectively; and 1 is the light
direction vector.

Figure 1 shows a sphere with cast shadows and at-
tached shadows under a light source. n,, n. are nor-
mal vectors of the points in attached shadow and cast
shadow respectively; and 1 is the light direction vector.
We can see that for the attached shadow points on the
sphere surface, which do not receive light, the direc-
tions of the surface normals are quite ‘opposite’ to the
light direction. But the cast shadows are caused by
light being interrupted by the sphere, so the directions
of cast shadow pixels’ surface normals are the facing
toward the light. To explain this problem simply, we
can assume that the surface of an object is Lamber-
tian, and all shadow intensity values are zero. Then
the observation vectors are defined as:

L= [maz (pin,-Th,O) ey MAT (piniTlN,O)}T (6)

Then for attached shadows and cast shadows:

e Attached shadows: n-1 < 0, so the intensity of
attached shadow points will be zero.

e Cast shadows: n-1> 0, so the intensity of cast
shadow points should be p(n -1).

However, both cast shadow and attached shadow
points are zero. That means the attached shadows re-
flect the true relationship between the intensity and
surface normal, but the cast shadows do not.

If the object is no longer convex, but concave and
the input images are taken under numerous varying
light directions, then among the input images there
will be lots of cast shadows. The information about
the surface normal contained in the pixel intensity is
lost in areas of cast shadow, and the intensity does not
obey Equation (6). This means that using similarity
between observation vectors to find similarity between
surface normals will cause incorrect estimation.

2.3 Shadow Interpolation Based on
Similarity Measure

Considering the similarity measure between observa-
tion vectors, our key idea to solve the problem is to find
similar points for each surface point, and then combine
the similar vectors by interpolating new observation
values in areas of cast shadow. Figure 2 shows an im-
age of the key idea for solving the problem. For the
figure we assume a video sequence where the object is
Lambertian and the light moves smoothly. The large
jumps are assumed to be caused by cast shadows. But
actually, these assumptions are not necessary for the
method.

Appearance Profiles

Light sources

Figure 2: 1, is a similar observation vector to I,,.
The observation values of ¢ can be used to recover
the cast shadow area in p.

‘We process this algorithm by two main steps as de-
scribed below:

o Calculate distance metric: We calculate a distance
metric between each pair of observation vectors
to find their similarity by using a set of scales
between each pair of observation vectors which is
robust to changes caused by surface texture.

Select similar observation vectors and interpolate
cast shadows: From the distance metric, we select
similar observation vectors and create new values
by interpolating in areas of cast shadow.



1. Calculate distance metric

Considering the set of input images of an textured ob-
ject captured under n illumination directions, let I;i be
the intensity of each surface point p (p = 1,...,m) un-
der the ith illumination. Then because of the texture
on the object surface, we need to normalize all the pix-
els by their observation vectors as in form (2), where
7 is the number of illumination directions.

For different observation vectors the quantity of cast
shadows is very different. So using the general normal-
ization as shown in form (2) above, the denominator
may be very different between observation vectors con-
taining cast shadows. Because of this we calculate a
scale for each pair of observation vectors instead of the
normalization form in 2 that is used to calculate the
distance between these two vectors.

Points p and ¢ are two points on the object surface,
and I, and I, are their observation vectors respectively.
For each pair of p and ¢ we choose a scale spq. If
p and ¢ have similar surface normals, they will have
similar surface appearance changes, accordingly, there
will be I, = sp,1,. Based on this idea, we find each
scale sp, by minimizing the distance between each pair
of observation vectors I, and I;. Then it becomes a
minimization problem to solve the following equation
(7). From the solution we can obtain a set of scales for
all pairs of observation vectors.

n

Spq = aIg msin E
=1
I;,Ié;éshadow

(Ii—s1)* (7

Then Euclidean distances between observation vectors
can be calculated as in (8):

D(prq): Z

i=1
i yi
IP,Iq#sh.adow

(Ii — spali)®  (8)

We can see that for calculating the distance between
each pair of observation vectors, we only use pairs of
values where neither point is in shadow. i.e. we remove
all the pairs where either point is in shadow, to calcu-
late the distance. However, because a large amount of
shadow exists, and the positions of the shadows in each
observation vector are different, the distances directly
obtained from (8) may be not accurate in reflecting the
true distance relationship of surface pixels.

In Figure 3, we show an example of two points p and
g which have quite different surface orientations from
each other. And the shadow positions in their observa-
tion vectors are different or even almost opposite. Let
L, and L4 be the number of non-shadow points in vec-
tor I, and vector I,. Then L,q is the overlap of L,
and L,. We can see that the L, we can actually use
to compute their distance might be very short, and it
can probably result in a very small distance for p and
g- Accordingly, we calculate L,, Ly, and Lpq. Then
if the proportion between Ly and the minimum of L,
and L, is very small (the range of this proportion is

s i B

Light position

I

£

Light position

Figure 3: The problem of two very different ap-
pearance vectors exhibiting a high similarity.

from 0 to 1), we determine that these two points are
far away and have a big dissimilarity from each other.
Then we can avoid the incorrect distance relationship
like showed in Figure 3.

2. Select similar pixels and interpolate cast
shadows
After calculating the distances, we sort the vectors by
distance from closest to farthest, and then we get a
sorted list for each observation vector I,. We pick the
top n closest pixels for each p which has shadows in its
observation vector. QOur aim is to find similar pixels
that share a similar surface normal with p, but which
are not in cast shadow at the same time. For instance,
we choose n = 5. Then among the 5 closest vectors,
in each image, we use a mean value of the observation
vectors which are not in shadows to interpolate the cast
shadow pixel p.

However, we cannot directly use the value of the se-
lected vectors to interpolate in I, because different
pixels may have different albedo. Considering the step
of scale based normalization in (7), we find a scale for
each pair of observation vectors preserving these dif-
ferences. We combine each scale of each selected pixel
respectively with p to recover the texture of p. So the
procedure is described as bellow:

I, = mean(spals, spv It Spell) 9

where a, b, and ¢ are the pixels which are not in shad-
ows among the selected similar list for point p.

We interpolate the image pixels using the algorithm
above to create a new set of input images, to remove
any cast shadows that are present. This reveals the
correct appearance which can be used for shape recon-
struction.

—040—



2.4 Finding Surface Normals from
Similarities of Appearance
Profiles [16]

From the set of input images with m surface points
taken under n illumination directions, the m sets of
n-dimensional observation vectors are obtained which
represent the appearance changes. Then the surface
normals and heights of these surface points are esti-
mated as described in the following steps:

e Estimate the intrinsic three-dimensional embed-
ding of the observation vectors using a dimension-
ality reduction technique.

e Recover the surface normals and object heights.
The occluding boundary is used as a reference to
transform the output from Isomap to the object’s
true surface normal geometry.

Three-dimensional embedding estimation

Dimensionality reduction techniques are widely
applied in many areas. The motivation is to find the
intrinsic low-dimensional structures hidden in their
high-dimensional observations. Principal Component
Analysis (PCA) and Multi-Dimensional Scaling
(MDS) are two classical techniques that can discover
the true structure of data lying on or near a linear
subspace of high-dimensional input space. In other
words, PCA and MDS are not capable of estimating
the true structure of the data sets which contain
essential nonlinear structures. Tenenbaum et al.
developed a nonlinear embedding technique called
isometric feature mapping (Isomap) [17]. Isomap
builds on MDS [13] but seeks to preserve the intrinsic
geometry of the data, as captured in the geodesic
manifold distances between all pairs of data points
instead of the Euclidean distance which is used in
MDS and PCA. The algorithm of Isomap has three
main steps:

1. Form the neighborhood relation based on the dis-
tances dx(,j) between pairs of points ¢,j in the
input space X, two simple methods, radus € or K
nearest neighbors, are used to calculate the neigh-
borhood;

2. Estimate the geodesic distances da (i, 7) between
all pairs of points by computing their shortest
path distances;

3. Apply classical MDS to the matrix of graph dis-
tances D¢ = de(4, j), constructing an embedding
in a d-dimensional space that best preserves the
original manifold’s intrinsic geometry.

Tenenbaum et al. shows that Isomap can find
low-dimensional embeddings from an input high-
dimensional appearance space. We use Isomap to ex-
tract the intrinsic three-dimensional embedding which
preserves the surface normals’ geometry from our input
observation vector space.

3D shape reconstruction

The output of Isomap is a three dimensional
embedding presenting the geometry of surface nor-
mals. However, this geometry only reflects a relative
relationship between surface normals. Because there
are distance-preserving transformations such as
translations, reflections, and rotations in a three-
dimensional space, the estimated three-dimensional
embedding does not necessarily correspond to the true
surface normals’ geometry.

We use a transformation step to obtain the true sur-
face normals’ geometry. Assuming that the shape of
the object is smooth and it has an occluding boundary,
we use the occluding boundary points as a reference to
do the transformation. A sobel filter is applied to es-
timate the normals of the occluding boundary points.
Then based on the relative relationship between sur-
face normals from Isomap, the true surface normals’
geometry can be obtained by the occluding boundary
points. :

From the object’s surface normals, any photometric
method can be applied to estimated the height field of
the object to complete the shape reconstruction. The
classic technique is relaxation method which was intro-
duced by Horn [9]. Recently, Kovesi presented a novel
3D shape reconstruction technique by using shapelets
which is robust and simple to implement [12]. We use
this technique to complete the shape reconstruction.

3 Experiment Results

We used sets of synthetic images to do the evaluation of
the performance of our system. The images of an ob-
ject with different surface reflectance properties were
generated under 300 distant light sources that were
randomly distributed around the object. The synthetic
object is a crater shape which is obviously concave in
the middle part. So, in the sets of input images there
are plenty cast shadows. Versions of the shape with
different reflectance properties were used: diffuse ((1)
uniform Lambertian and (2) textured Lambertian), (3)
specular (Phong), and (4) diffuse and specular (tex-
tured Lambertian + Phong). For each input image,
the size is 64 pixels x 64 pixels and there are about
2828 object surface pixels.

In Figure 4, we show the interpolation results in a
single image for four different reflection models. For
each reflectance model, we have chosen one image from
the results to show the recovery of the cast shadow
area. On the top left is one of 300 input images, on the
top right are the corresponding shadow regions (cast
shadows are in black color and attached shadows are
in grey color), on the bottom left is interpolation re-
sult image and on the bottom right is the correspond-
ing ground truth image. We can see that for each re-
flectance model, we find the cast shadow area and re-
move it correctly. Also, the textures and specularities
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on the object surface are recovered well. In Figure 6
we show more interpolation results for the reflectance
models excluding the Lambertian model. The left col-
umn for each model, from top to bottom, shows nine of
the input images, interpolated image results and their
corresponding ground truth images.

After doing interpolation, we used the set of new
generated images as input to do the normal estimation
and 3D shape reconstruction. We compare our results
with the ground truth which is shown in Figure 5. The
ground truth of the shape obtained from the true sur-
face normals is illustrated in two ways: on the left is the
full three-dimensional shape and on the right is a cross
section showing the shape of the middle cast shadow
area. Correspondingly , in Figure 6 we show the cross
section of the reconstructed result when interpolation
is not used, a cross section of our result, and a 3D view
of our result. We can see in Figure 6 that the middle
cast shadow area in the result without interpolation
is obviously incorrect compared with the ground truth
in Figure 5, because the cast shadows cause the incor-
rect estimation of surface normals. But after removing
the area of cast shadows by interpolation, the concave
shape of the middle part was recovered well compared
to the ground truth.

Figure 5: The ground truth shape in 3D (left) and
cross section (right).

We analysed the errors in the interpolated result by
calculating the difference between the obtained intensi-
ties of each pixel in each image and the corresponding
ground truth. For the ground truth, we know the cast
shadow positions in each image, and the true intensity
values of them calculated by the known surface nor-
mals. In Table 1 below, the errors in intensity values
are given. The range of the intensities is 0~255. We
calculate four different error values: Mean pixel error,
mean cast shadow pixel error, mean cast shadow pixel
error by using data without interpolation and mean
non-cast shadow pixel error. From the results in the ta-
ble we can see that after interpolation, compared with
the ground truth at each pixel in each image, the er-
rors of cast shadow pixels are around 3, which is small,
especially compared to the error without interpolation
which is around 60. The errors of non-cast shadows
are only around 0.1 which shows that our algorithm
does not influence the other pixels, including attached
shadows.

We also compute the error in the surface normals’
direction by comparing our results and the true sur-

Reflection Mean CS CS error | non-CS
Models error | error | (original) error
Lambertian 0.20 3.20 75.9 0.08
Textured 0.15 2.55 58.7 0.06
Lambertian

Specular 0.24 2.61 59.9 0.15
Textured 0.15 1.80 41.8 0.09
Specular

Table 1: Interpolation error in intensities calcu-
lated in different parts of the object surface

face normals. The errors are listed as angles in Table 2.
‘We calculate the errors for the four different reflectance
models as we do in calculating the interpolation errors.
And the errors are given as mean normal error, mean
cast shadow normal error, and mean non-cast shadow
normal error. From Table 2 we can see that the er-
rors for the diffuse reflectance models are about 9° and
for specular reflection models are about 5°, which are
reasonably small. For cast shadow pixels, the normals’
errors are similar to that of non-cast shadow pixels.

Reflection Mean normal CS non-CS
Models error error error
Lambertian 9.1 8.4 9.2
Textured 9.1 8.3 9.2
Lambertian

Specular 5.6 3.8 5.8
Textured 4.9 3.0 5.1
Specular

Table 2: Normal estimation error in angles (de-
grees) calculated in different parts

To illustrate the contribution of using interpolation
to remove the cast shadows, in Table 3 we show the
error of surface normals’ estimation using the sets of
data without interpolation. The same with Table 2,
the results are showed in degree and the parts are cor-
respondingly to those in Table 2. Comparing the Table
3 to Table 2, it’s obvious to see that the normal estima-
tion becomes more accurate by using interpolated data,
not only in the cast shadow area, but also in non-cast
shadow area. It indicates that the interpolated values
can accurately reveal the similarity of the appearance
changes, and our method can successfully extract the
intrinsic surface normals’ distribution and estimate the
surface normals’ directions from the observation vector
space for objects with different reflectance properties
on the surface.
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Figure 4: Interpolation results shown in single images: (a) Lambertian model, (b) textured Lambertian
model, (¢) specular model, and (d) textured specular model.

Reflection Mean normal CS non-CS
Models error error error
Lambertian 11.2 10.9 11.3
Textured 11.1 10.7 11.2
Lambertian

Specular 94 10.5 8.9
Textured 7.8 10.5 6.5
Specular

Table 3: Normal estimation error when using data
without interpolation

4 Conclusion

We presented a novel photometric stereo method for
recovering an object’s shape directly from a set of in-
put images of the object. It is based on the similarity
of points on the appearance manifold, which contains
observed appearances at points under varying illumina-
tion. We don’t require any particular reflectance mod-
els or illumination properties apriori. Also, based on
the similarity measure, we remove the influence caused
by cast shadows in the input images. Considering the
similarity measure, we find a set of similar observation
vectors for each vector that contains cast shadows, and
then combine the similar vectors’ values to interpolate
new values in areas of cast shadows. We reveal that for
a pair of surface points, the similarity of their observed
appearance on the object’s surface under varying il-
lumination is closely related to the similarity of their
corresponding surface normals. Then we use a dimen-
sionality reduction technique to estimate the intrinsic
surface normals’ geometry.
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