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Abstract

Recent research on computer vision has made significant progress in 3d reconstruction and free-viewpoint video
however most of these methods are not suited for real-time rendering. This paper presents a Video-Based
Rendering method that provides online new viewpoints of the scene from a set of webcams. Our method follows
a plane-sweep approach perfectly suited for GPU implementation. This paper mainly focuses on different
implementations of this method for different purposes. Indeed, our basic plane-sweep technique uses 4 input
cameras to create online new views. However this method can be modified to be used with up to 10 cameras or
more by a camera selection process. This method can also be adapted to handle moving input cameras using a
real-time camera calibration technique. Moreover, this method can easily render a depth map instead of a new
view. Finally, we explain how the plane-sweep algorithm can be modified to create multiple new views
simultaneously. This latter application is mainly designed for autostereoscopic displays application.

Implementation and performance are detailed for all these plane-sweep methods.
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1 Introduction

Video-Based Rendering (VBR) is an emerging
research field that proposes methods to compute new
views of a dynamic scene from video streams. VBR
techniques are divided into two families. The first one,
called off-line methods, focuses on the visual quality
rather than on the computation time. These methods
usually use a large amount of cameras and
sophisticated algorithms that prevent them from live
rendering. Therefore, the video streams are recorded
to be computed off-line. The rendering step can begin
only when the scene information has been extracted
from the videos. Such three-step approaches (record -
compute - render) are called off-line since the delay
between acquisition and rendering is long in regard to
the final video length. The methods from the second
family are called on-line methods. They are fast
enough to extract information from the input videos,
create and display a new view several times per
second. The rendering is then not only real-time but
also live.

In this article, we present a VBR method that creates
new views of the scene on-line. This method is
especially well suited to be used with GPU. Hence,
we detail some real-time computer vision applications
optimized to fully use both CPU and GPU. In the

following parts, we propose a survey of previous
works on recent on-line Video-Based Rendering
techniques. The next part explains the plane-sweep
algorithm and our contributions. Then, we present
some real-time applications and their implementation.

2 Online Video-Based Rendering

Only few VBR methods reach on-line rendering.
Powerful algorithms used for off-line methods are not
suited for real-time implementation. Therefore, we
can not expect from on-line methods the same
accuracy provided by off-line methods.

The most popular on-line VBR method is probably
the Visual Hulls algorithm. This method extracts the
silhouette of the main object of the scene on every
input image. The shape of this object is then
approximated by the intersection of the projected
silhouettes.  There  exist several  on-line
implementations of the Visual Hulls described in [1].
The most accurate on-line Visual Hulls method seems
to be the Image-Based Visual Hulls presented by
Matusik et al. [2]. This method creates news views in
real-time from four cameras. Each camera is
controlled by one computer and an additional
computer creates the new views. The method
proposed by Li et al. [3] is probably the easiest to



implement. The main drawback of the Visual Hulls
methods is the impossibility to handle the background
of the scene. Hence, only one main “object” can be
rendered. Furthermore, the Visual Hulls methods
usually require several computers, which makes their
use more difficult.

Another possibility to reach on-line rendering is to
use a distributed Light Field as proposed by Yang et
al. [4]. They present a 64-camera device based on a
client-server scheme. The cameras are clustered into
groups controlled by several computers. These
computers are connected to a main server and transfer
only the image fragments needed to compute the new
view requested. This method provides real-time
rendering but requires at least 8 computers for 64
cameras and additional hardware.

Finally, some plane-sweep methods reach on-line
rendering using graphic hardware (GPU). Since our
method belongs to the latter family, we will expose
the basic plane-sweep algorithm in the next section.
Then we will detail our contribution.

3 Plane-Sweep Algorithm

The plane-sweep algorithm provides new views of a
scene from a set of calibrated images. Considering a
scene where objects are exclusively diffuse, the user
should “place” the virtual camera cam, around the
real video cameras and define a near plane and a far
plane such that every object of the scene lies between
these two planes. Then, the space between rnear and
far planes is divided by parallel planes D; as depicted
in Figure 1. Consider a visible object of the scene
lying on one of these planes D; at a point p. This
point will be seen by every input camera with the
same color (i.e. the object color). Consider now
another point p’ lying on a plane but not on the
surface of a visible object. This point will probably
not be seen by the input cameras with the same color.
Figure 1 illustrates these two configurations.
Therefore, the plane-sweep algorithm is based on the
following assumption: a point lying on a plane D;
whose projection on every input camera provides a
similar color potentially corresponds to the surface of
an object.

During the new view creation process, every plane D;
is computed in a back to front order. Each pixel p of
a plane D, is projected onto the input images. Then, a
score and a representative color are computed
according to the matching of the colors found. A
good score corresponds to similar colors. This
process is illustrated on Figure 2.
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Figure 1. Plane-sweep: geometric configuration.

Then, the computed scores and colors are projected
on the virtual camera camx. The virtual view is hence
updated in a z-buffer style: the color and score (depth
in a z-buffer) of pixel of this virtual image is updated
only if the projected point p provides a better score
than the current score. This process is depicted on
Figure 3. Then the next plane Di+1 is computed. The
final image is obtained when every plane is computed.

The plane-sweep algorithm introduced by Collins [5]
was adapted to on-line rendering by Yang et al. [6]
using register combiners. The system chooses a
reference camera that is closest to camx. During the
process of a plane Di, each point p of this plane is
projected on both the reference image and the other
input images. Then pair by pair, the color found in
the reference image is compared to the color found in
the other images using a SSD (Sum of Squared
Difference). The final score of p is the sum of these
SSD. This method provides real-time and on-line
rendering using five cameras and four computers,
however the input cameras have to be close to each
other and the navigation of the virtual camera should
lie between the viewpoints of the input cameras,
otherwise the reference camera may not be
representative of camx. Lastly, moving the virtual
camera may change the reference camera and induce
discontinuities in the computed video during this
change. Geys et al.’s method [7] begins with a
background extraction. The background geometry is
supposed to be static. This assumption restricts the
application of the plane-sweep algorithm to the
foreground part.
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Figure 2. Every point of the current plane is
projected on the input images. A score and a color
are computed for these points according to the
matching of the colors found.

The scoring method used is similar to the method
proposed by Yang et al. but they only compute a
depth map. Then, an energy minimization method
based on a graph cut algorithm (CPU) cleans up the
depth map. A triangle mesh is extracted from the new
depth map and view dependent texture mapping is
used to create the new view. This method provides
real-time and on-line rendering using three cameras
and only one computer. However, the background
geometry must be static.

4 Proposed Method

4.1 Score Computation

Our main contribution to the plane-sweep algorithm
concerns the score computation. Indeed, this
operation is a crucial step since both visual results
and speedy computation depend on it. Previous
methods computes scores by comparing input images
with the reference image. We propose a method that
avoids the use of such reference image that may not
be representative of the virtual view. Our method also
use every input image together rather than to compute
images by pair.

Since the scoring stage is performed by the graphic
hardware, only simple instructions are supported.
Thus a suitable solution is to use variance and
average tools. During the process of a plane D;, each
point p of D; is projected on every input image.
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Figure 3. The computed scores and colors are
projected on the virtual camera.
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The projection of p on each input image j provides a
color ¢;. The score of p is then set as the variance of
the ¢, Thus similar colors ¢; will provide a small
variance which corresponds to a high score. On the
contrary, mismatching colors will provide a high
variance corresponding to a low score. In our method,
the final color of p is set as the average color of the ¢;.
Indeed, the average of similar colors is very
representative of the colors set. The average color
computed from mismatching colors will not be a
valid color for our method however, since these
colors also provide a low score, this average color
will very likely not be selected for the virtual image
computation. This plane-sweep implementation can
be summarized as follows:

® reset the scores of the virtual camera
® for each plane D, from far to near
o for each point (fragment) p of D;
- project p on the » input images.
¢; is the color obtained from this projection on the
7™ input image
- compute the color of p :
color, = average(c)) j=1..n

- compute the score of p :
= 2
score, = sum((c; —color)) -1

e project all the D;'s scores and colors on the virtual
camera
o for each pixel g of the virtual camera
- if the projected score is better than the current one
then update the score and the color of g

e display the computed image



4.2 Implementation and Results

Our implementation is designed to be used with four
webcams, connected to a single computer. The
camera calibration is performed using Zhang method
[8]. We usually set the far plane as the calibration
chessboard plane. The user should then determine the
depth of the scene to define the near plane. These two
planes can also be set automatically using a precise
stereo method as described in Geys et al. [7]. We
use OpenGL for the rendering part. For each new
view, we propose a first optional off-screen pass for
every input image to correct the radial distortion and
the color wusing Frame Buffer Objects.
Implementation indications can be found on [9].

Each plane D, is drawn as textured GL_QUADS. The

scoring stage is performed thanks to fragment shaders.

First, D;’s points (fragments) are projected onto the
input images using projective texture mapping. The
texture coordinates are computed from the projection
matrices of each input camera. Multi-texturing
provides an access to every texture simultaneously
during the scoring stage. Then, this fragment program
computes each score and color using the algorithm
before-mentioned. The scores are stored in the
gl_FragDepth and the «colors in the
gl FragColor. Then we let OpenGL select the
best scores with the z-test and update the color in the
frame buffer. To compute a depth-map rather than a
new view, we just set the gl FragColor to the
gl FragCoord.z value. Most of the computation
is done by the graphic card, hence the CPU is free for
the video stream acquisition and the virtual camera
control.

We tested our method on a laptop core duo 1.6 GHz
with a nVidia GeForce 7400 TC. The video
acquisition is performed with USB Logitech fusion
webcams connected to the computer via an USB hub.
With a 320x240 resolution, four webcams streaming
simultaneously provide 15 frames per second.

The computation time to create a new view is linearly
dependent of the number of planes used, of the
number of input images and of the resolution of the
virtual view. The number of planes required depends
on the scene. During our tests, we noticed that under
10 planes, the visual results became unsatisfactory
and more than 60 planes did not improve the visual
quality. Hence, in our experimentations, we used 60
planes to ensure an optimal visual quality.

We set the virtual image resolution (output image) to
320%240. With such configuration, the number of
input cameras is limited to 4 due to the GPU time
computation. Qur method reaches 15 frames per
second. Figure 4 shows a real-view take exactly
between two adjacent cameras, the corresponding

created image and the difference. This difference is
small enough to ensure good quality result.

Figure 4. Lefi: real view. Center: computed view.
The virtual camera is placed between two
adjacent input cameras. Right: difference between
real and computed view.

5 Camera Array

A limitation of the plane-sweep method is the
location of the input cameras: they need to be close to
each other to provide engaging new virtual views. In
fact, the closer they are, the better the final result is.
The problem is then how to extend the range of
available virtual view points without any loss of
visual quality. Real-time plane-sweep method is
limited in the number of input images used since the
score computation time linearly depends on the
number of input images. Furthermore, real-time video
streams control requires special devices when the
number of cameras increases too much. We propose a
webcam management to handle up to 10 or more
USB cameras from a single computer (Figure 5).
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Figure 5. Ten webcams connected to a laptop via a
USB hub.

Considering the position of the virtual camera, the
system selects the four most appropriate cameras.
Only these cameras are used to compute the new view.
The video streams from non-selected cameras are
disabled. Then, for the next view, if the virtual
camera moves, the set of selected input cameras is
updated. Concerning the cameras configuration,
every disposition is acceptable since the cameras are
no too far from each other and are placed facing the
scene. In such configurations, the most appropriate
cameras to select for the new view computation are
the nearest ones from the virtual camera. This method
does not decrease the video stream acquisition frame
rate since no more than four webcams are working at
the same time.



This method can be used to extend the range of
available virtual view points or just to increase the
visual quality of the new views by using a dense
cameras disposition. In a circle arc configuration,
using 8 webcams rather than 4 will cover 60° instead
of 30°. If the user prefers to place the additional
cameras in the 30° area, then the visual quality of the
created views will highly increase. Figure 6 shows 18
new views computed in real-time from ten cameras.

Figure 6. Each new view is computed on-line with
a laptop using 4 cameras selected between 10. The
scene was discretized with 60 planes and this
method reaches 15 fps.

6 Depth-Map Rendering

Real-time depth map estimation is a challenging topic
where the planes-sweep method provides promising
results. Woetzel et al. [10] propose a plane-sweep
technique to compute real-time depth maps using an
optimization of Yang et al. [6] approach. Similarly,
we propose an adaptation of our method to generate
real-time depth maps. This adaptation requires very
few changes in our initial plane-sweep program. For a
pixel candidate p lying on a plane D;, we just have to
provide the depth of D; instead of the color of p.
Hence, in our implementation, to compute a depth-
map rather than a new view just involves to set the

gl_FragColor tothe gl FragCoord.z value
in the fragment shader program. To enhance the
depth map accuracy, we added a real-time
background substraction on the input video stream.
Figure 7 illustrates some real-time results from four
webcams.
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Figure 7. Real-time depth map computation from
four webcams.

7 Moving Cameras

Almost all the VBR techniques use calibrated input
cameras and these calibrated cameras must remain
static during the shot sequence. Hence it is impossible
to follow a moving object with a camera. Using one
or more moving cameras allows coming closer to an
actor to get more details. This technique can also be
used to adjust the framing of the cameras.
Furthermore, if someone involuntary moves a camera,
calibration update is not required. Hence moving
cameras device provides more flexibility in the
device configuration.

We propose a real-time calibration method designed
to be used with our plane-sweep method. The
calibration is accurate but also real-time for multiple
cameras. Our method follows a marker-based
approach: the 2D markers are detected and identified
by ARtoolkit [11], a very popular tool for simple on-
line Augmented Reality applications.

Using only one marker is usually not enough to
calibrate a camera efficiently. Multiple markers
reduce the detection failure problem and provide
better results. In most of the multiple markers
applications, the markers are aligned and their
respective position must be known. To decrease the
constraints on the markers layout, some methods like
[12] or [13] use multiple markers with arbitrary 3D
positions. In our case, the cameras view-point can
change every time, hence it seems to be easier to
increase the number of markers seen by a camera if
they are close to each other. Thus a coplanar layout is
well suited for our VBR method.

In our method, ARtoolkit is used only to provide
markers’ position in the image coordinates, but not
for calibration. The user sets some markers in a
planar configuration. They can have arbitrary
position and size. A reference marker should be
chosen to be the origin of the scene referential. Then



one of the input cameras takes a picture containing all
the markers so the geometrical relationship between
the markers could be estimated. Indeed, a

homography H between this picture and the reference
marker is computed (Figure 8).
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Figure 8. Estimation of the relationship between
every marker by homography.

Applying H on the pixel coordinate of every detected
marker will provide its position in the scene
referential. Then, every moving camera can be
calibrated in real-time in the same referential. At least
one marker should appear in an image to compute a
calibration matrix. Every detected marker is
computed independently. A projection matrix is
estimated by Zhang method [8]. Then the final
projection matrix is set as the average projection
matrix computed from every marker. Thus in this
method, both rotation and translation are handled.
This method reaches real-time rendering thanks a
combination of the GPU and the CPU. Figure 9
depicts some real-time results,

Figure 9. During the same video sequence, the
input cameras can be moved.

8 Multiple-View Rendering

In this section, we explain how our VBR method can
be adapted to multiple view rendering, i.e. how our
method can be modified to render simultaneously
several new views of the scene from different
viewpoint in real-time.

A major application of multiple view rendering is to
provide a set of stereo images for autostereoscopic
displays. Indeed, autostereoscopic devices require
several images of the same scene from different
viewpoints. Using ten or more cameras can provide
enough views for an autostereoscopic display but
even with a low resolution, real-time video stream
acquisition is a serious issue with a single computer.

'VBR methods are a good alternative to this approach
since they can provide new views of the scene from a
restricted set of videos and thus decrease the number
of required cameras.

As presented in section 2, few VBR methods reach
on-line rendering. Moreover, autostereoscopic
display applications require not only on-line VBR
methods but also methods that can create
simultaneously several new views of the scene for
every frame.

The visual hulls methods is suited for an “all around”
camera configuration but not for a dense aligned
camera configuration required for autostereoscopic
display applications. The distributed Light Field
proposed by Yang et al. [4] requires at least 8
computers for 64 cameras and additional hardware.
Thus this method is incompatible with a commercial
use of stereoscopic applications.

Actually, most of on-line VBR methods already fully
use the available computer capability to reach real-
time rendering, thus we can hardly expect real-time
rendering for multiple views without any optimization,
The plane-sweep algorithm is well suited for such
optimization thanks to the space decomposition using
planes. Indeed, scores and colors computed on every
plane represent local information of the scene. This
score and color computation, which are a central task
in the plane-sweep algorithm, can be shared among
every virtual view and hence provide a consequent
gain of computation time.

The plane-sweep method can be modified in a k+1
passes algorithm, where k is the number of virtual
cameras, to provide on-line multiple new views. For
every plane D; (Figure 1), the score and color of
every point is computed in a first pass. This pass is
absolutely independent of the number of virtual views
to create. The information computed during this pass
is then projected on every virtual view in k passes.
During these last k passes, color and score
information is updated on every successive virtual
camera. The k+1 passes are repeated until every plane
D; is computed. Hence our previous method can be
modified as follows:

® reset the scores and colors of the virtual cameras
Via..n
e for each plane D; from far to near
o for each point (fragment) p of D;
- compute a score score and a color color.
- store the results color and score in an array :
T(p) = (color, score)
o for each camera cam;
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- for each point (fragment) p of D;

+ find the projection g;, of p on cam,.
VAq;,) contains previous color and score
information on cam;at the position g,

+if the score on T(p) is better than the score

stored on V(q;,)

then ¥(g;,) = T(p)

e convert each V; into images

Concerning the implementation, the use of the z-test
for the multiple view method would imply that every
new view is rendered on the screen. Thus the screen
resolution would limit the number of new view that
can be computed. We propose a method where every

process is done off-screen using Frame Buffer Object.

RGBA textures are assigned to every virtual view and
an additional texture is used for the color and score
computation. The color is stored in the RGB
component and the score in the alpha component.
The virtual camera’s texture will replace the frame
buffer used on the single view method.

The score and color computation of a plane does not
differ from the single view method except that the
rendering is performed on a texture. Naturally the
rendering has to be associated to a projection matrix.
We select the central virtual camera as a reference
camera for this projection. Then, every virtual camera
involves an additional rendering pass. During a pass,
the score and color texture is projected on the current
plane using the reference camera projection matrix.
The textured plane is then projected on the virtual
camera using fragment shaders. The texture
associated to the current virtual camera is used for
both rendering and reading the last selected scores
and colors. The fragment program decides to update
fragment information or to keep the current texture
value according to the last selected scores as
described in the before-mentioned algorithm. Afier
the last plane computation, the virtual camera’s
texture can be extracted to provide the new images of
the virtual views.

The number of virtual views depends on the
application. In our case, we tested our system with 6,
9, 12, 15 and 18 virtual cameras set between adjacent
input cameras. The speed results obtained with such
configuration are shown on Table 1. Our test includes
compression and transfer of both virtual views and
input images. Table 1 also includes the frame rate of
the classic method witch computes independently
every virtual view. Our tests indicate that our method
provides especially good results for a large number of
virtual views. Compared to the classic method, our
method is at least more than twice faster for 6 virtual
views and is four time faster for 18 virtual views
without any loss of quality.

Number of Number of Frame rate Classic metho
virtual views total views (fps) d (fps)
6 10 11.2 3.8
9 13 10 29
12 16 8.7 24
15 19 7.6 1.9
18 22 7 1.6

Table 1 - frame rate and number of virtual views.

Figure 10 depicts a sample result for a 12 virtual
views configuration. Input images are displayed on
the diagonal. The visual quality of a virtual view
varies with its distance from input cameras and
decreases for a virtual view located exactly between
two input cameras. However, autostereoscopic
display provides two views per user (right and left
eyes) and the fusion of the two images decreases the
imperfection impact. As shown on Figure 10,
stereoscopic pairs (parallel-eyed viewing) are very
comfortable. In addition, the base-line between the
extreme right and left views are perfectly suited to
autostereoscopic  display  application. = More
implementation details are available on Nozick and
Saito [14].

9 Conclusion

This paper presents several on-line Video-Based
Rendering applications using a plane-sweep
algorithm that can be implemented on every
consumer graphic hardware that supports fragment
shaders. Our tests showed that this method combines
low-cost hardware with high performances. We
propose an effective video stream management that
extends the number of potential webcams used to
create a new view. This technique involves a better
flexibility on the cameras’ position and increases the
visual result. We also show how our method can be
modified to provide real-time depth maps rather than
new views of the scene. Then we present a
combination of the plane-sweep algorithm with a
real-time calibration method to handle moving
cameras. Finally, we present an adaptation of our
method to provide simultaneously multiple views of a
scene from a small set of webcams. Our multiple
view method shares the 3D data computation for
every virtual view and speeds up the computation
time more than four times compared to the single
view method for the same number of new views. The
rendering is on-line and provides high quality
stereoscopic views. This method is especially
designed for autostereoscopic display. According to
our knowledge, there does not exist other VBR
method that provides equivalent results with such
configuration.
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