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Abstract Detecting an unseen object in 3-D space is one of the important task on the field of
computer vision. Especially, background subtraction is the most popular technique to extract
the region of an unseen object from 2-D image taken under the static condition. Though, such
condition is rare for practical use; A real scene contains moving object which we previously
know its existence. Thus the system must have the ability to distinguish unfamiliar object from
moving objects. Although the system can successfully extract the region of an unseen object,
we have to decide that the object is intruding into certain region or not. In this paper, we
propose a method to extract the region of unseen object from dynamically moving background
using iterative projection onto eigenspace by kernel PCA of a background image sequence.
Additionally, we realize a calibration-free 3-D intrusion detection system with multiple uncal-

ibrated cameras by integrating the extracted region of unseen object in 2-D captured image.

Keywords: Intrusion detection, background subtraction, kernel PCA, visual hull method.
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Nowadays a lot of cameras are used at shops, mu-
seums, banks, roads and so on, but taken images are

only recorded and mainly used for evidence for post-
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mortem. In the case of very critical missions which re-
quires real-time responses, human would watch many
monitors tiled on a wall. To save such labor and cost
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for monitoring, special sensors are often used. Light

1]
|
strictly related to the arrangement of the equipments. W

Passive infra-red sensor which detects the heat of hu-
man body is also widely used, but it will detect only
the existence of the human body and detailed obser-

beam detectors are used to find undesirable intrusion,
but the sensitive lines are not flexible because it is

Fig.1 Flow of DARPA VASM system [3]

vation of monitoring area is impossible.

For replacing human observer with a computer,
image-based surveillance and monitoring method is
extensively researched [1]. In these research, they ap-
ply the techniques to restricted admission by image-
based person identification, motion analysis of human
or car, alert for anomalous events and so on. More re-
cently, a gait analysis has been attracted researchers’
attention. For example, Matsumura detects abnormal
behavior of human from a trait of target on omni-

image by comparing the trait and a transition model
has been obtained in advance [2]. Otsu used CHLAC
feature for precise gait identification, where the fea-
ture is invariant for translation and time.

On the other hand, there are several researches not
only using cameras fixed in space, but also intention-
ally utilizing many cameras to recognize human ac-
tion [3](Fig. 1). VSAM project constructs the system
that is able to classify target objects and track them
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Fig.4 Object extraction under a moving back-
ground objects

even though they occlude each other. The system is
robust for the occlusion by using templates of objects,
however, it cannot handle fine motion nor deforma-
tion of object. Thus it isn’t suitable to detect a 3-D
intrusion.

Therefore, we propose the intrusion detection sys-
tem for versatile purpose in this paper. The system
consists of extraction method of an unseen object
region from 2-D image and 3-D intrusion detection
method by integrating the regions using multiple un-
calibrated cameras(Fig 2).

2 Unseen Object Region Extraction from
Captured Image

Background subtraction uses static background
captured before monitoring (Fig. 3), therefore it
can not handle the moving object as a background
(Fig. 4). Real-time background maintenance, such as
median filter, is widely used to solve this problem, but
fast motion of the background object will be detected
as a intruder.

Therefore, some background models have been pro-
posed to adapt the background subtraction method to
a kind of dynamic scene.

2.1 Extracting Object from Changing Background

Background subtraction is the method to extract a
region from captured image whose amount of change
exceeds a predefined criteria by comparing the im-
age with the background model. Thus it is possible
to apply a sophisticated background subtraction with
improved background model to the scene which con-
tains moving background objects.

Generally, the factors leads to false positive error of
an extraction result are as follows:

o Global illumination change by varying position or
luminance of light source,

e Local illumination change by a cast shadow or
inter-reflection,

o Rapid illumination change by illuminating a spot
light,

e Transparent object or the object with similar tex-
ture to background,

o Waving leaves, grasses,

e Motion of a background object.

An error caused by illumination changes can be sup-
pressed by choosing an appropriate model and cri-
terion. Meanwhile, it is impossible to extract ob-
jects having similar look as background object be-
cause they have similar feature to one of background
object.

To deal with the scene of waving leaves, the extrac-
tion method which make the sensitivity of such vari-
able region lower with the help of statistics. However,
this approach tends to increase the false negative in
the region.

Motion of background object, the last factor, means
background image completely changes every moment.
So it is need to estimate the background image at the
moment from observed image.

2.1.1 Background Models for Dynamic Scene

In the case of a dynamic scene, it is important to
construct a background model from multiple images
(ex. image sequence of moving background object,
image set of varying illumination etc.) rather than a
single background image.

Elgammal et al. represented each pixel value with
a mixture of gaussian (MOG) distribution and esti-
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Fig.5 Extraction using MOG [4]

Fig.6 Extraction using a disparity map [5]

mated the parameters from multiple images to con-
struct a background model using EM algorithm [4].
And successfully extracted a human region from
the scene contains waving leaves and illumination
changes. It is difficult for this model to handle a local
illumination change (ex. cast shadow) (Fig. 5 (b)),
they normalized image by:

Gl. Q)

If the system could obtain a depth information
about a background, it is possible to achieve the back-
ground subtraction free from illumination changes.
Ivanov et al. have proposed the extraction method in
static scene using a disparity map as the background
model, which is robust to shadows [5] (Fig. 6).

2.1.2 Using Correlation or Co-occurrence with Neigh-
boring Pixels

Javed et al. evaluated not only difference value at
each pixel but also spatial differential for an object
extraction [6] (Fig. 7), which is robust to global il-
lumination change and translate background objects.
However, they adapt the translation by updating a
background model at the right moment. The extrac-
tion method can’t use with a continuously moving
scene because the background model is outdated un-
til updating it.

Input Image

Result Image

Fig.7 Extraction Using Neighbor Pixel Information [6]

2.1.3 Problems in Implementing on Intrusion Detec-
tion System

In an intrusion detection system under a dynamic
scene, a mixture of gaussian model, which can handle
a local illumination change, is not suitable because
a background object dynamically moves. The adap-
tive approach based on updating has also been pro-
posed, however this only makes time of false detection
shorter and doesn’t solve the problem. In addition,
there is no warranty of correctness of a background
model with the updating approach. That is, a fixed
background model of a dynamic scene is desirable for
an intrusion detection system.

Here, when the whole variation of background im-
age is observable in advance, it is possible to extract
the region of unseen object by just referencing an ap-
propriate background image without any parameter-
ization.

3 Object Extraction by Estimation of
Background Image using Eigenspace

As mentioned above, the extraction under a dy-
namic scene can be done by estimating an appropriate
background image from newly captured image. Nev-
ertheless, we can’t obtain the background image by
simply searching in stored images because new input
image usually contains an unseen object somewhere,
so we have no criteria to measure the similarity be-
tween the input image and each stored image.

The eigenbackground is a popular technique to han-
dle a background image set [7]. Once represent a im-
age set as an eigenspace, a different image from the set
can’t be synthesized using the eigenspace. Therefore,
to estimate a background image, it is done by simply
projecting input image to an eigenspace then back-
projecting to image space. This framework works
well only if unseen object region is small. To han-
dle large unseen object in an input image, we have
to exclude the region explicitly from the estimation
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process. However, since we have no information the
object region to exclude, it is need to iterate the back-
ground estimation and the object extraction alter-
nately (Fig. 8).
3.1 Image Reconstruction from Eigenspace

When we have s background images 1, ..., &5, one
of background images x; can be approximated using
(d < s) which consist of or-
thonormal basis ey, ..., e4 calculated using principal

matrix E = [e; ... e4]

component analysis (PCA), as
z; ~ Ep; + )

where eq,...,eq is called as eigenvectors. To simplify
the equation, we omit the average image Z because it
is constant.

z; ~ Ep, ®3)

Inversely, we can calculate the point p in an

eigenspace which corresponds to the background im-
age x as

p=FETz 4)
where (ETE)~'ET = ET, because E is orthonormal.
If we have the point p, the background image  can
be reconstructed using eigenvectors.

z~Ep (=EETx) (5)

3.2 Background Estimation

As described above, we can reconstruct the back-
ground image if we can estimate the point in an eigen-
space, p. If the background contains not only a per-
turbation (e.g. illumination variations [7], etc.) but
dynamic motion of background objects, we must ex-
plicitly exclude a occluded region by an unknown ob-
ject which causes a considable estimation error of

background image. In this paper, we propose the
method to estimte p from a image & a part of which is
occluded by unknown objects. BPLP method [8] cal-
culates the point to minimize the difference between
input and estimated image except the occluded re-
gion. This method can be represented using diagonal
matrix ¥ whose diagonal element is 0 when the cor-

responding pixel is occluded and 1 not occluded, as

eTe 2 min. (6)

e= (- Ep)" 27T (2 - Ep) (7)
and the solution p is given as follows.
p=(ETSTE) " ETX 5z ®)

But however, equation (8) takes much time because
d? times multiplication of image by image must be
calculated. So that, we propose an iterative projec-
tion method as follows. Instead of equation (8), we

use a reccurence equation,
N T A
Pn = E Tn—1 (9)

where the initial value of estimator &, is an average
of all background images, &y = 0. Then we can calcu-
late n** estimated point P, using n — 1t" estimated
background. The background image &,—; is a com-
position of former estimated background and input
image Z,

Zp1 =T+ (I - E) Ei’n——l (10)

where the occluded region of input image is replaced
by the former estimated background.
33 Updating Occlusion Mask

Both BPLP and our method needs information of
the region occluded by intruders, 3. Unfortunately,
this diagonal matrix is unknown because the objective
of our research is to estimate the silhouette of the
unknown object. Therefore, we calculate the mask ¥
by using simple background subtraction as

wo-{4 SEA o

where th is a threshold and (j) denotes each pixel or
element of diagonal matrix. Of course, the estimated
background & is varied when the occlusion mask ¥
changes, therefore, background estimation described
in section 3.2 and background subtraction by equation
(11) must be iterated. The sequence of simultaneous
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Fig.9 Flow of proposed method

estimation of background and object region is sum-
marized as follows.
BPLP:

1. capture new image &,

2. equation (8) for background estimation using old
object region X,

3. equation (11) to update object region X,

4. go to 1.

Proposed method: (Fig. 9)

1. capture new image &,

2. equation (10) to combine input image and old
background using old object region X,

3. equation (9) to estimate new background image,

4. equation (11) for update object region T,

5. goto 1.

Evidently our method has faster frame rate of back-
ground subtraction, and it has a potential to faster
convergence to the correct region and background.

Fig.10 Rendered CG image. (a) background im-
age, (b) input image with moving intruder. In both
images, centered star-shaped object rotates.
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Fig.11 Convergence for fixed image

4 Experiments

4.1 Evaluation using CG images

To compare our method to BPLP equally, we used
synthetic images for background and input images.
Figure 10(a) shows the background image (ground
truth) and 10(b) input image generated by POV-Ray
3.6. In both figures, star-shaped background object
rotates just three-sixty through 256 images. The di-
mension of eigenspace is 58 when accumulation con-
tributing ratio is 95%.

4.1.1 Experiment 1 : Convergence for Fixed Image

In this experiment, we compare the speed of con-
vergence using fixed input image. We used an average
image as an initial value.

Figure 11 shows the result of convergence. The er-
ror is a variance between estimated image and ground
truth. By this result, it is better to update the object
region mask rapidly than the slow calculation of the
optimal value.

4.1.2 Experiment 2 : Error for real-time sequence

In this experiment, we checked the error for a
stream of images. We assumed all 256 images as a
sequence of images of 30 fps, therefore the period of
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Tablel Average error of estimated background

BPLP 0.028175
Our method 0.014375
Our method (excludes static pixels) | 0.010365
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Fig.12 Improvement by exclusion of static pixels

all images is 8.53sec.

In actual, a part of background image stays
static while the background includes dynamic object.
Therefore, we exclude such pixels from the estima-
tion. Figure 12 shows the effect of exclusion of static
pixels. Since the cycle time of estimation is shorter,
the error of estimation becomes smaller. The frame
rate of this method is 20 fps to 30 fps. For real-time
sequence, our result shows not only less error but also
faster cycle of estimation. Table 1 shows the average
of the error through the sequence. This results shows
our method has better performance for real-time se-
quence.

4.2 Evaluation using real images

Figure 13 shows the result of our system for the real
scene. The background is a miniature of dinosaur ro-
tating on a chair, and the intruding object is a minia-
ture of white cat. The dimension of eigenspace is 46
when the number of background image is 256 and
accumulation contributing ratio is 95%. In Figure
13, column (a) shows input images(Z), (b) estimated
background (Ep,,), (c) mask image (X), respectively.
The region of the intruding object is extracted cor-
rectly while the background object is moved. Also
figure 13 shows the result of extraction of unknown
object.
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Fig.13 Background Estimation using real images.
(a) Input images, (b) Estimated Background, (c)
Estimated Object Region.

-

(b)

Fig.14 Unknown object extraction using real im-
ages. (a) Input images, (b) Estimated Object Re-
gion.



5 Nonlinear Eigenspace

Background estimation is based on the assumption
that a background image set can be well described
as a linear relation of pixels. However, a relationship
between background images contains nonlinear corre-
lation in general. In this section, we apply the kernel
trick to our iterative projection method for expanding
it to handle nonlinear subspaces.

5.1 kernel PCA [9]

Here, nonlinear-projection of a sampled image x; to

higher dimensional feature space by a function ¢(x)

is:

T — Ty, (12)
¢
The covariance matrix in the feature space is repre-
sented by:
XoXT (13)
X¢ = [:134,1,...,:134,3] y (14)

since the feature space tends to have higher or infinite
dimensionality, it is difficult to compute eigenvectors
of the space. As think about the SVD of X:

X,=UDVT. (15)

where, U is a set of eigenvectors of X4 XJ, V is a set
of eigenvectors of X;FX(,,. Therefore, the dimension
of V doesn’t exceed the number of samples while U
can have infinite dimensionality.

Introducing the kernel function k4 (x,y) which
value is the innerproduct of & and y in a feature space:

ks (z,y) = 23y, (16)
And we define the following kernel matrix Ky (X,Y))
using the kernel function:

K¢ (X, Y) = {k¢ (a:,-,y]-)}ij = XEYG" (17)
According to the relation of X;FX¢ = Ky(X,X), U,
a set of eigenvectors of a covariance matrix Xd,X:f
satisfies following relation.

K4X,X)=VD?*VT 18)

U=X,VD™L (19)

So a projection point p corresponding to the point of
image z in feature space is computed as:

p=UTzy (20)
=D 'WTX x4 (21)
=Dk (X, ). (22)

This technique is referred to the kernel trick to
avoid the calculation in higher dimensional feature

space. And popular kernel functions are:

kg (z,y) =a"y, (23)

kg (z,y) = (1+2y)", (24)
a2

kg (x,y) =exp (—ﬂz—pzyi) . (25)

5.2 kBPLP

As mentioned in Sec. 5.1, sample background im-
age set can be described as a subspace in higher-
dimensional feature space by the kernel PCA. How-
ever, it is difficult to perform a backprojection from
the feature space to an image space.

Amano et al. have proposed kBPLP nonlinear ex-
tension of BPLP using the kernel trick [10]. In the
kBPLP, they introduced the following new feature,
which stacked pixel value ¢ in occluded region and
feature value £, of pixel value £ in observable region.

we ] .

In the subspace constructed from this feature points
Y;, since there is a linear relationship between £, and
¢, the pixel values in occluded region ¢ can be es-
timated from feature values of observable region £4.
Especially, when the vector Xz, replaced occluded re-
gion in an image x with 0, satisfy the followings:

Tz =[..,2i-1,0,%i11,...], (27)
£=$,=[...,I,‘,],wi+1,...], (28)
kg (Bx, Ty) = ky(2', ), (29)

An estimation equation of occluded values can be rep-

resented by:

£& = EXV (VIK4(2X, £X)V) ™

. (30)
VIKs(ZX, %)

Note that & = (I — X). In this equation, they use V
derived from

K4(ZX,2X)=VD?VT, (31)

when a occlusion mask ¥ changes, the kernel matrix
K4(XX,XX) and its eigenbases must be recalculated.
While bases of BPLP for linear subspace are constant
against occlusion mask, it is difficult for kBPLP to
estimate image in realtime due to the computational

cost.
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5.3 Modified kBPLP

The BPLP with linear eigenspace is the method
that uses a eigenspace by PCA of sample images as
the model, and estimates occluded values by fitting
occluded image to the subspace. On the other hand,
since kBPLP reconstructs a subspace according to oc-
cluded region, the method is not a direct extension of
BPLP as to this point.

Hence we consider the following feature Y, which
has whole pixel value X and its feature value Xy.

Y = [fg] =UDVT = [gﬂ DVT.  (32)

At this time, we obtain:
YTY = K4(X, X) + XTX, (33)

And we call it Ky(X,X). Using this matrix, the
point p on the eigenspace corresponding to x is com-
puted by,

p=UTy=D"WTKy (X, x). (34)

In addition, we can compute a backprojection lin-
early using this feature p as follows:

xz~Uxp=XVD 'p. (35)

Similarly, an estimated point p of given occluded
image Y& can be computed as

p=(D"VTKy(EX,2X)VD )™
D YWTKy(ZX,2%). (36)

So we can reconstruct an image from a partially oc-
cluded image using eq. (35) and (36). However, this
estimation uses V, D derived from

Ky(2X,2X) =VD*VT, (37)

and has heavy kernel matrix computation in eq. (36).
Therefore, we apply the iterative projection technique
to this estimation to realize faster estimation.
5.4 Rapid Calculation of Modified kBPLP using ltera-
tive Projection
In the modified kBPLP, the estimation process is
done linearly because there is a linear relationship
between a feature vector y and image vector . So
we can apply the same framework of BPLP and the
iterative projection method to modified kBPLP.
Regarding an input image Z as fully observable
(X = I), the projected point on feature space p and

the backprojected point of it Z can be computed as
same as eq. (34) and eq. (35),

p=DVTKy(X,%) (38)
z=Up (39)
=XVD 2VTKy (X, %) (40)
= XK1 (X, X)Ky (X, &) (41)

In this case, we use V, D from
Ky(X,X)=VD*VT. (42)

Then we iterate the background estimation by pro-
jecting to nonlinear eigenspace and backprojection,
and replace pixel value in occluded region with esti-
mated using the following recurrence equation:

Py — DTWTKy (X, &) (43)
Zp — B2+ (I - ) XVD Lp,. (44)

Comparing a proposed equation (43) and one of
modified kBPLP (36), the matrix affect to Ky (X, &)
is constant whenever occlusion mask ¥ changes, and
computation of the kernel matrix and inversion is only
needed once when sample images are given. Putting
it all together, we update the estimated image using
the followings.

%y, — XK71(X, X)Ky (X, &) (45)
Epp1 — B+ (I — ) &g (46)

The proposed algorithm is:

0. Initialize: set Yo = I,&o =0,

1. Capturing input image Z,

2. Replacing former occluded region (I — X) in the
input image with previously estimated image Z
(eq- (46)), )

3. Updating estimated image & using the image &
in step 2, (eq. (45)),

4. Updating occlusion mask ¥ by comparing input
image and estimated background,

5. Back to step 1.

6 Experiments

At first, using CG sequence same as linear method,
we compare the proposed method and modified
kBPKP at view of square error and computational
time.
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Table2 num of dim. of subspace

ky (z,y) p | dim. c.p.
zTx - | 182 | 0.990218
1+zTy)? + 2Tz 3 | 219 | 0.990456
exp (—12opl2) + 272 | 15 | 200 | 0.990303

In advance, we define the matrix X composed from
given background sequence {x;}5_,.

X =[x —%,...,2s — 7, (47)

where Z denotes mean image of the sequence, i.e.
%Zzi. Then we obtained the sample data by nor-
malizing X so as to Frobenius norm of X ||X||r is
equal to s.

_ s

- Va(XTX)

In kernel PCA, the relation of the number of dimen-

S
X = X X 48
TXTe (48)

sion and cumulative proportion is differ kernel func-
tion by function. So we decided the dimension of
eigenspace to the smallest number to exceed 0.99 of
c.p.. The threshold to extract unseen object is set to
7 =0.13.

The specification of experimental setup is as fol-
lows:

PC Dual Xeon 3.6 GHz, 2GB RAM
OS Gentoo Linux (kernel: 2.6.22)
Compiler GCC 4.1.2 (glibc-2.6.1)

6.1 Evaluation using CG
Table 2 shows the dimension of eigenspace with
each kernel function.
6.1.1 Convergence Speed in Given Occlusion Mask
We used a mean image (Fig. 15(a)) as initial esti-
mated image. And adopt 3-degree polynomial kernel
as kernel function kg4, which shows the best perfor-
mance in preliminary experiment. Thus,

ky(z,y) = (1+z"y)® + zTy. (49)

We input a fixed image (Fig. 15(b)) as input for
the iteration, and calculate the error between an es-
timated image at each time and ground truth image
(Fig. 15(c)). The error € is given as follows, where
ground truth x4, estimated image &, and number of

e=1/ G-z —nmg)"’ (50)

pixel n.

(a) Initial image (b) Input image (c) Ground truth

Fig.15 Test images
0 4§ 4
Fig.16 Estimated image by proposed method (poly-3)

elapsed time [s] (for kBPLP)
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0.035

|
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0.02} :
0.015 \
0.01 ’ \\

0.005 - \\

0 £ t
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Fig.17 Estimation error in fixed mask

Fig. 16 shows the estimation result of proposed
method. We can confirm that the iteration converges
to ground truth from the figure. Fig. 17 is the esti-
mation errors of proposed and modified kBPLP. The
plotted points describe one iteration and estimation
result of proposed method approaches to the estima-
tion result of modified kBPLP. In this figure, hori-
zontal axis denotes the elapsed time, above tics are
for kBPLP and bottom for proposed. From the fig-
ure, proposed method converged in about 30 seconds
while modified kBPKP costs about 160 seconds to
estimate the first result. Thus proposed method is 5
times faster in the case of known occlusion mask.
6.1.2 Estimation with Updating Occlusion Mask

In this section, we compare the both method un-
der occlusion region is unknown. We set ¥ = I (no
occluded region) as initial state.

Fig. 18 shows the estimation result of each method.
Though modified kBPLP computes better result per
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(a) iterative projection

(b) modified kBPLP
Fig.18 Estimated image with updating mask

elapsed time [s] (for kBPLP)
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. ! " proposed (poly-3) ——
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Q
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% e
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o 0.01 S S—
0.005 |-
0 L i
0 5 10 15 20 25 20

elapsed time [s] (for proposed)

Fig.19 Estimation error in revising mask

iteration, they lives different time scale. In Fig. 19,
the time scale for modified kBPLP (above) is 100
times longer than proposed method (below), and pro-
posed method almost converges in 10 seconds, while
modified kBPLP takes more than 500 seconds. When
the occlusion mask is not given, the final result can
differ each other, since the method uses a different
mask in iteration.
6.2 Estimation of Real Scene

In this section, we apply proposed method to a real
sequence taken by DV camera. And we compare the
linear iterative method and the nonlinear one, here.
6.2.1 Experimental Condition

At first, we extract 256 frames without human from
a sequence taken in front of a lift as background im-
ages (Fig. 20(a)). Then we compute a mean image

(a) Background
sequence

(b) Input sequence

Fig.20 Background sequence and input sequence.

of them and eigenimages, we decide the dimension of
eigenspace so as to satisfy the 0.99 of c.p.. We have
112 dimensional eigenspace (c.p.: 0.990273) at this
moment.

We input sequences (Fig. 20(b)) and estimated
background image and unseen object region. In this
case, we switch input frames per iteration, this is
equivalent to compute the result in 1/30 seconds.
6.2.2 Experimental Results

Fig. 21 shows each estimation result at same frames,
these frames are one of parts where the linear method
tends to much estimation error. The frames exist
around the frame in 3rd row of Fig. 20(b). There is
an object having similar intensity of lift’s door, thus
we find stripe-like estimation error with liner estima-
tion method. On the other hand, nonlinear version
has lesser error comparing to the linear method.

Fig. 22 shows extraction result of unseen object.
Constructing the subspace from a sequence without
human, proposed method successfully extract the hu-
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(a) Innerproduct
(linear)
Fig.21 Estimated image of conventional and proposed

(b) Gaussian (p = 0.7)

(a) Innerproduct (b) Gaussian (p = 0.7)

Fig.22 Mask image of conventional and proposed

man region while moving door is ignored.
7 3-D Intrusion Detection System

(eg.
machine collision prevention, off-limits area observa-

Intrusion detection techniques person—
tion, etc.) are important for establishing safe, se-
cure societies and environments. Today, equipment
which detects the blocking of a light beam, referred
to as a light curtain, are widely used for this pur-
pose. Although the light curtain is useful to achieve
very safe environments which were previously consid-
ered dangerous, it is excessive for widespread applica-

tions. For example, the light curtain method requires
us to set equipment at both sides of a rectangle for
detection, which leads to higher cost, limited shape
of the detection plane and set-up difficulty. In the
meantime, surveillance cameras have been installed
into many various environments; however, the scenes
observed by these cameras are used only for record-
ing or visual observation by distant human observers,
and they are merely used to warn a person in a dan-
gerous situation or to immediately halt a dangerous
machine. There are many computer enhancements
that recognize events in a scene [3]|, but it is dif-
ficult to completely detect dangerous situations, in-
cluding unexpected phenomena. Furthermore, we do
not have sufficient knowledge and methodologies to
use the recognition result from these systems to en-
sure safety. Therefore, our proposed system simply
detects an intrusion in a specific area in 3D space
using multiple cameras. We believe this system will
help establish a safe and secure society.

As mentioned above, flexibility and ease in setting
up the equipment and detection region are important
factors to the cost and practical use. However, there
are two problems in image based intrusion detection:
one is the necessity of the complex and nuisance cali-
bration for a multiple camera system, and the other is
the intuitiveness for defining a restricted area. Thus,
we propose a method to complete the calibration and
the restricted area definition simultaneously by sim-
ply moving a colored marker in front of the cameras.

8 Characterization and Simplification of the
Intrusion Detection Problem

In the last decade of computer vision, there have
been many studies to measure or recognize a scene
taken by cameras in an environment. In particular,
methods to extract or track a moving object in an
image have been investigated with great effort and
have rapidly progressed. In most of this research, the
region of an object can be detected without consid-
eration of the actual 3D shape. Therefore, although
these techniques may be used for rough intrusion de-
tection, they cannot handle detailed motion and de-
formation, such as whether a person is reaching for
a dangerous machine or an object of value. On the
other hand, there has been other research to recon-
struct the whole shape of a target object from images
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taken by multiple cameras. Using this method, it is
possible to detect the intrusion of an object in a scene
by computing the overlapping region of the restricted
area and target object. This approach is not rea-
sonable because the reconstruction computation gen-
erally needs huge CPU and memory resources, and,
as described later, the approach involves unnecessary
processes to detect an intrusion. In addition, it is not
easy for users to set up such a system because the
cameras must be calibrated precisely. Thus, we re-
solve these issues by considering two characteristics
of the intrusion detection problem.

The first is the projective invariance of the observed
space in intrusion detection. The state of intrusion,
that is, the existence of an overlapping region of a re-
stricted area and object, is invariant if the entire scene
is projectively transformed. Hence, we can use weak
calibration, instead of full calibration, to detect an in-
trusion. Furthermore, setting the restricted area can
be done simultaneously with the calibration, because
the relationship between the area and cameras can
also be represented in a projective space. Although
the whole shape of an intruding object has projec-
tive indefiniteness, it doesn’t affect the detection of
intrusion.

The second characteristic is that a restricted area
is always a closed region. Consequently, we do not
have to check the total volume of a restricted area; it
is sufficient to observe only the boundary of the re-
stricted area. This manner of thinking is one of the
standard approaches for ensuring safety, and is also
adopted by the above-mentioned light curtain. Our
system detects an intrusion by projecting the silhou-
ette on each camera image onto the boundary plane,
then computing the common region of all the silhou-
ettes. This common region on the boundary plane
is equivalent to the intersection of the reconstructed
shape of an object by the visual hull method and the
shape of the boundary plane.

9 Detection of an Intruding Object

9.1 The Visual Hull Method

To decide if an object exists in a specific area, the
3D shape of the object in the scene must be obtained.
We adopt the visual hull method for shape reconstruc-
tion. In the visual hull method, the shape of an object
can be reconstructed by computing the intersection of

(a)

b) Intrudi
Non-intruding (b) Intruding

Fig.23 Intrusion detection based on the existence
of an intersection

all cones, which are defined by a set of rays through
the viewpoint and one point on the edge of the sil-
houette on an image plane. This method has the ad-
vantage that the texture of an object does not affect
the reconstructed shape, because there is no necessity
to search the corresponding points between images.
However, this method tends to reconstruct a shape
larger than the real shape, particularly with concave
surfaces. Also, an invisible area from any of the cam-
eras can also make it impossible to measure the shape.
Although this is a common problem for image-based
surveillance, our approach is always safe because the
proposed system handles the invisible area as a part
of the object.

Although the visual hull method has great merit
for intrusion detection, it needs large computational
resources for the set operation in 3D space. There-
fore, it is difficult to construct an intrusion detection
system that is reasonable and works in real time.

9.2 Section Shape Reconstruction on a Sensitive Plane

As mentioned above, it is sufficient to observe only
sensitive planes, the boundary of a restricted area,
for intrusion detection. Accordingly, only the shape
of the intersection region on a sensitive plane is re-
constructed by homography based volume intersec-
tion [11]. In this case, the common region of projected
silhouettes on the plane is equivalent to the intersec-
tion of the visual hull and the plane. Therefore, when
an object exceeds a sensitive plane, the common re-
gion appears on the plane (Fig. 23). In this way,
the 3D volumetric intrusion detection problem is re-
duced to efficient processes of inter-plane projection
and common region computation in 2D space.

9.3 Vector Representation of the Silhouette Boundary

The visual hull method only uses information of
the boundary of a silhouette. Therefore, the amount
of data can be decreased by replacing the bound-

—210—



=5

Fig.24 Vector representation of silhouette contours

ary with vector representation by tracking the edge
of the silhouette in an image (Fig. 24). In the vec-
tor representation, the projection between planes is
achieved by transforming a few vertices on the edge.
It is easy for the common region computation to de-
cide whether each vertex is inside or outside the other
contour. With this representation, we are able to re-
duce the computational costs for the transformation
and common region calculation, and it is not neces-
sary to adjust the resolution of the sensitive plane
to compute the common region with sufficient pre-
ciseness. In a distributed vision system, it is possible
to reduce the amount of communication data because
many camera-connected nodes extract silhouette con-
tours and one host gathers the silhouette data and
computes the common region.
9.4 Procedure of the Proposed System

For summarization, intrusion detection on the
boundary is realized by the following steps:

1. Defining sensitive planes.

2. Extracting the silhouette of a target object.

3. Generating the vector representation from the sil-
houette.

4. Projecting each silhouette vector onto sensitive
planes.

5. Computing the common region.

6. Deciding the intrusion.

In the next section, we discuss step 1.

10 Construction of a Restricted Area

Using the following relationship, the silhouette of
an object on an image plane can be transformed onto
a sensitive plane. Let z(€ R%) be the coordinate of a
point on a sensitive plane. The corresponding point
on the image plane can be calculated, as follows:

Viewpoint

Image plane®., \

Fig.25 Homography between two planes

ux' = Hz, (51)
hi1 hiz hiz

H = h21 h22 h23 (52)
h31  hsz hs3

where Z is the notation of homogeneous coordinates
of . Matrix H is referred to as a homography matrix,
which has only 8 DOF for the scale invariant.

From Eq. (52), the homography matrix can be de-
termined by more than four pairs of corresponding
points which are specified by a user. However, this
method is a burden to users, who must set up the
system in proportion to the product of the number of
cameras and the number of sensitive planes. Also, it
is not easy for users to define an arbitrarily restricted
area without a reference object. Therefore, in the
next section, we introduce a more convenient method
for setting a sensitive plane.

10.1 Relation of the Homography Matrix and Projec-
tion Matrix

Instead of specifying the points on an image from
a camera view, it is easy to place a small marker in
the real observed space so that we obtain the cor-
responding points using cameras. However, in this
case, it is difficult to point out the four points on a
plane in real 3D space. Therefore, we consider the
method in which users input enough ‘inner’ points of
the restricted area so that the system automatically
generates a set of sensitive planes which cover all the
input points. Now, when we know the projection ma-
trix P, which translates a coordinate in a scene onto
an image plane, the relationship between X, a point
in 3D space, and x, a point on an image plane, is
given by

Az = PX. (53)
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Viewpoint
Image plane

Fig.26 A plane in 3D space projected onto the
image plane

Likewise, as shown in Fig. 26, a point on the plane
IT in 3D space is projected onto the image plane as

follows.
A& =P (aél + fes + 1?0) (54)
o
=Ple; & o] [B (55)
1

where ej, ez are bases of II in 3D, and m, (,3) are
the origin and parameter of II, respectively.

From Eq. (55), we can compute the homography
matrix between an arbitrary plane in 3D and the im-
age plane by

H=Ple, & . (56)

Therefore, when we know the projection matrices
of the cameras and are given three or more points on
a plane in 3D, it is possible to define the plane as
a sensitive plane, except in a singular case (e.g., all
points are on a line.). For example, the three adjacent
points X, X1, X2 make one plane:

e; = X; — Xo,
€y = Xg-—Xo, (57)
Ty == Xo.

As mentioned above, a set of homogeneous matrices
can be automatically generated from each given cam-
era projection matrix and the vertices of the sensitive
planes in 3D space. However, in our problem, we as-
sume both the camera parameters and 3D points are
unknown. Therefore, we have to calculate both by
the projective reconstruction technique [12] using the
given corresponding points between cameras.

10.2 Generation of Sensitive Planes from Recon-
structed Inner Points

Now we have the projection matrices and many re-
constructed 3D points which reside in the restricted

[Sensitive Plane Setupl——

Tnputting points by a marker
Projective reconstruction

Convex hull calculation,
Generation of sensitive planes
\mron o st preee)

trusion Detection |——

Silhovette extraction
Silhouette vectorization

[Projection onto sensitive planes

Fig.27 Points and
their convex hull (2D
case)

Common region computation

Fig.28 Flow chart of
the proposed system

area, so we have to determine enough pairs of 3D
points as the vertices of the sensitive planes. We
compute the convex hull, which handles all the input
points for generating sensitive planes. The system de-
fines a restricted area as the boundary of the convex
hull computed using ghull [13] (Fig. 27). The recon-
structed points, except on the boundary, are removed
because they do not make a sensitive plane.

11 Experiment

We implemented the proposed intrusion detection
method in a multiple-camera system. From the users’
view, the system has two phases: one is setting the
sensitive planes and the other is executing intrusion
detection (see Fig. 28). Since the latter phase is com-
pletely automated, users need only to input corre-
sponding points with a simple marker. Therefore, any
complicated technical process, such as calibration of
the multiple camera system, is already managed for
setting the actual sensitive plane.

In this experiment, we confirm the proposed
method of sensitive plane generation and intrusion
detection in projective space. The system consists of
three cameras (SONY DFW-VL500) and a PC (Dual
Intel Xeon @ 3.6 [GHz] w/ HT). We set the cam-
eras at an appropriate position so that each camera
can observe the whole region to detect an intrusion
(Fig. 29).

11.1 Input of Sensitive Plane using a Colored Marker

‘We use a simple red colored marker to input cor-
responding points among all image planes. First, the
user specifies the color of the marker by clicking on
the area of the marker, then the system computes
the mean and the variance of the area. According to
the Mahalanobis distance between an input color at
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Fig.30 Setting of re-
stricted area (top: camera
extracted

Fig.29 Cameras
and observed

view, bottom:
space

marker position)

Fig.32 Generated sensitive planes

each pixel and the reference color, the system extracts
similar pixels by thresholding the distance. For noise
reduction, the center of gravity of the largest region
is calculated as the marker position (Fig. 30). The
user in a real scene moves the marker position to set
up the restricted area.

Fig. 31 shows an example of the sensitive planes
generated from inputted points. In this case, 16 sen-
sitive planes are generated from 10 of 12 inputted
points, and remaining two points of them are removed
because they are inside of the convex hull.

11.2 Intrusion Detection

In this experiment, we input eight points on the
vertices of a hexahedron. Fig. 32 depicts the gen-
erated set of sensitive planes from the input points.
In this case, 12 planes are generated by the pro-
posed method. The result of the intrusion detection
is shown in Fig. 33.

In our implementation, we use a statistical back-
ground subtraction method [14] to extract a silhou-

Fig.33 Detection result (top: intrusion of a leg,
bottom: intrusion of a wrist, reaching for the ob-
ject)

The silhouette
is transformed into vector representation by track-

ette of the object from an image.

ing the edge and projected onto each sensitive plane.
Then, the system computes the common region on
each sensitive plane. In the figure, the leg or wrist
of the intruder is detected on the boundary of the
restricted area. Although one can see some false
positive extraction areas of the silhouette (e.g., the
shadow cast in the image of the top row, third col-
umn), our method has a robustness against such noise
because of the common region computation of all ex-
tracted silhouettes.

12 Conclusions

In this paper we propose the intrusion detection
system for versatile purpose. The system consists of
extraction method of an unseen object region from 2-
D image and 3-D intrusion detection method by inte-
grating the regions using multiple uncalibrated cam-
eras.

On unseen object region extraction, we modeled
a dynamic scene, which contains moving object as
a background, by eigenvectors derived by PCA of a
background sequence. This approach successfully en-
ables simultaneous estimation of background image
and extraction of unseen object region in realtime.

The linear estimation method works well in most
case, however, sometimes it have much estimation er-
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ror in particular situation because of nonlineality of
image sequences. Therefore, we extend the method
to the higher dimensional feature space using nonlin-
ear mapping and kernel trick. This proposed method
indicates more stable results in real scene.

On the other hand, we introduced an intrusion de-
tection system for an arbitrary 3D volumetric re-
stricted area using uncalibrated multiple cameras.
Although our algorithm is based on the visual hull
method, the whole shape of intruding object does not
need to be reconstructed; instead, the system can effi-
ciently detect an intrusion by perspective projections
in 2D space.

In general, an intricate calibration process for a dis-
tributed camera system has been necessary, but the
proposed system automatically calibrates the cameras
when users input corresponding points through the
restricted region setting. Furthermore, the user does
not need any previous knowledge about cameras be-
cause of the projective reconstruction. Also, any com-
bination of cameras having varying intrinsic camera
parameters can be used. Therefore, non-expert users
can intuitively operate the proposed system for intru-
sion detection by only setting the cameras in place.
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