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Abstract

A knowledge programming language/system called Mandala is being
developed on Concurrent Prolog. The final goal of developing Mandala
is to provide a tool for knowledge processing which is capable to
extract very high parallelism in its execution on the Fifth
Generation Computer System(FGCS). Mandala supports both object
oriented programming and data oriented programming, which are
realized by the same mechanism. These two programming styles will
enable us to extract parallelism in knowledge programming. On the
other hand, Concurrent Prolog, the implementation language, will make
it possible to run Mandala on a highly parallel computer. The main
design philosophy is to introduce a multi-plane structure for
distinguishing meta level concepts such as modifying and controlling
the problem solving strategies from object level concepts. Ve
defined most of the important concepts in knowledge programming, e.g.
class, instance, meta class, class variable, is-a hierarchy and
part-of hierarchy, in terms of Concurrent Prolog and the multi-plane
structure and found the definitions clear and simple.

1. Introduction

Knowledge programming plays a very important role in FGCS as shown in Figure 1. It
links between knowledge information processing applications and KL, the Kernel Language
for FGCS, To extract very high parallelism in knowledge information processing, we need
a suitable formalization in each level of description, that is, in problem description
level, in algorithm description level and its execution level. There seems to be very
few solutions that achieve such parallelism. The solutién we have in mind is shown in
Figure 2. Object oriented programming is considered to be a very powerful tool to
express solutions to problems in terms of many processes cooperating with each other.
Concurrent Prolog [Shapiro 1983, Shapiro & Takeuchi 1983, Takeuchi & Furukawa 1983] is
one of the most promising candidates for the parallel algorithm description language,
which is a natural extention of Prolog having the capability of expressing concurrency
without losing its semantic clarity as a logic programming language.
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Figure 2. Knowledge information processing system

In this paper, we propose a knowledge programming language/system called Mandala as
a language for problem description. It fits to Figure 2 since Mandala can provide an
object oriented programming environment. In fact, Mandala provides a structuring
mechanism in writing Concurrent Prolog programs as well as in building knowledge bases.
It includes most of the key features of knowledge programming languages such as LOOPS
[Bobrow & Stefik 1983] and also includes the basic structuring concept of Smalltalk-80



[Goldberg & Robson 1983].

In section 2, Concurrent Prolog is briefly introduced. Conceptual explanation of
Mandala is given in section 3. The implementation detail is discussed in section 4 and
example programs are given in section 5.

2. DReview of Copcurrent Prolog

Concurrent Prolog is a logic-based parallel programming language designed and
implemented on the DEC-10 Prolog by E. Shapiro [Shapiro 1983]. As the Relational
Language [Clark & Gregory 1981) and PARLOG [Clark & Gregory 1983], Concurrent Prolog
adopts Or-parallelism as a basis for non-deterministic processing, and And-parallelism
for the description of parallel processes. Shared variables are used, with some control
information, "variable annotation", as communication channels among concurrent processes.

2.1 Syntax of Concurrent Prolog

The basic style of programs in Concurrent Prolog is quite similar to those in DEC-10
Prolog. In fact, the basic syntactic constructs in Concurrent Prolog have the same
meanings as in DEC-10 Prolog. Therefore we neglect the explanation of the basic
syntactic constructs and concentrate on the explanation of the difference between them.

[Program] Ir Concurrent Prolog a program is expressed as a set of guarded clauses.

[Guarded clause] A guarded clauses is a clause which always bhas nin  (called a commit
operator) on its right side as illustrated below.

A :-G | B.

where G and B are predicates concatenated with logical AND, called a guard part and a
body part, respectively. "|" is an extended concept of the cut symbol.

[AND] Logical AND is expressed in the following two ways with operationally different
meanings.

sequential AND nE"
parallel AND L

As is evident from their names, "&" indicates goals connected by """ to be executed
sequentially while "," means goals connected by "," to be executed in parallel.

[Read-only annotation] The read-only annotation "?" is control information that can be
added to occurences of variables and is written as "X?". Variables with "?" can always
be unified with other variables but must not be unified with non-variable terms until
they are instantiated. The annotation can be added independently to individual
occurrences of variables. Normally, individual processes add, or do not add, the
annotation to variables shared by them. Once a process has added the annotation to a
shared variable, it cannot instantiate the variable, and has to wait until another
process (without the annotation) instantiates the variable. :

Variables unified with variables with the read-only annotation automatically inherit
this property. The annotation is not an operator. Therefore, if X and X? appear in the
same clause, they are logically the same except for the unification control information.
If X is instantiated to a non-variable term with respect to X?, the annotation looses its
effect.

2.2 Reduction

We will discuss how a given goal is reduced to subgoals. In Concurrent Prolog, a
program consists solely of guarded clauses. If there is a clause not explicitly
containing "!", it is processed as if its guard is empty, that is, it had miw in the
leftmost part of its right side.



Now assume that there is a goal A and the following are the clauses which have the
same predicate name as the goal A.

Al :- G1 | Bi.
A2 := G2 | B2.

An :- Gn | Bn.

Gi may be empty. These clauses are classified into the following three categories with
respect to the goal A.

(1) candidate Ai :- Gi | Bi.

In this case, A and Ai can be unified and Gi solved without unifying a read-only variable
with a non-variable term.

(2) suspended Aj :- Gi | Bi.

I» this case, A and Aj can be unified and Gj can be solved except when a read-only
variable is instantiated to a non-variable term.

(3) rfail Ak :- Gk | Bk.
Other cases.

If goal A has one or more candidate clauses, one of them is selected and the goal is
reduced to Bi (assuming it is Ai :- Gi | Bi). The selection mechanism evaluates each
clause in parallel and selects the first candidate found. Use of this approach permits
don't care non-deterministic processing. Once the goal A has been reduced, checks of
alternative clauses are aborted. In this sense, the "|" symbol functions as the cut
symbol. If goal A has no candidate clause but has at least one suspended clause, it is
suspended until at least one candidate can be found or a complete failure occurs.

No variable binding taking place in the course of the reduction is finalized until
the computation commits to that clause and other possibilities are eliminated.
Therefore, a shared variable without the read-only annotation, even if it is instantiated
to a non-variable term in the course of reduction, does not allow access by other
processes until "|" is passed.

3. The structure of Mandala

The most important concept in Mandala is its multi-plane structure. The bottom
plane is used to express object worlds which contain information of given problems
domains and is called an object plane. The next higher plane is used to express meta
knowledge about objects described in the object plane and is called a meta plane. In
theory, it is possible to consider higher level plane such as a meta meta plane and so
on.

In Mandala, there are two kinds of components to express the world structure of
problems to be solved; one is a knowledge base (program) depicted by the symbol of a
disk, and the other is an active process depicted by a ecircle. These two kinds of
components can exist in each plane by giving different roles respectively. The typical
structure is to associate an active process called knowledge base manager in the meta
level to each knowledge base in the object level as shown in Figure 3. This association
is called a mapager-of link, which is one of the four kinds of links in Mandala.

The remaining three kinds of links are is_a, part_of and instance_of. An is a 1link

connects two disks in the same plane and expresses usual concept hierarchy as shown in
Figure 4,
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An instance of link connects a disk and a process in the same plane and expresses
the fact that the process 1is an instance of the disk, or that it is "executing the
program" in the disk.
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A part of link is similar to an is_a link in a sense that it connects two disks in
the same plane. The difference is that there also exists a part_of link between active
processes which are respectively connected to the two disks by instance_of links as shown

in Figure 5.
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Except that it uses "=>" instead of ":-" and additional annotation "+" to goals, the
content of each knowledge base is a Concurrent Prolog program which describes the
behavior of its instances. On the other hand, the content of each process is its status
which changes according to the proceeding of computation.

The distinction between knowledge base (program) and process enables us to introduce
complex links between two planes., It is possible to associate more than one disk to each
knowledge base manager. Assume a knowledge base manager responsible to check the
consistency of a new input to the knowledge base. It uses a different kind of knowledge
called integrity constraints to check the input. Integrity constraints are themselves
kinds of object knowledge which is to be expressed in the object plane. Therefore, we
need two knowledge bases to be associated to the knowledge base manager. Note that if we
limit only one to one correspondence for manager_of links, Mandala's structuring concept
becomes equivalent to that of Smalltalk-80 [Goldberg & Robson 1983].



4., Implemeptation in Copcurrent Prolog

As already mentioned, there are two basic components in Mandala, that is, a
knowledge base (a disk) and a knowledge base manager (a cirecle). In the current stage, a
knowledge base is implemented as a program of Concurrent Prolog and stored in the
internal data base as well as another programs. On the other hand, a circle, which is an
instance of some knowledge base and plays a role of a knowledge base manager if it is
created on the meta plane , is implemented by a process. The goal which represents this
process has the form,

object{Name, Input,Progranm).

Hereafter we call the process with this goal an object. An object takes three arguments.
The first argument "Name™ is an identifier of the object, the second argument "Input" is
a channel through which the object receives a sequence of goals and the third argument
"Program®™ is a set of clauses which specify the behavior and state of the object as
Concurrent Prolog programs. When an object receives a goal through its channel, the
object solves it using its own knowledge "Program" and tries next goal while it receives
new goals. The Concurrent Prolog program which represents an object is shown below.

object(Name,[Goal |Input],Program) :-
simulate(Name,Goal,Program,NewProgranm),
(wait(NewProgram) & object(Name,Input?,NewProgram)).
object(Name,[],Program).

The predicate "simulate" takes four arguments and it tries to solve the goal "Goal"™ given
as the second argument, using local knowledge "Program®™ also given as the third argument.
After the goal "Goal" has been solved it returns the updated program "NewProgram" to the
fourth argument. In practice it only invokes "simulate®™ with five arguments in which the
extra fifth argument is used to represent default knowledge which can also be used to
solve the goal "Goal". The program of "simulate" with four arguments are shown below.

simulate(Name,Goal,Program, NewProgram) :-
simulate(Name,Goal,Program,NewProgram,[]).

The fifth argument of "simulate"™ with five arguments is default knowledge, which can be
used in solution of the goal %Goal" and is represented as a set of clauses. New
"simulate™ predicate can use both local knowledge and default knowledge when it solves a
goal and returns the updated local knowledge. If the goal cannot be solved using local
and default knowledge, it enhances the default knowledge and tries to solve it again with
new default knowledge. The program of "simulate"™ with five arguments is shown below.

simulate(Name, true,W,W, ).
simulate(Name, (+Process,Q),Program,NewProgram,Default) :~
Process, simulate(Name,Q,Program,NewProgram,Default).
simulate(Name,(A,B),W,N,D) :-
simulate(Name,A,W,W1,D), (wait(W1)&simulate(Name,B,W1,N,D)).
simulate(Name, (A&B),W,N,D) :-
simulate(Name,A,W,W1,D)&simulate(Name,B,W1,N,D).
simulate(Name,+Process, Program,Program,Default) :-
Process.
simulate(Name,process_status(Program),Program,Program,_).
simul ate(Name,add(C),Program,[C|Program],_).
simulate(Name,delete(C),Program,NewProgram,Default) :-
prolog(delete(C,Program,NewProgram,Default)).
simulate(Name, (PName,Class,Chan) part_of Me,Program,Program,D) :-
prolog(find_axiom((PName,Class,Chan) part_of Me,Program)).
simulate(Name,A,W,W,D) :-
prolog(system pred(A)) | prolog(A).
simulate(Name,A,W,N,D) :-
prolog((find_method(Name,A,W,D,NewD),append(W,NewD,V),copy(V,CW))) &
simulate_resolve(Name,A,CW,B,w(W,NewD),W1) |
simulate(Name,B,W1,N,NewD).



The meaning of each clause is listed below.

1. If the goal is true, "NewProgram"™ is the same as "Program".

2. If the goal is a combination of the form (+Process,Q), it forks "Process"
and solves the rest of goals by "simulate".

3. If the goal is a combination of the form (P,Q), it splits to two "simulate"
processes.

4, If the goal is a combination of the form (P&Q), first it solves "P" and
then solves "Q".

5. If the goal is +Process, then the process solves the "Process" without any
layer of "simulate".

6. If the goal is "process_status(W)", it unifies the variable "W" with the
local program "Program".

7. If the goal add(C), it adds the assertion "C" to the "Program" and makes
"NewProgran".

8, If the goal is delete(C), it removes the assertion "C" from the "Program"
and make "NewProgram".

9, If the goal is "(P,Cl,Ch) part_of Me", it tries to unify "(P,Cl,Ch)
part_of Me" with an assertion in the program.

10. If the goal is a system predicate, the goal is solved by the sequential
Prolog interpreter.

11. Otherwise, it tries to reduce the goal using the program and the default.

Below the programs of "simulate_resolved" and "simulate_unify" are shown.
simulate_resolve(Name,A,[C}Cs]),B,w(W,D),W1) :=
simulate_unify(A,C,G,B) & simulate(Name,G,W,W1,D) | true.
simulate_resolve(Name,A,[C{Cs],.B,WD,W1):~
simulate_resolve(Name,A,Cs?,B.WD.W1) | true.
simulate_unify(4, (A=>(G|B)),G,B).

simulate_unify(A, (A=>B),true,B).
simulate_unify(A,A,true,true).

5. Examples

A simple example which describes a counter is shown below.

e Class Counter =eee~- ————
class(counter).
counter(counter is_a 'Simple_Object').
counter(state(0)).

counter((clear => delete(state(X)) & add(state(0)))).

counter((up => delete(state(X)) & X1 := X+1 & add(state(X1)))).
counter((down => delete(state(X)) & X1 := X-1 & add(state(X1)))).
counter((show => state(X) & write(X) & nl)).

Description of a meta class "Class™ which is a typical knowledge manager
next. nClass" can create instances from a knowledge base and show listing of
base and so on.

fmmmm——— -~ MetaClass (lass ====ce—ce--

metaclass('Class').

*Class'('Class' is_a 'Simple Object').

'Class' (number(0)).

1Class'((create(Name,Goals) =>
delete(number(X)) & X1 := X+1 & add(number(X1)) &
add(instance(Name,Goals)) & Cname instance_of Mname &
instantiate(Cname,Name,DW) & +object(Name,[init|Goals],DW))).

1Class! ((how_many => number(X) & write(X) & nl)).

is shown
knowledge



'Class'((list(db) => C instance_of M &
program(C,Clauses),writelnl(Clauses),nl)).
'Class'((kill(Name) => delete(number(X)) & X1 := X-1 & add(number(X1)) &
delete(instance(Name,_)))).
'Class'((1list(self) => process_status(S) & writelnl(S)&nl)).

Here we show three basic knowledge bases, 'Object’', 'Simple_Object' and
'Composite_Object'. 'Object! is placed on the root of is_a hierarchy spawned on the
object plane and 'Composite_Object' is a root node for every objects which consists of
more than one object and 'Simple_Object! is a root node for other objects.

fommm—mem=- Class Object ~-eewmemam-

class('Object").
'Object ' ("Map'(Set,[1)).
'Object! ((*'Map' (Set,[XIR])) => copy(Set,S)&S={X!Goals}!
Goals, 'Map'(Set,R))).
'Object' (( 'Enumerate'(Set,List) => process_status(W)|get_all(W,Set,List))).

fomm e ——— Class Simple _Object ==mewee- —

class('Simple_Object!').
*Simple_Object'('Simple_Object' is_a 'Object').
'Simple_Object'(init).

e Class Composite_Object =ewwemeaa -

class('Composite_Object').
'Composite_Object!('Composite_Object' is_a 'Object').
'Composite_Object'((send_to(Name,Msg) =>
delete( (Name,Class,[Msg!New]) part_of Me) &
add( (Name,Class,New) part_of Me))).
'Composite _Object'((init =>
'Enumerate’ ({ (Name,Class,Chan) } (Name,Class,Chan) part_of _},List),
"Map' ({ (Name,Class,Chan) | instantiate(Class,Name,Program) &
+object(Name,[init{Chan],Program)},
List))).

Here we show more concrete examples. Below definitions of "rectangular_area®,
"frame" and "window_with_label" are shown. They are also examples of "part_of" relation,
since "window_with_label" is defined using "frame" as a part and frame is also defined
using "rectangular_area®™ as a part.

R Class Rectangular_Area —=—mwee—e-

class(rectangular_area).

rectangular_area(rectangular_area is_a 'Simple_Object').
rectangular_area(state((20,5,30,10))).

rectangular_area((clear => state(Param) & clear_primitive(Param))).

frmm Class Frame —=e—veee--

class(frame).

frame(frame is a 'Composite_Object').

frame( (rec,rectangular_area,Chan) part_of frame).

frame((draw => send_to(rec,state(Param)) & wait(Param) & draw_lines(Param))).
frame((refresh => send_to(rec,clear) & draw)).

frame((state(Param) => send_to(rec,state(Param)))).

e ] Class Window_with_Label ==cemecncaa



class(window_with_label).

window_with_label(window_with_label is_a 'Composite_Object').

window_with_label((fr,frame,Chan) part_of window_with_label).

window_with_label(label(gazonk)).

window_with_label((change(Label) => delete(label(_)) & add(label(Label)))).

window_with_label((show => send_to(fr,refresh) & send_to(fr,state(Param)) &
wait(Param) & label(Label) & show_label_primitive(Label,Param))).

Finally we show a more complex class definition than before. The new class has an
assimilator as a part and manages two knowledge bases, one of which is a positive
knowledge base that contains programs and the other is a negative knowledge base that
contains a set of integrity constraints for the positive knowledge base. When a class
receives a new data, the assimilator associated to the class tries to check if the new
data invokes a contradiction and if it is a redundant information and so on. The list is
given below.

Jommmmmmm MetaClass 'Class' with assimilator ——e-—eeeeo
metaclass('Class').

'Class'('Class' is_a 'Composite_Object').
'Class'((assim,assimilator,Ch1) part_of 'Class').
'Class'((pinput(Assertion) =>

Me instance_of Mname &

P rositive kb_of Me & N negative_kb_of Me &

send_to(assim,passimilate(Assertion,P,N)))).
'Class' ((ninput(Assertion) =>

Me instance_of Mname &

P positive_kb_of Me & N negative_kb_of Me &

send_to(assim,nassimilate(Assertion,P,N)))).

assimilator(assimilator is_a 'Composite_Object').
assimilator((contra,contradiction_checker,Ch2) part_of assimilator).
assimilator((redun,redundancy_checker,Ch3) part_of assimilator).
assimilator((passimilate(Assertion,P,N) =>

program(P,Pprogram) & simulate(Pprogram,Assertion) | true)).
assimilator((passimilate(Assertion,P,N) =>

program(P,Pprogram) & program(N,Nprogram) &

send_to(contra, contradict(Pprogram+Assertion, Nprogram))

| true)).
assimilator((passimilate(Assertion,P,N) =>

program(P,Pprogram) &

send_to(redun, redundant([],Pcrogram+Assertion, InterPprogram))

! modify(P,InterPprogram) &

passimilate(Assertion,P,N))).

assimilator((passimilate(Assertion,P,N) =>

otherwise | program(P,Pprogram) & modify(P,Pprogram+Assertion))).

contradiction_checker(contradiction checker is_a 'Simple_Object').

contradiction_checker((contradict(InterPcls,[Necl{Ncls]) =>
simulate(InterPcls,Nel) | true)).

contradiction_checker((contradict(InterPcls,[_|Ncls]) =>
otherwise | contradict(InterPcls,Ncls))).

redundancy_checker(redundancy_checker is a 'Simple_Object').
redundancy_checker( (redundant(SeenPcls,[Pcl{Pcls],NewPcls) =>
simulate(SeenPcls+Pcls,Pcl) | true)).
redundancy_checker( (redundant(SeenPcls,[Pcl{Pcls],NewPels) =>
otherwise | redundant([Pcl{SeenPcls],Pcls,NewPcls))).
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