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Abstract

This paper describes a learning method for building knowledge bases. There are
two types of knowledge acquisition systems which extract knowledge from human ex-
perts, interactive and non-interactive. This paper describes a non-interactive knowledge
acquisition system which acquires a human expert’s knowledge by observation. It learns
the human expert’s problem solving strategies and makes logical rules from temporal
sequential data. The learning method of the knowledge acquisition system is inter-
pretation based learning (IBL), which uses advance knowledge in the learning process.
Advance knowledge of IBL consists of domain concepts, concept relations and inter-
pretation knowledge, which translates observed data into internal concepts. Although
explanation based learning (EBL) also uses advance knowledge, which consists of do-
main theory and operationality criteria, it learns knowledge using the domain theory,
but IBL learns the domain theory itself. IBL is a useful knowledge acquisition method

when a domain theory has not been prepared.
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1. Introduction

One major problem in building expert systems is
removal of the knowledge acquisition bottle-neck.
Knowledge acquisition systems have been developed to
solve this problem. Most of them are interactive
knowledge acquisition systems. This type of system
has an interview sub-system. The interview system
can access a human expert directly to ask necessary
information about his job. Therefore, this type of
system is called an active knowledge acquisition
system (AKAS)[Boose 84)}[Boose 87}[Taki 87][Kahn
85). There are many cases or situations in knowledge
acquisition environments. Sometimes, the human
expert is too busy to answer questions which are asked
by the interview system. In this case, the knowledge
acquisition method is the observation only. This type
of system cannot ask the human expert any questions.
This type of system is called a passive knowledge
acquisition system (PKAS)[Taki 88]. The AKAS
obtains symbolic data (e.g., language representation)
interactively from the human expert, but the PKAS
obtains not only symbolic data but also numerical
data. Therefore, the PKAS must extract numerical
data and translate it into symbolic data. The PKAS
must build knowledge base inductively from
observations only. Most inductive learning systems
(i.e., similarity based learning systems) require
positive and negative examples. However, only
positive examples can be obtained from the
observations of human expert operations. One
learning system which acquires knowledge from
positive examples only. The explanation based
learning (EBL) system [Mitchell 85][Mitchell 861,
which extracts knowledge effectively using advance
knowledge: domain theory and operationality.
However, EBL learns only goal concepts which are
constructed according to the domain theory. It cannot
be used if a domain theory is not prepared. The PKAS
must learn the domain theory, too. We are developing
a PKAS which has a knowledge-oriented learning
mechanism, called interpretation based learning (IBL).
IBL learns the domain theory inductively by
observation. It has three items of advance
knowledge: symbolic concepts, ranges of values of
concepts and interpretation knowledge. In IBL, there
are some learning strategies, such as translation from
sensed information to symbolic concepts, inductive
rule generation and noise reduction. The following
sections discuss the environment of knowledge
acquisition by observation, advance knowledge of
IBL, inductive rule generation, and knowledge
generalization.

2. Characteristics of PKAS

The PKAS can observe the actions of human experts
and the situations in which those actions occurs as
shown in figure 1. Normally, this symbolic
information is translated from data exiracted by
sensors. Therefore, the PKAS must be able to
interpret the sensed data as internal symbolic
representation data. Sometimes, there are
ambiguities and noise (useless information) in the
sensed data. The PKAS must be able to handle
various meanings in the ambiguities in building a
knowledge base. Generally, this noise is very harmful.
It makes acquired knowledge too specific. The PKAS
must have a function which chooses only suitable
situations related to actions. Example 1 is a noisy
situation.

Object of observation

Situations
=

T

Object of
expert jobs

Figure1 PKAS overview

Example 1:
Situation information:
{It rained, and
the output voltage of the amplifier was too low.}
Action information:
{An expert changed an output transistor.}

Result of induction:
(Weather = Rain)
& (Amp-output-voltage = Low)
— (Change Amp-output-transistor)

This result is too specific to be used in real amplifier
maintenance, because the weather is not related to
amplifier maintenance. Therefore, the PKAS must



choose situations related to the with actions. It has to
make the following rule (example 2).

Example 2:
Result of induction:
(Amp-output-voltage = Low)
— (Change Amp-output-transistor)

This check is done with domain knowledge which
contains relations between situations and actions in a
target domain.

2.1 Problems in Knowledge Acquisition by
Observation

There are some problems related to ambiguity in the
PKAS. They appear in the interpretation process of
observed information.

(1) Problem of dividing sensed data

Sensed data is continuously collected at every
sampling or when a sampling trigger is detected.
Sensed data is temporal sequential data. To symbolize
series data, the PKAS divides the data into parts. If
sensed data contains some ambiguity, there are
many ways of dividing it. Therefore, the PKAS must
have knowledge for dividing it to reduce the number of
alternatives. The results of dividing data must be
matched with internal symbolic concepts. The cause
of ambiguity in sensed data is sensor capacity. The
sensor has an limitative capacity of detection and
detects noise. Figure 2 shows how to make situation
data. In this figure, parameter 1 is divided into three
parts. Parameter 1 has three values (a, b and ¢). If
parameter 1 changes critically in these three values,
it is easy to divide parameter 1. However, generally,
parameter 1 does not always change stepwise (i.e., it
can be a middle value between a and b) but - changes
continuously. Therefore, it is difficult to decide the
points of change of parameter 1. If more detailed
changes are considered, parameter 1 is divided into
more parts, and the PKAS obtains more detailed
situation information. In this case, the PKAS must be
able to handle many concepts related to dividing
criteria. the PKAS must have knowledge which
divides sensed data into useful level granules
corresponding to internal concepts.

(2) Problem of symbolizing divided data

Normally, fragments of sensed data are translated two
types: internal symbolic concept representation and
parametric information, which consists of a
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Situationl =(P1=a, P2=d)
Situation2 =(P1=a, P2=e)
Situation3 =(P1=b, P2=e)
Situationd =(Pl1=c, P2=¢)
Situationi =(P1=p1i,P2=p2i,
aP1=13pli,sP1=spli,.....)

Figure 2 Data division and situation generation

parameter and a range of its value. Parametoric
information contains numerical data and a specific
instance.

Example 3: The human expert measured registerb
with voltage-testerl, and this tester detected from 0 V
to 3 mV. Then, he changed register5.

Symbolic data:
use(Voltage-tester), detect(low-voltage, Register)
— change(Register).

Parametric data:
Voltage-tester = voltage-testerl

(this variable can be maiched only with a voltage-testér),
Register = registerb

(this varible can be matched only with a register),
0V = low-voltage = 3mV

(this symbol means low voltage

(the word "low" is a fuzzy expression)).

To symbolize the sensed data, the PKAS must check
matching real data with internal symbolic concepts.
In example 3, voltage-testerl matches the value
"Voltage-tester", register5 matches the value
"Register", and the real voltage matches "low-voltage".
In this case, the PKAS contains concepts of "Voltage-
tester", "Register" and "low-voltage". If the PKAS



has only concepts of "Tester", "Device" and "no-
voltage(or detect-no-voltage)”, the symbolic
expression is changed as follows:

Example 4:
Symbolic data:
use(Tester), detect(no-voltage, Device)
— change(Device).

Parametric data:
Tester = voltage-testerl

(this variable can be matched only with a tester),
Device = register5

(this variable can be matched only with a device),
0V = no-voltage = 3mV

(this symbol means zero voltage

(the word "zero"is a fuzzy expression)).

The PKAS must have appropriate concept sets of the
target domain. Generally, a concept consists of some
sub-concepts. In figure 2, a situation (or a concept)
contains two parameters. There is other information
in this example, combination information of
temporal variable data, which can be thought of as
differentiation and integration information. The
necessity of higher order differentiation depends
on the target domain. The PKAS must have internal
symbolic concepts, internal concept sets, and
internal parametric definitions. :

(3) Problem of combining situations and actions
Situations cause actions in the human expert's tasks.
Therefore, at a certain time, there is some causality
between situations and actions. The inductive
learning system makes rules from these situations
and actions. However, there is some noise in these
symbols, as shown in example 1. The PKAS must
select appropriate situations and actions as shown in
figure 2. Normally, there is a time delay in the
causality. The PKAS must combine situations and
actions carefully. Figure 3 shows noise reduction
examples. The first example has situation noise. The
situation changed, but the action did not change, and
the situation returned the same state. Therefore, Sj
must be noise. In the same way, the second example
shows action noise. Ajmay be noise. The PKAS must
have symbolic concept relations to make appropriate
rules, and must have a noise reduction mechanism.

3. Interpretation Based Learning

Situations

Actions

Situations

Actions

Aj may be noise, because Si is the same and Aj returns to Ai.

Figure 3 IBL system noise reduction

This section describes an interpretation based
learning system and explains the learning flow and
mechanism. i

3.1 Learning Input and Output

Examples are given as samples of an expert's jobs.
They are temporal sequential data. They contain
problem solving strategy knowledge of the expert. IBL
learns problem solving rules. The following examples
show input and output.

Example 5: Input contents
Sensing parameters at time t0: p1(t0),p2(t0),...,pn(t0)
Values of the parameter: numerical data, symbol or
logical values.

Example 6: Output contents

Implication rules: S1&S2&....S5j — al&a2&...am
An expression Si(i=1,...j) is a variable (i=1,...,j).
An expression ai(i=1,...,m) is a function with one
or more variables.

The variables of the action part are shown as
Ai(i=1,...k).

Variable boundary and range:

The values of variables (Si/Aj) are numerical
values, symbols, or logical values. The variation of the
range of a variable, V, is shown as follows:

Equality: V = number/symbol/logical values

(e.g., true/false)
Upper limit: V = number-1
Lower limit: V = number-2




Upper and lower limits:
number-2 = V = number-1
A sub-set: V C {symbol-1, symbol-2,....}

3.2 IBL Learning Strategies

There are seven learning steps in IBL. Figure 4 shows
an overview of this flow and advance knowledge.

Knowledge
source

Translation
knowledge

Concept

Concept
relations

ranges of
parameters

Rule
optimizer

Knowledge

base

Figure 4 IBL system structure

Step 1: Dividing sensed data
Sensed data consists of many parameters. Each
parameter has temporal variable values. IBL checks

the value change of each parameter, and divides data
in the time scale.

Step 2: Matching sensed daia with internal concepts
Here, data is separated into symbolic concepts and
parameter instances. Symbolic concepts are set as
situations and actions.

Step 3: Reducing noise in situations and actions

There are some relations between situations and
actions. Therefore, a certain action data which is
independent of situations must be noise. In the same
way, a situation data which isindependent of actions
must also be noise.

Step 4: Making symbolic rules

Rules are made to combine situations and actions. A
rule consists of an "if-part" and a "then-part".

Situations match the if-part, and actions match the
then-part. Sometimes, generated rules also have
useless information, as shown in example 1.

Therefore, the relationships between situations and
actions in all rules must be checked. Unnecessary
situations or actions are removed.

Step 5: Optimizing values of parameters

A parameter has an instance value and a range of its
value. This instance value is collected from sensed
data. It is only one example; therefore, it must be
generalized and optimized. It must be changed into the
mean value or typical value.

Step 6: Combining parameter data and rules

Rules are very general knowledge in IBL. Specification
knowledge of a rules is the parametric range of the
values.

Step 7: Generalizing rules and parameter data by
multiple examples

IBL learns rules and parameter ranges from step 1 to
step 6, when it obtains one example. IBL acquires
other knowledge from other examples. Then, it
checks and compares rules with the same form. If their
actions are the same, the two situations are reformed
into a more general situation. The ranges of
parameters are also generalized. For example, a
parameter consists of "Voltage" as a symbolic name
and "0 V = Voltage = 15 V" as the range of its value.
A new example brings IBL a new range of its value, i.e.,
"8 V = Voltage = 20 V". IBL makes a new parameter



which contains "Voltage" as the name and "0 V =
Voltage = 20 V" as the range of its value.

4. Advance Knowledge for IBL

One of the most important components of learning
systems is advance knowledge. Advance knowledge
controls the learning flow. It limits and stimulates the
knowledge acquisition system to induce knowledge
from examples. In EBL, there are two types of
advance knowledge: domain theory and operationality
knowledge. Domain knowledge attempts to explain the
examples. If an example is implied from the domain
knowledge, it is explained and EBL recognizes it as
a positive example. An example is given to the EBL
system as a goal concept; therefore, it learns how to
construct the goal concept from domain knowledge.
Operationality knowledge controls the generalization
level of explained knowledge. It limits generalization
of that knowledge. There are two learning steps in
EBL. The first step is the explanation step to check
whether an example is positive or not, and the second
step is the generalization step to generalize
knowledge. As shown in section 3.2, IBL does
"interpretation™ instead of "explanation"”, and
therefore does not use the domain theory, but it uses
domain concepts and relations of concepts.

4.1 Domain Concept Knowledge

The domain concept knowledge means atom level
concepts and relations among these concepts. Atom
level symbolic concepts mean symbolized situations
and actions, and parameter expressions. They also
contain ranges of the parameter values. Another
type of domain concept knowledge is relation
knowledge, which contains relations among symbolic
concepts. Each concept has a range of its value.
This information is used for parameter generalization
and optimization. It is a generalization limit. This
range depends on the target domain.

Example 5: Symbolic concepts

Symbolic concepts: voltagel, register5, capacitor3.

Parameter expressions: Voltage, Time-delay,
Voltage-tester.

In IBL, a form ‘"register5(Voltage)" is expressed
"Voltage-register5" or "Voltage5". A concept (i.e.,
Voltage5) is sometimes made from multiple concepts
(i.e., register5, Voltage).

Example 6: Range knowledge of concepts
Parameter range: 0V = Voltage = 12V,
3mA = Ampere8 = 1 A.
In logic circuits, the voltage range isfrom 0 Vto 5V,
This range is 0 V or 5 V in the logical meaning.

Acquired knowledge must be more specific than
advance knowledge because IBL must obtain efficient
problem solving knowledge.

4.2 Concept Relation Knowledge

Relations among concepts may be positive (e.g., same
class concepts and positive relativity), negative (e.g.,
contrary relativity), no relations, or equations.

Example 7: . Concept relations (about force feedback
robot control)
Positive relations:
pair(Movement direction, Velocity vector)
in position control
Negative relations:
pair(X-axis velocity, X-axis pressure)

Note: If the robot's grip touches a wall, a tactile
sensordetects pressure in the opposite direction to
which it is moving.

No relations: pair(X-axis velocity, Y-axis pressure)
Equations: Velocity = Initial-Velocity * time

4.3 Interpretation Knowledge

Interpretation knowledge is used for translating
sensed data into symbolic concepts and parameters. It
also contains dividing knowledge for sensed data
because divided data must be matched with internal
concepts.

Dividing knowledge:
IF | p1(ti)-pl(ti+1) | = el,
THEN divide parameter pl at ti.
IF | p1(ti)-p1(t) | Z g1,
THEN divide parameter pl at j-1.
el and gl are special knowledge for dividing data.

Symbolizing knowledge (translation knowledge):
IF f1 = pl(from ti to tj) = f2,

THEN pl(from ti to tj) is a concept, "X".
IF pl(from ti to tj) = f3,
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THEN pl(from ti to tj) is a concept, "Y".
The range of "X" is from f1 to f2. The value of "Y" is f3.

5. Generation and Generalization

This section describes how to make and optimize rules.
It describes the induction method, noise reduction and
relation check.

5.1 Rule Generation

Situations and actions are extracted each time. They
are represented by symbolic expressions and
parameters. IBL. makes implication sets (i.e., rules)
from situations and actions to select a good set of
situations as shown in figure 5. Temporal
information shows a sequential rule evaluation flow.
rule(ti), which is made from situations and actions
that occurred at time ti, makes a new environment
which matchs situations of rule(ti+1). Therefore,
IBL adds situations made by actions of rule(ti) to the
situations of rule(ti + 1) shown in example 8.

v -Subset of situations

Set of actions

Set of situations

Figure 5 IBL induction

Example 8: . Rule generation considering temporal
information '
Situations: S1, S2 and S3 are observed at time ti+ 1.
S1 = symbol-1,0 = 82 = 15 and S3 = symbol-2.
Actions: al is done by the human expert at time ti+1.
The parameter of "al" is A1, and A1 = 20.
Action of rule(ti): a2 is done.

Generated rule(ti+1):
S1& S2& S3 & side-effect of a2 — al(Al),

in context (S1=symbol-1,0 = 82 = 15
and S3 =symbol-2)

5.2 Noise Reduction

Real noise is caused by sensors and human experts'
errors. This noise must be removed. It is unnecessary
data in expert jobs. For example, in spite of a sensor
detecting a situation, a human expert sometimes does
not react to that situation. That situation
information is useless data. IBL detects this noise as
shown in figure 3. Both situations and actions have
some causality with each other. Therefore, data that
have no causality must be removed.

5.3 Concept Relation Check

As shown in example 1, sensed data contains most
concepts of the target domain. Therefore, generated
rules contain unnecessary situations in their "if-
part". Each situation must have some causality
which depends on the target domain; this causality is
dealt with as the concept relation knowledge. IBL uses
this concept relation knowledge to reduce the amount of
unnecessary information.

5.4. Generalization, Specification, and
Optimization

In one learning process, only parameters are
generalized or optimized. However, structures of
rules are not generalized in one observation, but by
multiple examples.

(1) Generalization (optimization) for ranges of
parameters

Range expressions are shown in example 6. They
show the generalization criteria. Strictly speaking,
range information contains a lower case and an upper
case. The lower case is used for parameter
generalization and the upper case for parameter
specialization.

Example 9: Range optimization
Lower case (narrow range):3 = V=4
Upper case (widerange) :1= V=5
Acquiredrange: 0.5 = V=35
Optimum range: 1 = V=4

—101—



The lower limit of value "V" must be more than 1 and
less than 3; therefore, the acquired range is changed to
"1 =V = 3.5". The higher limit of value "V" must be
more than 4 and less than 5; therefore, the acquired
range is translated into "1 = V = 4",

If an acquired range is within the limits of a lower case,
it must be rewritten as a lower case. If itis beyond the
limits of an upper case, it must be rewritten as an
upper case. A range of an instance is generalized or
specialized in order to fit it into a range between the
upper case and the lower case. It becomes an optimized
range asshown in figure 6.

Specialization _ Instance bound

-.’

Optimized
>  bound

--.» Upper case

“**a  Lower case

Generalization

Figure 6 Range optimization

(2) Generalization by multiple examples

There are many rules in one expert task. However,
general rules and special rules are mixed in the task.
Taking other expert tasks into consideration, some of
the same rules are extracted. Both old and new rules
have some differences from each other. To use
these differences, rules can be generalized. We explain
the generalization of IBL for each difference.

Case 1: There are no symbolic differences in the if-
parts between new and old rules, and each then-part is
the same. However, the values of the new parameters
of the if-parts are different from old ones. IBL
generalizes the ranges of situation parameters.

Case 2: There are symbolic differences in the if-parts
between new and old rules, and each if-part is the
same. IBL applies the logical-OR operator to these if-
parts and makes a new rule.

Case 3: There is no difference in the if-parts but the
new then-part is different from the old one. IBL
applies the logical-AND operator to these then-parts
and makes a new rule.

6.Acquiered Knowledge and
Object Model

The human expert knowledge is made from situations
and actions inductively. A form of acquiered knowledge
is an implication rule (i.e., situations — actions ).These
actions are occured by situations in the human expert.
Next situations are occured by these actions in an
object of expert jobs. Therefore, an implication form
(i.e., actions — next situations ) represents a sub-model
of the object. IBL can also obtain the sub-model of the
object. If a detail model (e.g., deep knowledge) of the
object is given, we can know a coverage of acquiered
knowledge to compare the detail model and the sub-
model.

7. Conclusion

IBL learns the human expert's problem solving
knowledge by observation. It acquires knowledge in
logical form and the range information of the values
in logical rules. It cannot obtain general rules from
one observation, butit hasa function which optimizes
parameter ranges. In order to acquire general
knowledge, multiple task examples are given to this
system. It has not been implemented, but a subset of
its functions was developed for a robot skill
acquisition system [Taki 85], and it was proved that
the major functions of this system are useful for
skill acquisition by observation in that system. We
believe that itis also useful to extract notonly skills
but also knowledge of human experts. This paper does
not deal with the treatment of alternative
interpretations (translations). The TMS [Doyle 79][de
Kleer 86] mechanism is useful to maintain the
acquired rule base. Acquired knowledge is a logical
form; therefore, the partial evaluation techniques
in logic programming [Fujita 87] are useful for these
rules to reform effective rule sets.
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