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A form of non-monotonic reasoning, circumscription, has been proposed by J. MeCarthy, which
possesses the virtue of dealing with commonsense knowledge. However circumscribing first-order
predicates makes a given sentence second-order. Then the algorithms of mechanical resolution ecannot be
directly used in the circumscriptive inference. In this paper, for a theory we introduce a concept of
circumscriptive reducibility with respect to a predicate symbol, which says that the result of
cireumseribing a predicate symbol in a theory has a model-theoretical equivalent counterpart in the same
order as that of the theory. Generally, not every theory is circumscriptively reducible. Nevertheless, the
theory of the formulas separable with respect to the eircumseribed objects, proposed by V. Lifschitz, is
circumseriptively reducible. Unfortunately, theories consisting of separable formulas lack the capability to
represent recursions on their eircumseribed objects. In this paper, we shall propose a condition sufficient to
determine the reducibilities of theories no matter whether there are recursions or not. The theories are
assumed to be function-free in our discussions. Actually the results are also holding true even if the
funetions of a large kind are involved.



1. Introduction

Circumscription is a form of non-monotonic
reasoning proposed by J. McCarthy3. for dealing
with incomplete knowledge integrally in a
conventional logic framework. The original
definition will be recalled here.

Let T(P) be a first-order sentence (i.e., a
formula without free occurrences of variables) and
P a predicate symbol in T. The predicate
circumscription of P in T is defined as a second-
order formula:

TPAVP'. [T(P)AVx. (P'(x) DP(x))

DVx. (P(x) DP'(x))] 1)
where P’ is a predicate variable, T(P’) is the result
of substituting P’ for P, and x is a tuple of variables.

The semantics of circumscription is clearer
than other non-monotonic logic issues such as
default reasoning, while how to draw
circumscriptive inference mechanically is
relatively difficult because for a theory of first-
order, its circumscriptive theory is second-order.
However it seems that for some theories, they have
corresponding completions, identified with
circumscriptions, of the same order as those of
original theories themselves. That is, for any
formula it can be deduced from eircumscriptive
theories if and only if it can be deduced from this
kind of lower order completions. Here we define
such a lower order completion as circumscriptively
reduced theory and we say a theory is
circumscriptively reducible when its
circumscriptively reduced theory exists. For a
special case that the original theory is first-order
one, then its circumscriptive inference can be still
done without going beyond the framework of first-
order logic if it is reducible. However it is not
always the case that every theory is reducible. This
problem has been mentioned by J. McCarthy! as
“finding the right-substitution for the predicate
variables”, and he pointed that “Finding the right-
substitution for predicate variables, in the cases we
have examined, the same task as finding models for
a first-order theory.”. The circumscriptively
reducibility of a theory depends on many aspects.
And we have discussed this problem in ! when the
relative theory is restricted within the description
of knowledge only with Quosi-IS-A Hierarchy.
Here we shall extend our previous result such that
it is appropriate to a more general class of theories.
Now we shall go into details.

To begin with, we shall reveal the
relationship among provability, circumscription
and close world assumption. In the coming sections,

the main idea of propositions stems from this
discussion, and the following expression (2) is very
useful to prove our theorems. Let us consider a
theory T and a formula F. We introduce a meta-
symbol L. I(T, F) stands for that F is provable in
theory T. Traditionally, closed world assumption
(CWA) [Reiter, R. 1978] suggests that for every
formula F, if —L(T, F) then —F could be admitted
as a consequence of T. In other words, what
described by T is closed on all predicate symbols.
However, circumscribing a predicate symbol P in
the theory T means that what described by T is
closed only on a certain predicate symbol P. By
circumscription, it is possible to make the theory
closed on your favorite predicate symbols and for
others they still remain traditional logic meaning,
while CWA makes the underlying theory closed on
all involved predicate symbols. Thus from the view
of provability L, circumscription is a more general
form of CWA. Using the meta-symbol L, the
circumscription of P in T and a theory of T together
with CWA could be respectively explained as:

T |J vy.(Va. (L(T, P@)Ax#y) D PG} @) and

T|J( U Uy, (Vx,. (LT, P )Nz Fy NP )} B)

where all predlcate symbols occurring in T are P,
sz-- Pnandx;-"ln- 2 Xns ¥y Y1, - - -» Yn are tuples
of terms.

2. Circuniscriptive Reducibility

As for the problem of finding right-
substitutions for the predicate variables in the
circumscription, there are formulas with the
special form, called separable formulas with
respect to a predicate symbol, in which
circumscribing this predicate symbol could be done
in the framework of first-order language. Here we
shall recall the concept of separable formulas and
point out its weakness is that the theories
consisting of separable formulas are lacking
capability to cope with recursion through a simple
example.

Definitionl

A formula F is called solitary with respect to
a predicate symbol P if it is the conjunction of:
(i) formulas without positive occurrences of P;
(ii) formulas of the form Vx (U(x)DP(x)), where
U(x) does not contain P.

A formula F is called separable with respect
to P if it is a disjunction of solitary formulas.

According to the result by V. Lifschitz, the
circumscription of a predicate symbol in a formula
solitary with respect to this predicate symbol can




be represented in the first order language:

Circum(N(P)AU <P; P)=N(U)A(U=P) 4)
where N(P) is the formulas without positive
occurrences of P and N(U) is the result of
substituting U for P. U<P is a formula of the form
Vx (U(x)DP(x)), U(x) is a formula without
occurrences of P. This is the case that relative
formula A is solitary with respect to the
circumscribed predicate symbol. Similarly, as for
the case that the relative formula A is separable
with respect to the circumscribed predicate symbol,
there are several definitions Uy, Ug, ... , Uy, of P
according to (4) separably. The definition with the
minimal extension of P would be the smallest one
among Uy, Uy, . .. ,Up, and the smallest Uj is the
definition of P obtained by circumscribing P in A.
Here we shall not go into details about this and the
readers interested in this should be suggested to
refer to 61,

As we have seen in the above definition,
positive occurrences and negative occurrences of P
are not allowed to exist in a formula of the form Vx
(U(x)) simultaneously. Then formulas recursive on
P are obviously not separable. This will be clear in
the following example. Now we shall observe this
example.

Examplel
Let T={Vx. y. (P(a, y)DP(x, y)), P(a, b), P(b,
a) }. P(x, ¥) could be considered as the predicate

defined by:
Vx.y. (x=aA\y=b)Vv
(x=bAy=a)Vv
P(a, y)OP(x, y).

Because there are positive occurrence P(x, y) and
negative occurrence P(a, y) of the predicate symbol
P in Vx. y. (P(a, ) DP(x, 3)), T is not separable with
respect to P. However T is circumscriptively
reducible with respect to P and the
circumscriptively reduced theory is:
Vx. y. (P(x, y)=

(x=aA\y=b)v

(x=bAy=a)vy

(x=bN\y=b),
if all involved individuals are assumed to be a and
b.

Let us consider a formula in the form of Vx.
(Qp(y)OP(x)), where Qp(x) is a formula with
occurrences of P. Actually it is a recursive formula.
By the definition of separable formulas, it is
obviously not a separable formula with respect to P.
That is, theories consisting of separable formulas
lack capability to deal with the formulas with
recursiveness. However, as shown in the above
example, there are cases in which the first-order
circumscription exist even if the relative formulas

are not separable with respect to the
circumscribing object. Especially when there are no
functions involved in the corresponding language,
the reducibility of the theory is less dependent on
the syntax of involved formulas. In this paper, we
shall discuss the reducibility (i.e., there is first-
order circumscription wrt circumscribed object) of
formulas which are not separable wrt
circumscribed object. In the following discussion no
functions are considered. However it will be shown
in section6 that there is no much difference when
the functions defined by intensional way are
involved. The function-freeness in the discussion is
just for the sake of convenience.

3. Model-theoretical Meaning of
Circumscription

To begin with, several definitions and
notations used in this paper are given briefly.

Circum(T; P) is introduced to denote (1), the
circumscription ! of a predicate symbol P on a
theory T with the occurrences of P. Here the object
involved to be circumscribed is a single predicate
symbol P occurring in T. And a restriction is posed
on T, say that T consists of only clauses. For each
clause C in T, C=£1V/. . . \/fp, where &, 1=i=n,
are literals, i.e., atomic formulas, or the negation of
atomic formulas..

From now on, as we mention a theory we
mean it consists of clauses and as we mention a
formula we mean it is in clausal form unless
different explanations are specially given. For a
clause £1V/. .. \/€n, it is logically identified with V.
(£1V. . . v€pn), and x is the tuple of all of variables
appearing in this clause.

As for the concept of a circumscriptively
reducible theory, we have mentioned it in sectionl.
Here it will be defined formally as follows.

Definition2

Let T be a first-order theory consisting of
sentences and P a predicate symbol occurring in T.
Circum(T; P) is reducible iff there is an first-order
theory, written as Tgircum(T; P), model-theoretically
equivalent to Circum(T; P). That is, for any
sentence fin the first-order language,

Cireum(T; P)EB  iff Tgircam(T; PYEB.

T is said to be circumscriptively reducible on
P when Circum(T; P) is reducible.

One of the virtues of circumscriptively
reducible theories is that it enables mechanical
resolution on circumscription of first-order
predicates. Obviously, not every theory is



circumscriptively reducible. The difficulty that
faces us is, what kind of theories are
circumscriptively reducible. It will remain to be
seen. Now we shall shift onto another definition.

Definition3
The structure M of a sentence A is defined as:
(i) a non-empty Herbrand universe, called the
domain of M, denoted by [M];
(ii) MIK]: [M|*—|M]|, if K is an n-ary function
symbol;
MIK]: M|"—{True, False} if K is an n-ary
predicate symbol.
MK *]={a€[M|" | M[K](a)=True}C|M]";
MIK-]1={a€|M[*| M[K](a) =False}C|M|".

Definitiond

Let M and N be two structures of a sentence
A. M is a substructure of N in a predicate symbol P,

written as M= pN, if
(i) |M]=|N[;
(ii) M[QI=N[Q] for any predicate symbol Q (or

function symbols), Q# P;
(iii) M[P*]CN[P*].

M[Q*] is called the extension of predicate
symbol Q in a structure M.

A model M of a sentence A is minimal in P iff
for any model M’ of A,

M'=pMonlyif M'=M, i.e,M[P*]=M[P*].

Let S be a set of predicate symbols. M=gN
means that M= p,N for each P;in 8.

P(.) is an atom constructed by an n-ary
predicate symbol P and a tuple of n arbitrary terms,
called P-atom.

Notice that we divide the evaluation of a
predicate symbol into two parts of M[K*] mapping
to {True} and M[K ~] mapping to {False}. And at the
definition of = p, only the extensions of P in M and
N, M[P*] and N[P*], are considered. That is, a
model M is said to be smaller than N in P if every
predicate symbol except for P is evaluated in the
same way and the extension of P in M is a subset of
thatin N.

Lemmal.l

Let M be a model of T minimal in P. Then for
any proper substructure Mg of Min P, i.e., Mg<pM,
there is at least a formula p containing P in T such
that Mg~ =p.

[ PROOF] Let My be a proper substructure of M.
Then we have
Mo[K]=MI[K] forevery K*P and
Mo[PICM[P], Mg[P]# M[P].
My is not a model of T; otherwise we have the
contradiction that M is a model of T minimal in P.

So that there must be a formula B containing P,
such that My~ =. QED

Lemmal.2

Let M be a model of T. If for any proper
substructure Mg of M, there is at least one P
containing P in T such that My~ k=, then M is a
model of T minimal in P.

[ PROOF] Suppose My is a submodel of M for T in
P. That is, Mo= M. If My is a proper substructure
of M in P, then there is B in T, My~ kB, this
contradicts the assumption that Mg is a model of T.
Thus Mg=M. QED

Thus according to what suggested in
Lemmal.l and Lemmal.2, to say a model of T is
minimal in P is identified with that any
substructure of this model is not possibly to be a
model of T. Now we shall summarize this as
follows: i

Propositionl
Let M be a model of T. M is minimal in P if

and only if for any proper substructure Mg of M in
P, there is at least such a B containing P in T that
Mp~E=8.

Now according to the above definitions, (1)
could be identified with the following formula:

TENA TP (T(P)Vx. (P'(x) DP(x)A\P'#P) (1)

Observing the the definition of minimal
model and (1'), we can figure out that the
structures of sentence A satisfying (1') are models
of A minimal in P. Actually models of A minimal in
P are the only ones satisfying (1‘). This will be
mentioned in section5.

Readers interested in details on the
definitions of structure, model and minimal model,
etc., are suggested to refer to the book written by
Joseph R. Shoenfield %,

4. Operator I and IIp

Let T be a theory in clausal form, that is, a
set of clauses of the form €1V/. . . \/€n. Res(T) is the
set of all those resolvents derivable from any pair of
clauses in T. It will be detailed below.

Notation [C] will be used to describe Res(T).
[Clis the set of all literals in C and identified with
{61, ..., €} if C=2£1V. .. vVEn. C is the disjunction of
all elements in [C] and identified with €3V/. .. /€y if
[C] ={e19 ey en}-

For any clauses Gj, and Gj, Ci=€1V. . . \v{n,
Ci=7r1V...VrminT,




[CiCi1=(Cil — £)BUCi1—778,

CiCj€ Res(T),
if there is a substitution 8 such that €;6=—7;8, and
€€(Cil, rj€lCyl.

Now we shall introduce an operator I'" based
on the definition of Res. For a theory T, it will be
extended by applying Res and for this extended
one, it may be extended furthermore in the same
way. Take all of those theories as I'(T), then I'(T) is
a set of all formulas provable in T when I'(T) cannot
be extended by Res any more. This will be stated
after the definition of I has been formally given.

Definition5
Let T be a theory in clausal form. I' is an
operator on T, defined as:
(i) TOXT)=Res(T)UT;
(ii) T'G+1XT) =T URes(I'D)
Then we define:

ra= | rm.

i=0
T'(T) is denoted by II(T) when I'(T) is finite.
Now we shall go to observe I'. Firstly I'(T) cannot be
extended by Res any more.

Proposition2  T((T(T)) =I(T).
[ PROOF] Itisobvious that
Res (| r®ma | rm.

i=0 i=0
And for any I'G(T), we have,

Res 0@ ¢ | J 1.
Then =0

U Restt? (ryic |J 19 (.
i=0 i=0
Because of
Res(I'OX(T))URes(IA(T))U...=
Res(I'OX(T)UTAXT)U.. ),

Res (U r?mc U rm.
i=0 i=0
Thus Res(T(T)) =I\(T). QED

Secondly, I'(T) is finite when T is a theory
without occurrences of functions.
Proposition3
There is such an integer n that
=
i=0
and I'T'(T)) =T(T) if T is function-free.

[ PROOF ] Suppose there is no such an n,

= | r'm
. i=0

that Res(I'(T))=I(T). That is for any k&,
T(T)CTk+1)(T),

However, T is function-free and T is a finite
set. Then the set of all clauses available from T (i.e.,
constructed by predicate symbols and constants
occurring in T) is finite, denoted by EM[T].
Obviously I'&(T)CEMIT].

This contradicts with the supposition. Thus
thereisann,

n .
= J r @
i=0

such that Res(I'(T))=I(T). QED

Thirdly, I'(T) is the set of all formulas
provable in T when I'(T) is finite.

Proposition4
Let B be a formula and T a theory. B is

provable from T iff B contains an instance of some
formula a in II(T).

Corollary4.1
Let B be a formula of the form P(x) and T a

theory of clausal form. B is provable from T iff B is
an instance of p', for some B’ €IIp(T).

And at last, we introduce a notation ITp(T) to
represent the set of all P-atoms in II(T).

Definition6
IIp(T)={P(.) | for any P(. ) in II(T)}.

Based on all of those definitions and
propositions we shall go to our main issue of this
paper.

5. Reducibility onT'

We shall see that the reduced theory
TCircum(T; P) corresponding to a circumscriptively
reducible theory T with respect to P contains
following equality axioms and unique name
hypothesis.

Equality axioms (EA) are:

(EA1) Vx.x=x

(EA2) Vx y.x=yDy=x

(EA3) Vx y z.x=yAy=2zDx=z

(EA4) For each n-ary predicate symbol P,
VX1, o0 %03 Y1+ - s Yne
1=y .. Nxp=yn\P(x1,...,%5)
DP(ylv .. -’yn)-



Unique name hypothesis (UNH) indicates
that: the assumption that each object has a unique
name, i.e., that distinct names denote distinct
objects, written as x¥ y, says that x and y are two
distinct names. Here we say ‘=’ equality and ‘*’
distinctness.

Equality axioms and unique name
hypothesis declare that in Tgircum(T; P), two
constants are distinct unless their equality has
been proved from (EA1)~(EA4). Thus T¢ircum(T; P)
suggests —P(¢) if for any P(c;) provable in T, the
distinctness of ¢ and ¢; has been proved.

Now we introduce two concepts of
circumscriptive inference, denoted by ‘+p’, and
minimal entailment, denoted by ‘=p’. Let T be a
theory and B a formula. B is said to
circumscriptively inferred from T with respect to P,
written as THpp, when it is inferred from the
result of T by circumseribing P. And B is said to be
minimally entailed from T with respect to P,
written as TE=pp, when it is true in every model of
T minimal in P.

It has been known that the circumscriptive
inference is sound in term of minimal entailment.
That is, all of formulas circumscriptively inferred
from T can be minimally entailed from T.

Theorem1!2}16]
If THpp then THpp.

However above theorem cahnot always be
conversed because for a theory T, not every model
of T has a model minimal in P.

Let the relative theory T be of definite
clausal. Then every model of T has an identified
minimal model. In this case, II(T) is the
counterpart of this minimal model. The theory of T
and all of enumerations of IIp(T) together with
equality axioms and unique names hypothesis is
actually T, (T; P), the reduced circumscription
of P in T. This is formally shown and proved below
under the condition that T is function-free. It is
only for the sake of convenience. It will be seen that
there is no much difference when functions of
certain kind are involved. We shall firstly consider
(5) as the theory of T and all of enumerations of
I1p(T) preparatory to proposing following theorems.
TCircum(T; P) = »

TUV. %, ..., 20 Plag, ..., xn)=

V1<ize Vils Yi2sernrYim;
(x7 =tj1\x2 =tig/\... A\xp =tin)} (5)
For any i, 1=i=r, yi1, yi2,.-.,¥im; are variables in

P(tilr tiz, ---»tin), where P(tily tig, ""tin)GnP(T); and
ris the number of P-atoms in IIp(T).

Let x={x1, ..., %n} ¥i={yit, ¥i2,--,¥im;}, and
ti={tit,.., tin}
Jy; (x=t;) stands for

Ayi1, yigseesdim; (k1 =ti1Axg = tig/N\..A\xp =tin).

Then Jy; (x#t;) means that there is at least one j,
1=j=n, such that x;# tj;.
V33yi(x=t;) stands for

Vi <i<e Vil Yi2seersYim;

(x1 =t Axg=tio\...Axp=tin).
A3dy; (x#1t;) means that, forevery i, 1<=i=r, x#t;.

By all of those notations and assumption, (5)
can be written as:
TCircum(T; P) =
TU{Vx. [P(x)=
Fyr(x=t1)VvIy2(x=t2)v..vIy(x=t))1 }.

Furthermore it can be simplified as:
TUY 2. (P(x) =\ Ty; (x=t1))} (59

As we shall see later, (5) together with EA
and UNH is Tg,,.,m(T; P), the reduced
circumscription of Pin T.

When the set of P-atoms true in T does not
vary with the different models of T, together with
what suggested by Lemma3 we have the following
theorem.

Theorem2

T is circumscriptively reducible on any
predicate symbol in T if T is a definite clausal
theory without functions.

[ PROOF ] We take (5) as Tcircum(T; P).
We shall prove the theorem by the proofs of:
(1) If Circum(T; P)=, i.e., TFpp, then T, . (T;
P)E=B; and
(ii) If T,
P)&=8.
Proof of (i):

Suppose M; is a model for Tgircum(T; P). We
will show Mj is a model of T minimal in P.

(a) M is obviously a model of T;
(b) Prove M is minimal in P.

Now assume Mg is any model of T with
My=pM;. Then it is sufficient to show
M1[P*]=M2[P*] in order toc prove that M; is
minimal in P.

By M= pM;, we have

M[K]=M;[K] ifK¥P and

Ma[P*1CM;1[P*].

For any P(ti1, ..., tin) true in My, i.e., (t;1, ...,
tin)€M1[P+], there is at least one P(ti1’, ..., tin') in
II,(T) such that P(ti1, ..., tin) is an instance of

(T; P)EB, then TEpp, i.e., Circum(T;

Circum




P(ti1’, ..., tin), because Vx.(P(x)Dv3Ay; (x=t;)) in
Tcircum(T; P) must be satisfied by Mj. P(t;y, ..., tin) is
provable from T by Corollary4.1, i.e., THP(t;y, ...,
tin). By the soundness of -, we have TP(tii, ...,
tin). Thus P(tiy, ..., tin) is true in Mg because M2 is a
model of T. Then we can say (tiy, ..., tin)€Ma[P*].
Hence M;[P*]CM2[P*]. Together with
M2[P*1CM;[P*], we get Ma[P*1=M[P*].
Therefore, the model M; of T, ..(T; P) is also a
model of T minimal in P. That is, if Circam(T;
P)E=B, then Teireum(T; P)E=p.

Proof of (ii):

We shall prove that if T, ..(T; P)=p then
Circum(T; P)k=B, i.e., TE=pp.

Suppose Mg be a model of T minimal in P,
i.e., for any model M of T with M= pM,, we have
M=My,i.e.,

Mo[K]=M[K] for every K.

It is sufficient to show Vx. (\/3y; (x=t;)DP(x)) and
Vx.(P(x)DV/3y; (x=t;7)) in Tcireum(T; P) are true in
Mp in order to show My is a model of Tcircum(T; P)
because My is a model of T.

(a) To show Vx. (v3y; (x=t;)DP(x)) in
Tcireum(T; P) is true in My. Let ti1’,..., tin" be any
terms satisfying Jyi1, ..., Yim; @iz’ =t A ... A
tin' =tin). Then P(t;1’, ..., tin') is an instance of
P(ti1, ..., tin) in II(T) according to (5). By
Corollary4.1, P(ti1’, ..., tin’) is provable from T.
Then P(ti1, ..., tin') is true in Mg because My is a
model of T. That is, Vx. (\/3y; (x=t;)DP(x)) is true
in Mp;

(b) To show Vx.(P(x)Dv3y; (x=t;)) in
Teircum(T; P) is true in Mg. Let P(ti1’, ..., tin') be true
in My. Suppose P(ti1’,....tin") is not an instance of
any P(ti1, ..., tin) in II(T). Then we can construct a
proper substructure M of My in the following way:

MIK]=My[K] ifK#P and

M[P*]=Mp[P*]—(ti1', ..., tin")-

M is obviously a model of T with M<pMy. This
contradicts the minimality of Mo. Hence My
satisfies Vx.(P(x)D\/3y; (x=ti)).

Then the minimal model Mg of T in P is a
model of Tcircum(T; P) also. That is, if T (T;
P)=p then Circum(T; P)=§, i.e., TE=pp.

ircum

Thus TCircum(T; P) is actually a
circumscriptively reduced theory of T wrt P and T is
circumscriptively reducible wrt P. QED

As mentioned above, for a theory of definite
clausal form, it is circumscriptively reducible by
virtue of the uniqueness of its minimal model.
What would be the case that not only definite
clauses but also indefinite ones are involved?
Evidently, it dose not take the advantage of the
uniqueness of minimal model any more. Then II(T)

is not still a counterpart of any one of those
minimal models and ITp(T) does not correspond to
the extension of P in any one of those minimal
models for T. Let us examine an indefinite clause
Q(x)\/P(x). It has at most two minimal models of
satisfying Q(x) and P(x) respectively. Now take
every minimal model of Q(x)\/P(x) in such a way
that = Q(x) could be satisfied. Then Q(x)\/P(x) has
only one minimal model. However this is not
always the case. The problem encountered here is
that there may be some minimal models of
Q(x)\/P(x) in which —Q(x) could not be satisfied.
Anyway, Q(x)\/P(x) has a unique minimal model if
for any minimal model of Q(x)\/P(x), - Q(x) is
always true. Hinted by this, we could figure out
that when ITp(T) could not be expanded by adding
arbitrary formulas, then IIp(T) becomes a
counterpart of the extension of P in every minimal
model for T even if there is no minimal model of T
corresponding to II(T).

Theorem3
Let T be a theory of clausal form without
functions.
Circum(T; P) is reducible if there is no Np such that
BE€TIp(TUNp) —IIp(T) and B¢IIp(Np),
for some P-atom B.
The circumscriptively reduced theory of T on
P ’ TCircum(T; 4 ), is
TU{v. %00 xn (P(xg, ..., x0)=
Visisr ayib Yi2yeesYim;
(x1 =ti1 \xg = tig\..Axp =tin)} 5)
For any.i, 1=i=r, yi1, ¥i2,-...¥im; are variables in
P(ti1, ti2, ...,tin), where P(tiy, ti2, ...,tin)€IIp(T), and
r is the number of P-atoms in IIp(T).

[ PROOF] At first, we shall give the outline of the
proof. Next, we will go into details.

To begin with, it can be shown that every
model of T¢reun(T; P) is 2 model of T minimal in P,
i.e, Tcireum(T; P)E= if Circum(T; P) =, i.e, TE=pp.

Then show that every model of T minimal in
P is a model of Tgircum(T; P), i.e., Circum(T; P)=p if
Teireum(Ts P)E=B, when the condition presented in
this theorem is satisfied by T.

(a) Show Tgireum(T; P) =B if Circum(T; P) =.

Suppose My is a model of Tgircum(T; P).
Obviously it is a model of T. Now we shall prove
that Mg is minimal on P. That is, for any model M
of T with M= pMy, we have Mg[P+*]=M[P*].

By M= pMj, we have:

M[K]=Mg[K] if K#¥P and

M[P*ICMg[P*].

For any P(tiy, ..., tin) true in My, i.e., (ti1, ...,
tin) EMg[P*], there is at least one P(ti1’, ..., tin") in
II(T) such that P(ti, ..., tin) is an instance of



P(tii’, ..., tin'), because Vx.(P(x)DV3Ay; (x=t;)) in
Tcircum(T; P) must be satisfied by My. P(tis, ..., tin) is
provable from T by Corollary4.1, i.e., THP(tiy, ...,
tin). By the soundness of -, we have TEP(t;, ...,
tin). Thus P(ti1, ..., tin) is true in M because M is a
model of T. Then we can say (ti1, ..., tin)€M[P*].
Hence Mg[P*1CM[P*]. Together with
M[P+*]CMg[P*], we get M[P*1=Mo[P*]. Therefore,
the model Mg of T ... (T; P) is a model of T
minimal in P. That is, if Circum(T; P)k=j, then
Teireum(T; PYEB.

(b) Show Circum(T; P) = if Tcireum(T; P) .

Now we shall prove that any model M of T
minimal on P is a model of T¢ircum(T; P).

Suppose some model M of T minimal in P is
not a model of Tcireum(T; P). Then it must be that
Vx. (P(x)DVv3y;. (x=t;)) is not satisfied by M
because M is a model of T and Vx. (V3y;.
(x=t;)DP(x)) is true in M, which can be shown
similarly as in the proof of theorem2. That is, there
is at least one P(ti1, ..., tin') satisfied by M but P(t;1,
..y tin) in Ip(T) such that Iyiz, ..., Yim;
(ti1’ =ty /\.../Atin' =tin), cannot be satisfied by M.
Then we construct a substructure Mg of M in the
way:

MplK]=M[K] ifK#P and

Mo[P]=MIP] —(ti1’, ..., tin").

We shall then distinguish two cases.

Casel. When no formula of the form
P(t;1', ..., tin)VQ'(x), which is an instance of some
formula in II(T), is falsified by Mg, where Q'(x) may
be any disjunction of literals. Obviously, Mg is a
model of T and Mg<M. This contradicts the
minimality of M;

Case2. When some formula of the form P(ti’,
.. in)\V/Q'(x), which is an instance of some formula
P(ti1, .., tin)VQ(X) in II(T), is falsified by Mg. That
is, Q'(x) is false in Mg. Then take {—Q(x)} as Np.
We have P(ti1, ..., tin)€IIp(TUNp) —IIp(T) and
P(ti1, ..., tin)¢IIp(Np) because P(ti, ..., tin) is not
satisfied by the model M of T (i.e., P(ti1’, ...,
tin")€I1p(D)). This contradicts the given condition of
our theorem.

Then the minimal model M of T in P is a
model of Tgireum(T; P) when the condition presented
in the theorem is satisfied by T. Hence Circum(T;
P)E=p if Tcireum(T; P)E=P. Therefore we have proven
that Tcireom(T; P) is a circumscriptively reduced
theory of T and T is circumscriptively reducible wrt
P. " QED

This theorem suggests that there is a kind of
circumscriptively reducible theories with recursive
formulas (of course, not separable). This can also be
seen in Examplel in the section2. Recall we have
mentioned that the condition of function-freeness
placed upon the relative theories is not very strict

because the involvement of a large kind of
functions usually encountered in knowledge bases
dose not cause a lot of trouble in maintaining
previous theorems. Now let us go into this issue:
recursiveness and functions.

6. Recursiveness and Functions

As discussed in the section2 the class of
separable formulas lacks the capability of dealing
recursiveness, which is very important in
representing knowledge with logic language. And
also the previous discussion has been done under
the condition of that the relative formulas are
function-free. Now we will show that in the field of
knowledge base the function-freeness is not a very
strong condition. The results are still holding when
functions of certain kind are involved.

Suppose f be an n-ary function symbol. fis
defined as:

f: D1XD2X...XDy—Dp and
foranyi,0=i=n,D; is a set of individuals.

Firstly, we introduce an n+I-ary predicate
symbol F, defined as:

F(xly X2,...,Xn, Y) is true lff ﬂxly . Xn)=Y~

That is, for a formula Q(fixy, . . ., Xp)) with
the occurrences of f, it can be substituted by
QWAF(x1, . . ., Xn, ¥) and F is defined by a set of
atomic formulas of F(xy, . . ., Xn, y) iff thereis fixy, .
.., Xn)=Yy. When all of Dg, Dy, . . ., Dy is finite fis
said to be representable by the predicate symbol F.

Let us consider the case that every Dj is
finite. Then a function representable by a predicate
symbol F corresponds to a finite' number of F-
atoms. Take a theory with functions. If all of those
functions are representable by predicate symbols, a
function-free theory, the result of the theory
substituting all of the occurrences of functions with
their corresponding substitutors of atoms, is
identical with the original one.Obviously there is
no trouble to extend our previous results by
involving representable functions. At the same
time, we also know, in databases or knowledge
bases there are no much functions which are not
representable ones.

Example2
Let T=isblock(A)visblock(B). Suppose

Np=—isblock(A). Then we have:
IIp(TUIlp) —IIp(T)
=TIp({isblock(A)\isblock(B)}U{—isblock(A)}) —
IIp(—isblock(A))
={isblock(B)} and
isblock(B)¢IIp(Np) (IIp(Np)=D).
Thus whether isblock(A)visblock(B) is




reducible on isblock cannot be determined by the
condition presented in our paper.

According to above two examples, we see
that both separability of a theory and the condition
in the coming proposition are very strong. There
are theories whose reducibility can be determined
by the proposition, while they are not separable,
shown in examplel. There are also separable
theories whose reducibility cannot be determined
by the condition presented in the proposition,
shown in example2.

7. Conclusion

Now we conclude with the comparison
among several concepts:

—— Every theory in definite clausal form, i.e., each
formula in the theory is €1/ . . . \v€n, n=1, is
reducible because the condition appearing in
Theorem3 is always satisfied by a definite clausal
theory;

— T(P) is separable wrt P iff 51 T(P) consists of:

(1) formulas without positive occurrences of P;

(2) formulas of the form Vx (F(x) DP(x)), where F(x)
does not contain P.

And we also know that a theory is
circumscriptively reducible on a predicate symbol if
it is separable on this predicate symbol.

As shown in the examplel and example2, the
class of reducible theories determined by the
proposed condition here is joint with the class of
theories separable on certain predicate symbol.
This can be represented by the following figure:

T is the set of all considered theories;
R is the set of all reducible theories;
S 1is the set of all separable theories;
Rp is the set of all reducible theories
determined by the proposition.

—— What suggested here is also just a condition
sufficient for the reducibility of a theory. Thus the
converse of Theorem3 is not always holding.
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