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This paper presents a formalism of nonmonotonic reasoning. In our formalism, initial belief is represented
directly. Unlike the current formalisms such as default logic or circumscription we can express the belief without
any extra inference rules or special axiom. The only constraint for a belief is that it must entail knowledge. Then,
we define a belief revision strategy called minimal belief revision. Minimal belief revision minimizes the difference
between the previous belief and the new belief so that what was true in the previous belief remains true in the new
belief as far as possible.

This paper discusses why belief revision must occur when belief does not entail added knowledge, presents a
proof theory and model theory for minimal belief revision and shows that minimal belief revision performs some
kind of nonmonotonic reasoning.



1 Introduction

In real life, we are sometimes forced to draw some con-
clusion even if there is not enough information. For one
solution to those situations, we use our belief (or hy-
pothesis) to complement unknown information. How-
ever, since the results from a belief are not logically
true, they must be defeated if they are found to be
false. Such reasoning is called nonmonotonic reason-
ing and has been formalized by various researchers [Mc-
Carthy80, McDermott80, and Reiter80].

Roughly speaking, current formalisms such as cir-
cumscription [McCarthy80], nonmonotonic logic [Mec-
Dermott80] and default logic [Reiter80] add special ax-
ioms or define extra inference rules to incorporate the
idea that an unknown fact is assumed to be false unless
it is explicitly known to be true. The special axioms
or extra inference rules can be regarded as producing
methods of plausible belief from the current knowledge.
If more knowledge is added, a different belief is pro-
duced by those axioms or extra inference rules.

This paper presents another formalism of nonmono-
tonic reasoning. Our approach of formalizing non-
monotonic reasoning is different from those formalisms
in the following points.

(1) A belief is represented directly as a plausible hy-
pothesis without any extra inference rules or spe-
cial axioms. If no conclusion is derived from in-
complete knowledge, a belief is used.to comple-
ment unknown information. The only constraint
for a belief is that it must entail knowledge; in
other words, it is a detailed hypothetical descrip-
tion of knowledge to supplement a lack of knowl-
edge.

(2) A belief is directly revised when more informa-
tion is added. Since a belief has a hypothetical
character, it is not always true. Therefore, if a
belief does not entail added information, it must
be changed to satisfy the above constraint. This
process of change is called belief revision.

This paper investigates a special strategy of belief re-
vision called minimal belief revision and shows that this
strategy performs some kinds of nonmonotonic reason-
ing. The idea of minimal belief revision is that default
rules are first defined as belief, and if any counter-
example is found, the belief is changed so that the
counter-example is treated as an exception to maintain
consistency.

‘For example, suppose that belief for flying birds is
expressed by the following:

Va(bird(z) D fly(z)).

The above belief expresses directly that every bird flies.
Even if we only know bird(A4), we conclude fly(A) as
a consequence of the above belief. However, if we find
- fly(A) in addition to bird(A), then the belief must be
changed to keep consistency. However, we do not want
to throw away the above belief completely, but we still
want to believe that any bird other than A flies. The
minimal belief revision strategy performs such revision
and changes the above belief into the following:

Vz(z # A = Vz(bird(z) :) fly(z))).

This belief revision is nonmonotonic, because from
the previous belief, we can derive fly(A) if we know
bird(A), whereas from the new belief, we can no longer
derive fly(A).

This paper first discusses the relationship between
knowledge and belief, then shows the proof theory and
model theory of minimal belief revision and some ex-
amples of nonmonotonic reasoning with it.

2 Monotonic Knowledge and
Nonmonotonic Belief

This section shows why belief revision must occur when
belief does not entail added knowledge. Let « and S
be a set of knowledge and a set of beliefs respectively.
[Hintikka62] requires knowledge and belief to satisfy
the following relation:

& C B,

which means that if an agent knows p, he also believes
p- In this paper, knowledge and beliefs are represented
as logical formulas. Let knowledge and belief be for-
mulas of K and B. The above requirement can be
expressed as follows:

BEK,

which means that B entails K ! .

We also define that knowledge is monotonic. Fol-
lowing Hintikka, we regard knowledge as a subset of
truth, and therefore, knowledge increases monotoni-
cally. However, since we regard a belief as a set of
plausible hypotheses, a belief must be nonmonotonic
if we keep consistency of belief. For example, suppose
that the current knowledge contains neither a nor ~o
and the belief contains a. Then, if —a is added to
knowledge, the belief must contain it because of the

1Note that circumscription and default logic satisfy this
requirement, because both produce a belief including an ini-
tial axiom.




above requirement. However, the simple addition of
- to the belief leads to a contradiction. Therefore, in
this case, a in the belief must be retracted in order to
maintain consistency. Therefore, when new knowledge
is added, a belief must be revised so that it contains
new knowledge and is satisfiable. This process is called
belief revision.

A strategy on how to change belief is needed since
there are many ways of changing the belief. The next
section concentrates on one particular belief revision
strategy called minimal belief revision. Minimal belief
revision is a strategy by which differences between the
previous belief and revised belief are minimized.

3 Minimal Belief Revision

The main idea of minimal belief revision is that we
compute the differences between a model of previous
belief and a model of new knowledge, and choose pairs
of models where the difference between models is min-
imal. As a result, what was true in the previous belief
remains true in the new belief if it is not contradictory
to the added knowledge.

We explain the idea with the following example. Let
knowledge K be identical to T, which denotes a true
proposition, and belief B be identical to p A ¢. Then
suppose that a, which is equivalent to 7pV g, is added
to knowledge K; we must revise belief because B &
K A a. Let the new belief be NB. NB must entail
K Ao by the above requirement, that is, a set of models
of NB must be a subset of the following set:

{{_‘p’ a}, {p7 _'Q}, {"P, _'Q}}:

which is a set of all models of K A & (a model is rep-
resented as a set of the propositional constants and
negation of propositional constants that are true in the
model).

First, we compute the difference between each model
of B and each model of K A a. In this case, we com-
pute the differences of ({p, ¢}, {7, ¢})» ({p,a}, {, ~a})
and ({p, ¢}, {-p,~¢}) which are {p},{g} and {p, ¢} re-
spectively (the difference set is represented as propo-
sitional constants which have different truth values for
each model in the pair). Then we select pairs whose
differences are minimal in terms of set inclusion, that
is, ({p7 g}, {—'p’ q}) and ({pa Q}r {p’ _'q})- Then the new
belief, NB, by minimal belief revision is the disjunc-
tion of all those models of knowledge in the above pairs,
that is:

(mpA Q) V(pPA-g).

While new knowledge has a model of {-p,—q}, NB
does not have it. This is because what was true in

the previous belief remains true as far as possible by
minimal belief revision. Thus, either p or ¢ (not both)
remains true in the new belief.

We generalize this idea to knowledge and belief ex-
pressed in a first-order language. In the following sub-
sections, minimal belief revision is defined in a second-
order language. In a second-order language, we can
use predicate variables and function variables in addi-
tion to object variables. Predicate variables vary over
predicates and function variables vary over functions.
In addition, we use predicate constants such as T for
true, F for false and = for equality, and logical connec-
tives such as @ for exclusive-or and = for equivalence.

We also give the model theory of minimal belief re-
vision for a second-order language. A structure, M, for
a second-order language consists of a domain D, which
is a non-empty set, and an interpretation function such
that every n-ary function constant, Fj,, is mapped onto
a function from D* to D (written M[F,]), and every
n-ary predicate constant, P,, is mapped into a subset
of D™ (written M[P,]). N-ary function variables range
over any function from D" to D, and n-ary predicate
variables range over any subset of D". < t1,....,¢, >
denotes an interpreted tuple where %y, ...., 1, are terms.
If Py(t1,....,tn) is true in M, this fact is expressed as
< t1yeeny by >ME M[P,]. A model of a second-order
sentence is any structure, M, such that every formula
in the set is true in M.

3.1 Proof Theory

Let B(P), K(P) and a(P) be first-order sentences
whose predicate constants are among those of P =
D1,y Pn, and B(P) = K(P). B(P) is the current
belief and K(P) is the current knowledge and a(P) is
the added knowledge.

We define a minimal revised belief, NB(P), with
respect to (K(P), B(P)) and a(P) as follows.
NB(P)¥

APp(B(Pg) A K(P) A a( P)A
~3Pg3P'(B(Pg) A K(P') A a(P")A
(P, P) < (Pa,P))
where

(1) Pp is a tuple of predicate variables ppy,...., pBn
which have the same arities of py,...., p, Tespec-
tively, and Pg is also a tuple of predicate variables
PB1;---s Pgn Which satisfy the same condition as

2Since this definition of minimal revised belief is ex-
pressed in second-order language, we may need to restrict
language so that the new belief can be defined in first-order
language. A technique similar to [Lifschitz85] could be used.



Pg, P’ is a tuple of predicate variables pi,...., p,
which also satisfy the same condition as Pg,

(2) and B(Pz) is a sentence obtained by substituting
predicate variables of Pg for any occurrence of
corresponding predicate constants in B(P), and
B(Pg) and K(P') are sentences obtained in a
similar way,

(3) and (Pg, P') < (Ps, P) is an abbreviation of:
(Pg, P') 2 (Ps, P) A ~((Ps, P) X (P, P')),
where (Pg, P') = (P, P) is an abbreviation of:

Vx((Pg1(x) @ P1(%)) D (PB1(X) ® P1(X))) A A
Vx((ppna(%) @ (%)) D (PBa(X) © pu(x)))-

(Pg, P') < (PB, P) means informally that the differ-
ence of extensions for Pg and P’ is less than the dif-
ference of extensions for Pg and P. NB(P) expresses
informally that there is some tuple of extensions for Pg
which changes minimally into a tuple of extensions for
P.

3.2 Model Theory

Let B(P), NB(P),K(P) and a(P) be the same sen-
tences in the above proof theory, and let Mp and Mg
be models of B(P), and let Myp and My g be models
of K(P) A a(P). We define a partial order relation,
=, over pairs of models. (Mg, Myg) = (Mg, My3p) is
defined as the following.

(1) Mg, Mg, Myp and Myp have the same domain.

(2) Every constant and function receives the same in-
terpretation in Mg, Mg, Myp and Myp.

(3) The following statement is true. (We write < x >
as an interpreted term in Mp, Mp, Myp and
M} g, because it receives the same interpretation
in all of those models.)

Vx((< x >€ Mp[p1]® < x >€ Myplp]) D

(< x >€ Mp[p]® < x >€ Mys[pi])) A ...A
Vx((< x >€ My[pa]® < x >€ Myplpa]) D
(< x >€ Mglpa)® < x >€ Mnslp.])).

This ordering means that the difference of extensions of
each p; in Mf and My g is not more than the difference
of extensions of each p; in Mp and Mnp.

A minimally different pair, (Mp,Mnp), with re-
spect to B(P) and K(P) A aP) is defined as the
pair of models for B(P) and K(P) A ofP) respec-
tively such that there is no pair, (Mp,Myp), such
that (Mj;, ’IVB) = (MB,MNB) and not (MB,MNB) <
(Mll3’ MI,VB) -

A minimal revised model, Myp, with respect to
B(P) and K(P) A a(P) is defined as the model such
that there exists Mp such that (Mp,Myp) is a2 mini-
mally different pair with respect to B(P) and K(P) A
a(P). .

The relation between the proof theory and the mode]
theory is as follows.

Proposition 1. Let B(P), NB(P), K(P) and a(P)
be the same sentences in the proof theory. Myp is a
model of NB(P) iff Myp is a minimal revised model
with respect to B(P) and K(P) A a(P).

This proposition means that any result derived from
NB(P) is true in all minimal revised models.

As shown by the following proposition, if added
knowledge is consistent with the belief, a set of models
of the new belief is a maximum restricted set of mod-
els of belief so that any model in the new belief entails
added knowledge.

Proposition 2. Let B(P), NB(P), K(P) and o(P)
be the same sentences in the proof theory. If aP) is
consistent with B(P), NB(P) = B(P) A a(P).

The proofs of the above propositions are found in
the appendix.

4 Examples

The previous formula of a minimal revised belief,
NB(P), can be translated into the following form:
3Pg(B(Ps) A K(P) A o P)A
VPEVP'((B(Pg) A K(P") A o PN
(Pb, P') % (Ps, P)) (P, P') = (P5, P),
where (Pg, P') = (Pp, P) is an abbreviation of:
Vx((Poy(X) @ PL(X) = (pmn(x) @ pa(x))) A A
Vx((Ppn(x) @ Pp(x)) = (pn(X) @ pn(x)))-
The above formula is used in the following examples.
The first example shows a propositional case.

Example 1:

P=p,q
B(P)=pAg,
K(P)=T,
a(P)y=-pV—qg

B(P) and K(P) are the current belief and the current
knowledge respectively and a(P) is the added knowl-
edge. Then the minimal revised belief, NB(P), is de-
fined as follows.
NB((p,9) =
3psgs(

pBAgs A(~pV ~g)A

VPEVgsVpVe((




P Aag A (=P’ V =g )A
((r5 ®P) D (P ® P)A
(¢6®d)D (8 ®9)) D
(Ps ®P) = (P @ P)A
(5@ ¢) = (28 ®9))))-

In this example, each propositional variable varies over
F and T. Each tuple of the truth-value assignment for
(P, 4B, P, q'") makes the conditional part of the sec-
ond conjunct false except (T, T,T,F), (T,T,F,T) and
(T, T,F,F). Then the above formula is reduced to:
Jpadgs(

PeAgB A (mpV —gA

((es®9) D (P =DP)A

((rs ®p) D (98 = 0)))-
Then, each tuple of the truth-value assignment for
(B, ¢8) makes the above formula false, except (T,T).
Then the above formula is reduced to:

(-pV-gA(pVa),

which is equivalent to the result in the previous section.

The second example shows inference from the belief.

Example 2:

P=bf
B(P) = Vz(b(z) D f(2)),
K(P)=T,
o(P) = b(A).
B(P) expresses that every bird flies, and a(P) ex-
presses that A is a bird. In this case, a(P) is consistent
with B(P), therefore, the new belief, NB(P) is B(P)
A o P) by proposition 2. Belief, that A flies, can be
derived from the new belief. This example shows that
if the added knowledge is consistent with the current
belief, we can infer normal results from the current be-
lief and the added knowledge.

The next example shows treatment of the counter-
example to the belief which was discussed in the intro-
duction.

Example 3:

P=bf
B(P) = Va(¥(z) D f(z)) A b(A),
K(P)=b(4),
a(P) =-f(4).
B(P) expresses that every bird flies and A is a bird,
and a(P) expresses that A does not fly. In fact, B(P)
is the new belief of example 2. Then the new belief is
defined as follows.
NB((b,f)) =
Fbp3fa(
Vz(bg(z) D fe(z)) A be(A) A B(A) A = F(A)A
VbRV FEVEV F((

Va(By(z) > f5(2)) A () A V() A=F/(AA
Va((tp(2) ® ¥(2))  (b5() @ b(z)))A
Va((f5(z) ® £(2)) > (fa(2) ® £(2)))) >
(Va((¥5() ® b(2)) = (b5(z) @ B(z))A
Va((f4(2) ® £(2)) = (fa(z) ® £(2))))).

Let bp(z) and fg(z) be identical to bg(z) and fa(z)

respectively and let b'(x) be identical to bp(z) and let

f'(z) be identical to fe(z) Az # A.

Then. the left-handside of the last conjunct of

NB((b, f)) becomes as follows:

Vz(ba(z) D f(x)) A bp(A) A bp(A)A

=(fe(A) AN A #£ AA

Va((ba(z) ® ba(2)) > (b5(a) © Hz))A
Va((fa(z) ® (fa(a) A o £ 4)) > (fa(a) @ £(=))

We can easily see that all conjuncts except the last are

true, assuming Vz(bg(z) O fs(z)) and b5(4). Con-

cerning the last conjunct, it is reduced to:
(1) when z = A,
(fa(4) ® F) > (fa(4) & £(4))
which is true assuming fg(A) and ~f(A);
(2) when = # A,
(fa(2) & fal2)) > (fa(a) @ £(2))
which is true.

Therefore, the left-handside of the last conjunct of

NB((b, f)) is true, assuming the other conjuncts of

NB((b, f)). Thus, we can derive the following from

NB((b,£)).

3bp3fa(

Vz(be(z) D fa(z)) A ba(A) A b(A) A - f(A)A
Va((bs(z) ® b(2)) = (ba(a) ® Kz))A
Va((fa(z) ® (fa(2) A o # 4)) = (fa(z) © £(2)).

The second conjunct from the last is equivalent to

Vz(bz(z) = b(z)) and the last conjunct is equivalent

to f(4) AVa(z # 4 > (f(z) = £(2))).

Therefore, the above formula is reduced to:

3bs3fa(Va(H(z) D fa(2)) A KA) A ~F(AIN

Voo # 4 2 (fa(z) = £(z)))).

Since we can derive Vz(fg(z) D (z # A D f(z))) from

the last conjunct, we can derive the following from the

above formula:

Va(b(z) > (2 # A D £(2))) A K(A) A (4),
which is equivalent to:

Va(o £ A = (bz) > £(2))).

While f(A) was true in the previous belief, we can
no longer derive f(A) from this new belief. Thus, this
example shows nonmonotonicity of minimal belief revi-
sion. And, from the new belief, we can still show that
every bird except A flies. This is an effect of minimal
belief revision.



5 Related Research

5.1 Formalisms of Nonmonotonic Rea-
soning

The current formalisms of nonmonotonic reasoning try
to define extra inference rules or axioms to produce
belief. Default logic [Reiter80] uses special inference
rules called defaults and circumscription [McCarthy80]
adds special axioms to the knowledge. However, if we
wish to represent a belief that every bird flies, then we
cannot express this belief directly but must modify it
to match special mechanisms of the above formalisms.
In default logic, we must present the above belief by
using extra inference such as:

bird(z) : M fly(z)
fiyz) 7

In circumscription, we must introduce special predicate
ab to express the above belief as:

Va((bird(z) A ~ab(X)) D fly(z)),

and minimize ab. However, in our formalism, belief can
be represented directly as:

Ve (bird(z) D fly(z)).

We use a kind of minimization technique adopted
in circumscription to formalize minimal belief revision.
However, while circumscription minimizes predicates
to produce a belief, minimal belief revision minimizes
the difference between the previous belief and the new
belief.

5.2 Truth Maintenance System

In a sense, the formalism in this paper can be regarded
as a generalization of the truth maintenance system
[Doyle79], because the TMS uses hypothetical contexts
which correspond to models of belief in our formalism
and performs belief revision. However, while the cur-
rent TMS can only manipulate propositions (or ground
sentences), our formalism can manipulate any arbi-
trary sentences. Moreover, TMS uses only one context
at one time, whereas we can use multiple contexts at
one time because a sentence for belief expresses a set
of models.

5.3 Database Updates

In the database community, there have been several
reports on research on semantics of updates. For ex-
ample, [Fagin83 and Kuper84] define minimal updates

of syntactic formulas in databases. However, they do
not give a model theoretical analysis. Moreover, any
previous contents in the database can be updated in
their formalism, whereas in our formalism, hypotheti-
cal belief is distinguished from true knowledge and only
belief can be changed by belief revision.

6 Conclusion

This paper presents a formalism of nonmonotonic rea-
soning by direct representation of belief and belief re-
vision. Belief is defined as a detailed description of
knowledge so that it entails knowledge. Belief revision
occurs when belief does not entail added knowledge.
This paper concentrates on a particular belief revision
strategy called minimal belief revision. Minimal belief
revision treats the counter-example for the previous be-
lief as an exception in order to maintain consistepcy.
It also keeps what was true in the previous belief as far
as possible. This paper presents the proof theory and
the model theory for minimal belief revision. However,
since the proof theory is presented in the second-order
language, it is not computable in general. We must
investigate some useful subset of first-order sentences
to make minimal belief revision computable.
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Appendix: Proofs of Proposi-

tions

Proposition 1. Let B(P), NB(P), K(P) and o(P)
be the same sentence in the proof theory. Myp is a
model of NB(P) iff Myp is a minimal revised model
with respect to B(P) and K(P) A o(P).

Proof:

(=) Suppose that Myp is a model of NB(P), but
for every model, Mg, of B(P), (Mp,Mng) is not
a minimally different pair with respect to B(P) and
K(P) A a(P).

In other words, for every pair (Mg, MnB), there is
a pair of models (Mg, Myg) for B(P) and K(P) A
a(P) such that (Mg, Myg) = (Mp,Myp) and not
(Mp, Mn3) % (Mg, Myp).

Therefore
Vx((< x >€ Mm@ < x >€ Myg[pi]) D




(< x >€ Mp[p]® < x >€ Myp[p1])) A -..A
Vx((< x >€ Mp[p.]® < x >€ Myg[pa]) D
(< x >€ Mz[p,]® < x >€ Mnz(p.])),
and
=(
Vx((< x >€ Mp[p]® < x >€ Myp[pi]) D
(< x>€ Mg[p]® < x >€ Myg[p]) A ...A
Vx((< x >€ Mp[p.]®d < x >€ Mns[p.]) D
(< x >€ Mp[pn]® < x >€ Myp[pa))))-

Let Mng[pei] = Ma[p:)(1 < i < n), where pgi is a
predicate constant which is not in P. Then since M |=
B(P), MNB }= B(PB), where PB = (PB], ...,pB,.). Sim-
ilarly, let Mys[p;] = Mp[pi] and Mys(pi] = Mygp(p],
then Mnp = B(Pg) where Pg = (plgy,---»Pn), and
Mysg = K(P') A o(P) where P’ = (pi,...,p,)-

And since
Vx((< x >€ Mnp[pp:]® < x >€ Myg(pj]) D
(< x >€ Myp[pp1]® < x >€ Mns[p1])) A ...A

Vx((< x >€ MnB[pE.]® < x >€ Myp[p]) D
(< X >€ MNB[PBn]GB <X >€ MNB[PnD),
and
=(
Vx((< x >€ My5[pe1]® < x >€ Myp[p1]) D
(< x >€ Mng[ps|® < x >€ Mys[p\]))A...A
Vx((< x >€ MnB[pBa]® < x >€ Mnp[p,]) D
(< x >€ My3[pp,.)® < x >€ Mnp(p,]))),
by substituting Myg{pgs:] for Ma[p(1 < ¢ < n),
Mng[p’s;] for Mg[pi], and Myg[p!] for Myg[p;] respec-
tively in the above statement, for any tuples of ex-
tensions, Pp, satisfying B(Pg), there exist Pg and P’
satisfying B(Pg) and K(P') A a(P’) respectively such
that Myg |= (Pé,P’) = (PB,P).
It contradicts the fact that there exists Pp satisfying
B(Pg), such that
Myg | -3PLIP(B(PL) A K(P') A a(P') A
(Pé’Pl) = (PB,P)))
(<) Suppose that Myp is a minimal revised model
and My E VPs((B(Ps) A K(P) A o(P)) D
3PRIAP'(B(Pg)AK(P)Aa(P')A(Pg, P} < (Pg,P))).
In other words, for any Pg satisfying B(Pg), we can
take Pg and P’ such that B(Pg) A K(P') A a(P') A
(Pg, Py < (Ps, P).
Then since Mns k= (Pg, P') < (Pg, P),
Vx((< x >€ Mna[p5]® < x >€ Mys[p]) D
(< x >€ Mna[pp1)® < x >€ Mys[p])) A ...A
Vx((< x >€ Mys[ph,)® < x >€ Mys[p}]) D
(< X >€ MNB[PB;;]@ < X >€ MNB[Pn]))y
and
=
Vx((< x >€ Myg[ps|® < x >€ Mya[p]) D
(< x >€ MnB[p5:]® < x >€ Myg[pi])) A ...A
Vx((< x >€ MnB{ps.)® < x >€ Mya[p.]) D

(< x >€ Mnp[pp,)® < x >€ Mns[p,]))).

We take Mp, Mg and My p such that they have the
same domain as Myp, and every constant and function
receives the same interpretation in Mp, My and My
as in Mypg, and the interpretations of predicates of P
in Mg, My and Mpyp receive the interpretations of
predicates of Pg, Pg and P’ in Myg respectively.
Since Mng |= B(PB) A B(Pl';) A K(P') A Ot(P’), Mp l=
B(P), Mj k= B(P) and My = K(P) A o(P).
And since ‘

Vx((< x >€ Mg[p1]® < x>€ Mpyg[pi]) D
(< x >€ Mp[p|® < x >€ Mys[p1])) A ...A
Vx((< x >€ Mg[pa]® < x >€ Myp[ps]) O
(< x >€ Mp[p,]® < x >€ Mnp([pn))),
and
-( ’
Vx((< x >€ Mp[p1)® < x >€ Mng[p1]) D
(< x>€ Mg[pi]® < x >€ Myg[m]) A..A
Vx((< x >€ Mp[p,|® < x >€ Mys[p.]) D
(< x >€ Mplpn]® < x >€ Mypg[p)))),
by substituting Mp[p](1 < ¢ < n) for Myg[psi],

Blpi] for Mys[ps;], and Myg[pi] for My p[p]] respec-
tively in the above statement, for Myp and any mod-
els Mp satisfying P(B), there exists a pair of mod-
els (Mg, Myp), satisfying P(B) and K(P) A a(P) re-
spectively such that (Mg, Myg) < (Mp, Mng) and not
(Mp, M) 2 (Mg, Myg).

It contradicts the fact that Myp is a minimal revised
model. QED

Proposition 2. Let B(P), NB(P), K(P) and a(P)
be the same sentences in the proof theory. If a(P) is
consistent with B(P), NB(P) = B(P) A o(P).

Proof:

Let M be any model of B(P) A a(P). Since B(P) |=
K(P), M is a model of K(P) A a(P). Let us con-
sider a pair of models for B(P) and K(P) A a(P),
(M, M). Tt is a minimally different pair because for any
pair of models of B(P) and K(P) A oP), (M',M"),
(M, M) < (M',M"), that is there is no pair of mod-
els (M',M") such that (M',M") < (M, M) and not
(M, M) < (M, M"),

If M is a model of K(P) A a(P), but not B(P) A
a(P), we can show that it is not a minimal revised
model. Suppose that it is a minimal revised model.
Then there is a model of B(P), M', such that (M, M')
is a minimally different pair. Since M is not a model
of B(P), M and M’ are not identical. Let M" be a
model of B(P) A a(P). Then (M",M") 2 (M,M")
and not (M, M') < (M",M") because M and M’ are
not identical. It contradicts the fact that (M, M’) is
a minimally different pair. Thus, M is not a minimal
revised model.



Therefore, a set of all models of B(P)Aa(P) is equiv-
alent to a set of all minimal revised models, that is, a
set of all models of NB(P). In other words, NB(P) =
B(P) A o(P). QED
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