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APPLYING NEURAL NETWORKS TO SCHEDULING PROBLEMS

Edoardo Biagioni, Tetsuya Abe, Satoru Ishii
Information and Communication Systems Laboratory, TOSHIBA
Yanagicho 70, Saiwai ku, Kawasaki 210, Japan

We have used three different Neural Network Algorithms to re-implemented an existing
expert system which schedules trucks to carry loads, where each load’s start and end
times are known in advance. We compare the performance of the Neural Networks to
that of the expert system: the program based on Back Propagation performs acceptably,
the program that used a Hopfield Network is unreliable and yields marginal results,
and the program that solved the problem using Simulated Annealing performs quite
satisfactorily. We generalize our results and analyze useful ways of integrating Neural
Networks into expert systems or replacing expert systems by programs based on Neural
Networks.
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1 Introduction

The problem of scheduling resources sub-
ject to a particular constraint occurs fre-
quently and is of considerable economic
significance. Most such problems are NP-
complete, which means that it is not fea-
sible to find optimal solutions for prob-
lems of realistic size. A typical schedul-
ing problem might be finding an assign-
ment of available drivers to trucks such
that all scheduled loads reach their desti-
nation on time. Another scheduling prob-
lem might be assigning airplanes to routes
such that all scheduled routes are covered,
while minimizing costs.

The usual solution to these problems
is approximate: various heuristic proce-
dures are used to find a solution that is
good enough for actual use, even though
it may be less than optimal.

Over the last few years there have
been substantial new developments in the
field of Neural Networks. The most in-
teresting recent development is perhaps
that of the Back Propagation algorithm
[Rumelhart]; this algorithm can be used
to recognize and discriminate among com-
plex patterns. Other Neural Network algo-
rithms, such as Hopfield Networks [Hop-
field], provide effective solutions to opti-
mization problems. All this has renewed
interest in Neural Networks; many inter-
esting problems are still being explored,
but Neural Networks are already used al-
most routinely in many fields, especially
pattern recognition (see for example [Di-
etz] or [Fukushimal).

One direction that has received only
slight attention [Gallant] has been the use
of Neural Networks in implementing ex-
pert systems. Also, the use of Neural Net-
work algorithms in solving optimization
problems still seems to be mostly theo-
retical. Furthermore there has been, to
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the best of our knowledge, no attempt
to solve scheduling problems using Neural
Networks. The research reported here ad-
dresses all of the above points.

2 Scheduling Problems

A scheduling problem can be defined as a
problem in which resources have to be al-
located to satisfy given time constraints in
such a way that a given cost function can
be minimized. The cost function usually
reflects the actual direct and indirect costs
of the solution, so that the minimum-cost
solution is by definition the most desirable
solution. For example, using a telephone
line from 3 a.m. to 4 a.m. may be cheaper
than from 10 a.m. to 11 a.m., but may
also be less productive.

In our research we have attempted
to solve a particular scheduling problem
using various Neural Network algorithms.
The problem is a real-world problem with
all the accompanying complexities. The
real problem was the one actually solved,
but in this paper we will only describe a
simplified, analogous problem.

J
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Figure 1. Cost of one truck plotted
agains time.

2.1 Truck Scheduling

Our (simplified) test problem is to al-
locate trucks to carry given loads at given
times. The cost of a truck includes a
fixed charge that covers the first 8 hours



of use; after that the cost of the truck in-
creases after every additional 1/2 hour be-

cause the driver earns overtime pay (see

Figure 1). In this particular problem, the
trucks are rented from a separate company
so the cost of using a truck is known ex-
actly and the number of trucks used does
not affect the cost of an individual truck.
Each load has scheduled starting and end
times which are sufficiently reliable that
the schedule can be based on them.

An optimal solution is achieved by
keeping each truck busy for most of its
basic 8 hours, and do as little overtime
as possible while keeping the number of
trucks as low as possible. A truck can only
carry one load at a time; the problem is
how many trucks to schedule, and which
loads to assign to which trucks.

2.2 Truck Expert System

A straightforward way to solve this
problem is to consider the loads one at a
time, beginning with the ones that have
the earliest scheduled start times, and as-
signing them either to a truck that has
already been scheduled or to a new one,
depending on which of the two solutions
is cheaper. This method is fast and sim-
ple, but the results are not really good,
since the solution is usually rather expen-
sive. Notice that a solutions that is only
3% more expensive than necessary, for ex-
ample, can be so expensive as to be useless
in real life.

A slower method that produces bet-
ter results is to run the above algorithm
as a first step, then try and transfer loads
from one truck to another; after several it-
erations, a state is reached whereby any
further change would produce a more ex-
pensive solution. This is analogous to 2-
opting, a heuristic for solving the traveling
salesman problem which exchanges the po-
sitions of two cities on the tour whenever

solution 1 solution 2

more expensive cheaper
truck 1 el e
truck 2 — —

Figure 2. Two different schedules for the
same problem: the schedule on the left is
more expensive because the first truck is
needed for more than 8 hours.

that produces a cheaper tour. Figure 2
shows how one of the heuristics can pro-
duce a cheaper solution by swapping two
of the jobs.

The above method was implemented
and indeed produced satisfactory results
in a reasonable amount of time. This pro-
gram was used as a benchmark for evaluat-
ing the implementations of all the Neural
Network systems. We shall refer to it as
the Expert System, since it uses heuristics
that resemble the rules used by human ex-
perts performing the same task.

3 Hopfield Network

Since a scheduling problem is just one kind
of optimization problem, we tried to solve
our truck scheduling problem using a Hop-
field Network. A Hopfield Network as de-
scribed in [Hopfield] is a collection of neu-
rons modeled as nonlinear amplifiers. The
input of each neuron is the sum of the out-
puts of all other neurons, each multiplied
by a different weight. At the beginning
the amplifiers are in a neutral state and
the system evolves until it reaches a stable
state in which all of the amplifiers are satu-
rated. The weights must be such that the
system always converges to a final stable
state where all amplifiers are saturated.

3.1 Problem Encoding
The hardest part of using a Hopfield



Network is finding a good way to encode
the problem using a network of neurons.
The encoding must be such that when all
neurons are saturated and the network is
stable, the resulting bits can be decoded
to give a solution to the problem.

A typical problem that can be solved
with Hopfield Networks is that of the trav-
eling salesman. A traveling salesman prob-
lem involving n cities can be solved by a
matrix of n X n neurons. Each column of
neurons corresponds to one city and en-
codes the city’s position in the tour, by
allowing just one of the neurons to fire (be
high). Since no two cities may occupy the
same position on the tour, once the final
stable state is reached only one neuron of
each row is allowed to be high.

It is only the final state that is con-
strained this way; in the search for a solu-
tion, it is perfectly normal for more than
one neuron of a row or of a column to fire
at the same time. What insures that the
constraints are not violated in the final so-
lution are the weights on the connections
between neurons: each neuron strongly in-
hibits all other neurons in the same row
or column, so that any state such that a
row or column has more than one active
neuron is unstable.

3.2 Hopfield Network Truck Scheduling

We used a conceptually similar sys-
tem to solve our truck scheduling prob-
lem. Each column of neurons represents
one truck load. Each row of neurons rep-
resents one truck, so that a neuron firing
implies that the truck represented by the
row is assigned to carry the load repre-
sented by the column to which the neu-
ron belongs. As in the traveling salesman
problem, the solution must be such that
exactly one neuron fires in each column,
meaning that exactly one truck is sched-
uled to carry each load.

What is not the same as in the trav-
eling salesman problem is that more than
one neuron may fire for each row, since
each truck may carry more than one load.
This is reflected in the weights between
neurons: each neuron always inhibits neu-
rons in the same column, but inhibits only
some of the neurons in the same row, and
excites most of the others.

this neuron Excitation
Y
\
loads that make the loads that make the truck
truck only slightly substantially cheaper
cheaper /\
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loads that cannot be : loads that make the

i truck .
carrle.d by the same tru truck more expensive
as this load
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Figure 3. Strength of excitatory and in-
hibitory connections between neurons in
one row. Neurons further to the right
represent loads that begin later in the
day.

The weights connecting one neuron to
other neurons in the same row can be seen
in Figure 3. In this graph the neurons are
arranged so that loads that are scheduled
to start earlier in the day are to the left of
the loads that begin later in the day. The
neuron for which this graph is drawn cor-
responds to the vertical axis. Some of the
loads with starting time near that of this



neuron overlap it in time, so they are in-
hibited from firing in the same row (being
carried in the same truck) as this neuron.

For all other loads, the closer they are
in time the more desirable it is that they
be in the same truck; those that are too far
apart in time are more likely to incur high
overtime cost, so they inhibit each other
to some extent. Inhibition or excitation is
mutual and symmetric, so whenever one
neuron inhibits another, the other one in-
hibits the first one.

3.3 Optimizations

Hopfield Networks for real problems
such as this one tend to be rather large:
several of our examples have over 50 loads
to schedule, and if we make 30 trucks avail-
able, the Neural Network consists of 1,500
neurons. Since each neuron is connected to
every other one, there are 2,250,000 con-
nections which on every iteration are mul-
tiplied by as many weights.

To speed up the process, we note that
the weights for all neurons that are not in
the same row or column are constant. We
take advantage of this and only actually
compute the sum of the weighted inputs
from the neurons on the same row and col-
umn; at the end we add to this partial total
the weighted sum of the outputs of all the
neurons in the matrix.

This means that in our example we
only have to perform about 80 multiplica-
tions and additions per neuron instead of
1,500, giving a speedup of about 20. With-
out this speedup, the experiment would
have been very difficult and time consum-
ing, and practical use would have been un-
thinkable. Also, the fact that only 1/20
of the weights need to be stored makes it
noticeably easier to run the program on a
workstation.

4 Simulated Annealing

Another algorithm that can be applied to
optimization problems is Simulated An-
nealing [Kirkpatrick]. Simulated Anneal-
ing is not strictly a Neural Network algo-
rithm, since it does not model a network of
neurons, but it resembles many other Neu-
ral Network algorithms and is one compo-
nent of some Neural Network algorithms
[Hinton].

It shares many mathematical proper-
ties with Neural Network algorithms: Neu-
ral Networks are a mechanism for minimiz-
ing particular energy functions in spaces
with a high number of dimensions, and the
same can be said for Simulated Anneal-
ing. Simulated Annealing is based on the
same principles and basic algorithms and

behaves very much like many Neural Net-
work Algorithms.

Simulated Annealing finds very low
minima of a given energy function by re-
peatedly making a random change in the
system and looking at the cost of the re-
sult. On each cycle the change is accepted
if the cost has decreased; if the cost has
increased, the change is accepted with a
probability that depends on the current
temperature of the system. If the tem-
perature is high, the change is likely to
be accepted. At an intermediate tempera-
ture, only changes that increase the cost by
a small amount are likely to be accepted.
At low temperatures, any change that in-
creases the cost is unlikely to be accepted.

When the temperature is very low,
the behavior of Simulated Annealing is
similar to that of 2-opting and of the Ex-
pert System for the truck scheduling prob-
lem. The temperature starts out high (a
molten state) and is slowly decreased un-
til no more changes are accepted (a frozen
state).



4.1 Annealing the Truck System

cost of the solution

annealing time

Figure 4. Cost of the solution found
by Simulated Annealing plotted against
time. The interval in which the slope is
greatest is the time at which the system
is said to be freezing.

Simulated Annealing of the truck sys-
tem is very simple. The basic step is to
move a load, picked at random, from the
truck that currently carries it to a differ-
ent truck, chosen at random. Illegal moves
are not attempted, but other than that
any move can be tried. The temperature
was decreased exponentially, and the cost
of the system dropped very noticeably be-
tween two specific temperatures (see Fig-
ure 4), showing that the system was indeed
freezing at that point [Kirkpatrick].

4.2 Performance

The results of the Simulated Anneal-
ing system were very satisfactory. This
system was the only one that consistently
produced better results than the Expert
System, though each of the other systems
did so on occasion. Simulated Annealing
is unfortunately rather slow, since the so-
lution is reached by performing random
changes from a random starting point; the
speed was comparable to that of the op-
timized Hopfield Network, which on each
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step had to compute the values of a large
number of connections.

5 Back Propagation

In a completely different experiment, we
used the pattern-matching capabilities of
Back Propagation Networks to improve
the Expert System. In the experiments
described above, we created a brand new
system for each experiment; in this test,
the Back Propagation Network was made
to work together with the Expert System.

The Expert System, as we have al-
ready mentioned, first performs a reason-
able, but usually not optimal, assignment
of loads to trucks, then uses 4 heuristics to
try and find a lower-cost solution. Each of
the 4 heuristics returns a list of changes,
each of which would reduce the cost: for
instance, one heuristic picks two loads and
assigns each to the other’s truck, and re-
turns all the pairs of loads that can be ex-
changed to yield a cheaper solution.

Usually the heuristics suggest many
different changes; the Expert System picks
the one that gives the greatest savings be-
fore running the 4 heuristics all over again.
The result is usually satisfactory, but run-
ning all the heuristics can be slow for large
problems, when each one of a large number
of changes could give a slight cost improve-
ment.

5.1 Selecting Heuristics

One way to speed up the Expert Sys-
tem is to let only one of the heuristics pro-
duce a list of changes. The problem is
picking the most profitable heuristic of the
4. Examination of the program running
on real data showed that even for a sin-
gle problem, different heuristics yield the
best change at different times. The ob-
vious conclusion is that picking the right
heuristic can be difficult.
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Figure 5. A Back-Propagation Neural
Network selects one heuristic within the
Expert System; the heuristic produces a
list of changes each of which would make
the system less expensive.

In the experiment we used a Back
Propagation Neural Network to select one
heuristic on each optimization step; this
heuristic would then be the only one to
produce a list of possible changes. Figure
5 shows a block diagram of the heuristic
part of the Expert System integrated with
the Neural Network. Since it is not clear
under what conditions one heuristic will
give better results than another, deciding
what input to give the Neural Network is
perhaps the most difficult problem.

One very direct problem was encod-
ing the truck information for input into
the Neural Network: a Back Propagation
Neural Network has a fixed number of in-
puts, whereas the number of loads changes
from problem to problem and the number
of trucks even changes from iteration to
iteration. The only solution that we were
able to find was to use averages and cu-
mulative data, e.g. the average number of
loads each truck carries, the total cost of
the configuration, and so on.

5.2 Effectiveness of Selection

We produced a data set by running
the expert system and keeping a record
of which heuristic produced the cheapest
change at each step. We trained several
different networks on this training set and
the one that seemed to work best had 51
input nodes, 50 nodes on the first hidden
layer, 35 on the second hidden layer, 15
nodes on the third hidden layer, and 4 out-
put nodes. Even though this was the best
network tested, actual runs on non-test
data showed that the combination of the
Neural Network and the Expert System
is somewhat less effective than the Expert
System alone. The system is indeed faster,
taking a little over half the time, but the
results are about 2% more expensive than
those of the Expert System, which is not
satisfactory.

A more effective system can be ob-
tained by having the Neural Network se-
lect the heuristic until the chosen heuris-
tic fails to suggest useful changes, then
running all 4 heuristics as in the Expert
System. This works rather well, since at
the beginning, when it matters less which
heuristic is used, the Neural Network is al-
lowed to make mistakes, but also to speed
up the program; once the solution is close
to optimal, all 4 heuristics are applied in
trying to make it as good as possible.

This program is only about 10% faster
than the Expert System, indicating that
the Neural Network is only making a small
difference; the final results are usually the
same as those of the Expert System, so
in this case the improvement in speed is
not achieved at the expense of a less opti-
mal result. In other words, using the Neu-
ral Network to make the early, non-crucial
choices seems useful.

As a control on the usefulness of the
Neural Network, we replaced the Neural



Network by a mechanism that would al-
ways select the same heuristic. The run
time was less, as might be expected, but
the results were nearly as good as those
obtained using the Neural Network. This
leads us to the conclusion that the Back
Propagation Neural Network is not partic-
ularly useful in this application, though it
does make a small difference.

5.3 Back Propagation Expert Systems

As another control, this time to prove
that Back Propagation Networks can be
useful in writing Expert Systems, we wrote
a toy travel advisory Expert System which
was trained on a set of actual trips taken
and, given distance, travel time, and avail-
able modes of transportation, makes sug-
gestions as to what kind of transportation
should be used.

Since this system worked satisfacto-
rily, the conclusion is that somehow nature
of the truck scheduling problem led to the
poor performance of the Neural Network.
One obvious problem is that the summary
of the truck load information is evidently
not sufficient for reliably identifying which
heuristic will pick the change which leads
to the cheapest solution.

The generalization of this is that it is
hard to use a Back Propagation Network
to detect patterns in data that does not
have a fixed size. If the amount of data
is fixed and the data can be directly in-
put into the Neural Network, one would
expect the performance of the Back Prop-
agation Network to improve substantially.
Another thing to keep in mind is that
Back Propagation Networks are effective
in making good decisions, but not very ef-
fective at making perfect ones — the per-
formance of the Expert System is near-
optimal, as far as we can tell, so any sys-
tem that is compared to this Expert Sys-
tem will look poor unless it is close to per-
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fect.

6 Summary

Altogether we performed three major ex-
periments. Of the three algorithms tested,
undoubtedly the most successful was Sim-
ulated Annealing. The program based
on Simulated Annealing was slower than
the Expert System, but consistently pro-
duced better results, often by as much as
a full percent, which for this problem is
a significant difference. This improvement
over a system that has been optimized and
is judged to perform satisfactorily in ac-
tual use is remarkable and indicates that,
at least in some cases, some Neural Net-
work algorithms can usefully replace con-
ventional expert systems.

The other experiments were a more
qualified success. The Hopfield Network
proved to be not only slow but also un-
reliable, since it was hard to find param-
eter settings that would consistently pro-
duce a valid solution over different prob-
lem sizes. Also, the solutions produced
by the Hopfield Network were often not
as good as those produced by the Expert
System. The only case in which a Hop-
field Network might be more useful than a
Simulated Annealing system is if parallel
hardware is available, since Simulated An-
nealing is harder to implement in parallel
than Hopfield Networks are.

The experiment that used Back Prop-
agation yielded a speedup over the Expert
System, but the experiment also showed
that the pattern matching abilities of the
Neural Network were only making a minor
difference. However, even in this rather
unfavorable case the Network did indeed
make a difference, and our experience sug-
gests that if the problem can be encoded
in such a way that the patterns become a
little clearer, the performance should im-
prove.



6.1 Analysis

These three experiments have shown
that different types of algorithms can pro-
duce very different results. Simulated An-
nealing has been very effective in our case,
whereas the usefulness of Hopfield Net-
works and of Back Propagation has been
somewhat limited. Our experience shows
that the same algorithm applied to differ-
ent problems may yield rather different re-
sults.

One of the reasons that Simulated An-
nealing worked very well in this case may
be the fact that the actual cost function
of the system corresponds exactly to the
variable being optimized. A further exper-
iment with a different scheduling problem
in which it is not possible to compute an
exact cost function suggests that for that
problem the performance of Simulated An-
nealing is not as good as the performance
seen on the truck scheduling problem.

There also seems to be every reason
for believing that more regular schedul-
ing problems might benefit from pattern
recognition as provided by Back Propaga-
tion Networks.

6.2 Conclusion

As we have seen, there are many prac-
tical ways of using Neural Networks in-
stead of conventional expert systems or to-
gether with existing systems. The meth-
ods described so far are one way of arriving
at a solution and are only representative of
the many possibilities in this field.

We have also described a few of the
problems that may be encountered when
attempting to use Neural Network algo-
rithms in the context of expert systems.
Altogether, the field seems quite promis-
ing and the choice of the right algorithm
should make it possible to implement a
good scheduling system for many kinds of
problems with relatively little effort.
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