A I Hm ® T71-3
(1990. 7. 13)

BN =AY AF AANOIFEIESE O 5

74 b AN KL KRB

BE A% GREPEERREY -

LOBKERBETOY S LAOKEREY 31BOED T & T OESEDOIEWIEU T
. IR, RUSEIEEEIENE OMRIE OV TR, X5, KAWL Noare
Y I RTDEERBMEBOMHROBBERE M TIIEL, 705 LERORITIENO
FIRETIRES X3, $h, YVAFADY A I VI RMT ZHHOE X TDOESED
AW OU S EBEREOVLDDOTHZTERFTURL. ThiChY, $3YAFLDLREL
LR R IR 2TUA BT 3 ENTE, RV AF LOKEH (salely) RY LIV T %
DL IRk E M RN T B E BT . '

Principles of adding time to knowledge base representa-
tion system.

Issam A, Hamid and Setsuo Ohsuga

Research Center for Advanced Science and Technology,
~ University of Tokyo

A methodology for specifying and proving about time in higher level lan-
guage program is described. We have given distinction between real-time
and computer times. Also we give an upper bound and lower bounds on the
execution times of program elements, with simple extension of Hoare logic to
add the effects of real time passage. Also, we have given a mechanism to
prove and assist system is satisfiable with its timing constraints. Therefore,
we could reach to have theory of specifying the time for a certain system
represented as specification and there after we prove the correctness, of the
time assertion on these specification to meet the safety timing for the total
system.

1-Introduction

Real time systems and many other computer ap-
plications must meet specifications and perform
tasks that satisfy timing as well as logical criteria for
correctness. In real time computing the correctness
of the system depends not only on the logical result
of the computation but also, on the time at which the
results are produced. We use the term real-time to
describe systems that must supply information with-
in specified real-time limits. If information is sup-
plied too early or too late, it is not useful. for sys-
tems that are not real-time information that is deliv-
ered earlier that required is acceptable, and infor-
mation that comes a little later than required is still
usable.

It is hard to think of a research area within arti-
ficial intelligence that does not involve reasoning
about time. Medical diagnosis systems try to deter-
mine the time at which the virus infected the blood
system, circuit-debugging programs must reason
about the period over which the charge in the capac-
itor increased, robot programmers must make sure
that the robot meets various deadlines when carry-
ing out a set of tasks. Two major forces are pushing
real-time systems into the next generation: their
need for artificial intelligence capabilities and the
rapid advance in hardware.

We present a scheme for reasoning with and
about time and for specifying timing properties in
concurrent programs. Specifically, we need for the
computation to continually satisfy stringent timing
constraints, and the need to guard against an imper-
fect execution environment which may violate de-
sign assumptions.

The objectives are to predict the timing behavior
of high level language programs and to prove that
they meet their timing constraints through the direct
analysis of program statements.

What is mostly missing in the higher level lan-
guage is the ability to predict the timing behavior of
these programs and methods to reason about time
within programs.

Two major ideas are developed.

(1) Upper and lower bounds on execution times for
statements can be derived, based on given bounds
for primitive statements and- elements in the lan-
guage and underlying system.

Schemes for obtaining bounds are presented for
conventional sequential statements including loops,
for timing related statements that refer to imperfect
computer clocks and for synchronization and com-
munication operations with timeouts.

' (2) Extend Hoare logic to include the effects of up-
dating real-time after each statement execution, such
that to formalize the safety analysis of timing prop-
erties in real-time systems.

Haase [Ha81) assumes a concurrent programming
language based on guarded commands running on a
non-von Neumann machine, a deterministic execu-
tion time is given for each simple statement but exe-
cution times for conditional elements and iterations
need not be defined. We unlike Haase we distinguish
between.computer time and real-time and analyze
the timing behavior of timing related statements and
communication operations. In [Ja86] there is a good
formal approach for the specification and analysis
of timing properties in real-time systems. However,
this approach[Ja86] is in general semi-decision be-
cause Presburger arithmetic which were used in the
analysis with even a single uninterpreted function is
undecidable. However, their work is limited for
least small problem instances, therefore, their ap-
proach is impractical for large problems because a
decision procedure for Presburger arithmetic(
which is used to proof the time specification) is at
least double exponential.
2-Machine Architecture for Real-time sys-
tems

The architecture in real-time systems is so im-
portant to completely specify the wide need timing
requirements for the system specification related
with time. Our proposed machine is a large number
of Processors (PE's) with private memory for each
one, and are communicating through a rearrange-
able type of Interconnection network called Benes
IN [Be65], and with reconfigurable controlling al-
gorithm of real-time setting steps necessary to real-
ize arbitrary mapping [Ha89]. We have give in a
previous papers[Ha87]{Ha88])[Ha89] a parallel algo-
rithms for setting Benes rearrangeable IN to be re-
configurable for arbitrary mapping functions, such
that its reconfigurability is realizable in a real-time.
We want here, to use such IN for the realization of
real-time applications. Therefore, we have several
problems related to what type of specification neces-
sarily needed to specify the timing parameters in the
language, which we use to program our system sen-
sitively effected with time. How to prove the total
system is safe in the sense it can satisfy all the timing
constraints given by a certain type of representation.

Taking our proposed architecture presented in
previous work[Ha87][Ha88}[Ha89][Ha90], we want
to represent the time related applications on our ar-
chitecture. Therefore we should at first analyze the
and represent the time in the language and prove
such representation is safe to satisfy the total system
timing requirements. Here, there are many proces-
sors with private memories communicating through
a shared memory through our Benes IN.

We have first introduced a theory which repre-
sents the notation of time using higher level lan-
guage and prove this notation can be true in the

sense, it satisfies the total system specification. We
are unlike [Ja86] give a constraint graph technique
in integer programming and work substantially fast-
er to modularly design system (when the violation
of a safety assertion can be limited to a small subset
of the specification. Also, in this work we have co-
herently, add dynamic IN for the implementation of
this analysis procedure.

3-On-line Scheduling for real-time tasks

Unluckily, the scheduling problem often be-
comes mathematically intractable(NP-hard and
therefore likely requires exponential time to solve),
whenever more than two processors are involved.
If all the start times are known a priori[De89] sched-
uling can be done at compile time. In particular, if
we do not have a priori knowledge of any one of the
following parameters; (1) Deadlines, (2)
Computation time, or (3) the start times, then for
any algorithm one might propose, one can find al-
ways a set of tasks which cannot be scheduled by the
proposed algorithm but which can be scheduled by
another algorithm[De89].

Theorem[De89]

If a schedule exists which needs the deadlines of
a set of tasks whose start-times are the same, then the
same set of tasks can be scheduled at run time even if
this start times are different and not known a priori.
Knowledge o f the preassigned deadlines and com-
putation times done is enough for optimal schedul-
ing.)

‘Due to the above published results we have given
here, a mechanism that analyzes real-time tasks such
that to schedule them at the run time. The analysis
depends on deriving an execution formula such that
to find out their computation time and deadlines.
Given the timing specification of a system and a
safety assertion to be analyzed, the goal is to relate
the safety assertion to the systems specification.
Therefore, (1) The safety assertion is a theorem de-
rivable from the system specification. The system is
safe with respect to the behavior denoted by the
safety assertion as long as an implementation satis-
fies the requirements specification. (2) The system
assertion is unsatisfiable with respect to system spec-
ification. The system in inherently, unsafe because
the requirement specification will cause the safety
assertion to be violated. .(3) The negation of the
safety assertion is satisfiable under certain condi-
tions. Additional constraints must be imposed on
the system to ensure it is safety. -
4-logic representation for time

We can classify tasks into classes of events:

(1) External events represented as [, (2) Start event
represented as ¢, (3) End event represented as o, (4)
Transition events represented as 1.

Therefore, for the transition events it can be
represented by the following notation: ¢(e,i), which
represents the time of ith occurance of event e,
where e is any class(i.e., e€{lL,g 9,1} of event j, i is

integer constant/variable.

The realization of time refers to an idealization
of real-time a realized by a perfect global clock,
which can be denoted as (rt), like the Greenwich
Mean time. Computer time is the discrete approxi-
mation to real time implemented on machines by a
variety of hardware and software methods.

At the hardware level there may be fixed inter-
val or programmable interval times that produce,
tick interrupts or absolute timers that periodically
update a software-accessible counter. A software
clock would typically use the tick interrupts or the
value of an absolute time counter to generate a com-

puter time. Computer time (CT), CT=RT+5, g <€
¢ is determined by the accuracy of the hardware
clock, tick interval, synchronization interval, and
synchronization method.

It has been assumed implicitly that our abstract
real time (RT) is represented by a real-number and
that each CT is a computer approximation to a real
number. CT is a more complex data structure with
separate components.

Although the analysis of real time systems neces-
sarily involves reasoning about system behavior
with respect to time, we do not think that temporal
logic is appropriate for this task.

Temporal logic is more concerned with the rela-
tive order in which actions are executed rather that
the absolute timing of events. For instance, A;(Bl|
C), in temporal logic represents two execution se-
quences, ABC, ACB, but nothing is said about the
completion of B in the second sequence. Even for
the same sequence ABC, we might want to distin-
guish between the execution that schedules A at
time=0, B at time=1, and C at time=2, from the exe-
cution that schedules A at time=0, B at time=2, and
C at time =3. For temporal logic this distinction is
unimportant. For example if all three actions A,B,C
each takes 1 time units to execute and the composite
action above must be completed by time=2, then B
and C must be executed in parallel on two PEs. In
this neither the sequence: ABC nor ACB captures the
desired behavior,. :

It has been analyzed by [Be81], that real time can be
modeled in temporal logic simply as another global
variable, the clock and then assertions involving real
time will simply be temporal logic formulas
involving the clock variable. The main problem
with this approach is when to incrément the clock
variable in relation to the other activities in the
system. One possible way to achieve this is to insert

the assignment statement;
Clock:= Clock+C, at the end of every action where
C is the time required to execute that action.

If all action are executed in some sequential
order, such as on a single PE, then the clock variable
will indeed keeps track of real time.

((We should treat each action and the clock update
statement at its end to be one inseparable atomic
action.)) '

But this is not true when two or more actions can
be executed in parallel. The rate of scheduling the
clock process when there is one PE will differ when
two PEs are available to execute all the PEs. Proof
rules which are sound under one execution
environment may not apply under a different
execution environment.

The validity of the assertions that we want to
prove about real time systems often can not be
established without knowing more details about the
run-time scheduler. This is unlike the usual safety
and liveness properties of no-time critical systems,
which we want to hold true in spite of the scheduler
as long as we are assured that some fairness
criterion in scheduling is not. Real time logic rea-
sons about occurrences of events, execution of
actions are represented as occurrences of start and
stop events. Time is captured by a function which
assigns time values to event occurrences.
5-Timing analysis of Higher level Language

A particular execution of a statement; S can be
represented by four events; as it was mentioned in
Sec.4.

t(S) is the real time between these two events,
For every statement S we want to know the execu-
tion time t(S) in.a given program.

However, the value t(S) depends on the context
of S, the data of the program, the compiler , the run
time system, the target machine and other parame-
ters. But it is possible to obtain bounds for (S) .
if T(S)=[tmin(S), t SN then tmin(S)St(S)Stmax(S)
for all execution of S in a given program.

5-1-Timed Hoare Logic
~ Hoare logic uses assertion P and Q, respectively
before and after a statement S. {P} S {Q}, means if
P is true before the execution of S and S is executed,
then Q is true after S, (assuming S terminates).
With the perfect knowledge of timing we would
augment the above form to;
{P) < S; RT:=RT+(S) > {Q}, where P and Q may
have relations involving real-time (RT) before and
after the execution of S; the brackets (<,>) indicate
 that the execution of S and incrementing RT occur at
" the same time.
The axiom of assignment can be used in P and Q for
assertions about RT.

For example, if P=P(RT,...) then {P(RT,...)} S
{(RT-1(8),...)} or {P(RT+t(S),...}S{P(rt,...)}
Example:

The extended logic can express conveniently
basic timing properties and constraints;

(1) Performance Specification;

If S starts executing in the time interval RTstart'

it will finish sometime in the interval RTsm‘JrT(S),
therefore, {RT=RT.smt} S '{RT=:RTS'm,+T(S)}, a
simple variation is; {rt=tmﬂ} S ;(rt=tsmt+t, t in
T(S)}. RT=t +T(S), where Ly iS shortening of
[t

startbstart]-
(2) Deadlines,

Let RT 41=[t g mintdimayd b€ deadlines such that a

program S must be completed no earlier than t dimin
and no later than t al
max

{R(T)+T(S) =RT, S {RT=Rle}

i.e., at the start event of S, realtime must be bound-
ed. t -t

dimin” i e tnaxS)-
(3) Control of a Periodic Process,
Consider a program S which is to be executed
periodically starting at time et An approximate

invariant involving the time rt before and after each
execution is;
Next=rstart+nX period=rt+delta, |delta] <eps.
where next is the start time for each cycle (next is a
program variable). n is the number of execution of
S. period is the time interval allocated to a cycle,
delta is the error bounded by eps of the next relative
to real time.
We have given an analysis procedure to analyze the
sequential program statement in term of times.
5-2 Reasoning about time

Using the event classification we can construct
the timing specification for the time statements.
Example, Executing statement, S1, then program P
is executed within 3 time units, During each execu-
tion of program P the result is sampled, and subse-
quently transmitted to the display as an output=Out.
The computation time of P is 2 time units.
To represent the above example in time specifica-
tion, we can have,vx t(US1,x) S1(cP,x)A 1($P,x)<
T(HS1,x)+3, Also, Vy 1(oP,y)+251(¢P,y).
We have also the following safety timing needs,
if the transmitted information is displayed(out-
put+0ut) within 1 time unit after the completion of
program P, then we can assure that within 4 time
units of invoking statement S1, the requested infor-
mation is displayed. Then to represent this in the
timing specification we have;

Vu yw 1($P,u)S t(HOut,w)A t(HOut,w)<g(9P,u)+1
—(US1,u)<g(US1,w)A g(HOut,w)S(US 1,w)+4.
Such representation for analysis purpose can be
transform by replacing each ocurrance function
1(e,i) by a function fe(i). However, this approach
has also been studied by [Ja86], but is impractical for
use in verifying the full specification when the sys-
tem is large or have some sort of complexity. The
time specification formulas specifically are restrict-
ed to arithmetic inequalities of the form; occurance
function finteger Soccurance function. variable in
the occurance function can be arbitrarily quantified
by v, 3 . Moreover, inequalities can be connected
using the logical connectives (—,V,A). Such subclass
allows inequalities involving two occurance func-
tions and an integer constant. In principle, this is
consistent with the view that the timing constraints
of a real-time system is represented as imposing an
integer constant lower/upper bounds on occurance
of pairs of events.

The solution to this problem can be approached by
taking only subset of the specification which have a
bearing on the validity of a particular system speci-
fication. Therefore, we can extract the or choose
the suitable assertions from the system specification
before discussing the primary decision procedure.
Therefore, we can modify the inference mechanism
by considering the subclasses of the total logical
specification. The operation of many process con-
trol systems is often structured according to differ-
ent modes. Intuitively, a mode corresponds to some
assertions about the values of a set of state attribute.
The assertion in a system specification are often
qualified by a collection of modes, i.e., they are re-
quired to be true only under those modes. Under
other modes, these assertions need not be true. It is
interesting to point out that techniques to improve
the efficiency of the inference mechanism enable us
to prove the validity of a safety assertion indepen-
dent of whether a feasible schedule(one that meets
all the performance requirements of the system) ex-
ists.

We can see that the specification terms consists
mainly, of arithmetic inequalities which may be
quantified involving two terms and an integer con-
stant, (term is is either a variable or a function).

For instance, X-X, <t 2 where X, X are variables,

and #a is integer constant. This expression can be
represented by directed graph, as X, and x; are

nodes, and the edge which is connecting these nodes,
represents the literals, a is the weight which repre-

sents the corresponding integer constant in literals.
Therefore, we can have also, xiiaij < % which has

the following meaning in graph representation;

Literal: xli Iz X, .a .

The nodes representing terms involving the same
function symbol will be grouped together to keep
track of the consistency among the different instanc-
es of the same function. Therefore, nodes can be
partitioned into disjoint groups, each one has one or
more nodes. All nodes of the same function symbol
belong to a single cluster.(One cluster share the
same function symbol)

Then we will the Algorithm-1 which can construct a
graph G from a given specification formula. Please
note that, a term is a constant, a variable or an n-ary
functional symbol followed by n arguments all of
which are terms. A literal is an atom or the negation
of an atom. A clause s a finite disjunction of zero
or more distinct literals. All variables in a clause
are (implicitly) universally quantified and their
scope is just the clause in which they occur. A clause
set is the implicit conjunction of a set of clauses.
Statements can be represented in the clause language
by first representing them (where possible) with a
formula in the first order predicates calculus. The
procedure first transforms formula to prenex nor-
mal form and then to conjunctive normal form and
finally removes each existentially quantified vari-
able by instead employing an appropriate function
or constant, which are called Skolem func-..
tion[Da60]. The remaining quantifiers are then
dropped to yield the set of clauses. The typical proof
found by such a program is a proof by contradiction
to seek such a proof a formula in the first order
predicate calculus is written, and that corresponds to
assuming the purported theorem false.

A set of clauses is satisfiable if there exists
Herbrand interpretation of S for which AS evaluates
to true. A set S of clauses is unsatisfiable if no
Herbrarid interpretation exists that establishes the set
to be satisfiable in other words, S evaluates to false

for every Herbrand interpretation.
Herbrandas theorem,

A set of clauses is unsatisfiable iff there exists a
finite set of (herbrand) ground instances of S that is
truth functionally unsatisfiable [Wo84].
Algorithm-1
For each clauses C,, for each literal; xli Is X,

(1) Find the group of nodes corresponding to the
term x,.

(The group is associated with the function symbol of
x,)

"'If the group does not exist create an empty one.

(2) Search the cluster from step 1 for a node labeled
%

(3) Repeat steps 1 and 2 for the term x,,

(4) Add a directed edge (x,,%,), with weight 1 from

node x, to node x,,.
The above algorithm iteratively adds all the literals
in a class to the output graph one clause at a time.

Therefore for each literal x]i Is< Xy the nodes X)X,
are added to the graph and a directed edge(x,,x,)

with weight 2l from node x, to x,

The graph has interested property such that for a
given pair of nodes x, and x , in a graph G, there is

a path from x to x_if there is a sequence of edges,
(xgpXy)s (X)) (KX) (X7 5%, g)s () X))
and a substitution A, such that pairwise unification of
% and x‘i for all 15i<n-1 can be constructed ,

i;,e., X A=x‘i A, Where X A and X‘i A denote the terms
after applying A to x; and x‘i, respectively.
We can notice that; each pair of X and X' 15i<n-1

either to be the same or belongs to the same cluster.
Therefore we may have a cycle in a graph G if there
is a sequence of (xo,xl), (x‘l,xz), (x‘z,xs),...(x‘n_

2’Xn-1)’ (x n_l,xn) and a substitution A such that there

is a path from Xgto xland X, and x can be unified

with the substitution A. Here, X, and xnis the same

node or belong to the same cluster.

In a graph G we have the weight of a path as the sum
of the weights of the corresponding edges forming
the path.

For the analysis procedure we use the same suggest-
ed idea in [BI80] to show that a safety assertion A is
consistent with a system specification B. It must be

proved that the formula C=B—A is valid. This is.

equivalent[BI80] to show that —C is unsatisfiable.
[B180] proved this depending on a modified resolu-

tion procedure to show that —C is unsatisfiable. We
have used this result in our analysis of real-time
_ specification and the invoked time assertion, by de-
sign a technique and a mechanism to prove the un-
satisfiability of —C.
Theorem 1
Let G be a graph constructed from a given for-
mula F** using Algorithm.1. If a cycle with positive
weight exists in G, the formula P consisting of the
conjunction of literals (inequalities) corresponding
“to the edges involved in the cycle is unsatisfiable.
Proof:
The following sequence of edges represent the

positive cycle (xo,xl), (x‘l,x2), (x‘z,x3), (x‘n_
Xn 1) (X X)) '
From the definition of a cycle there is a substitution
¥, such that;

A S for all 15i%n-1 and XgW=X ¥,
since each edge correspond to an inequality Li’ one
can construct an instance of the conjunction of Li‘s
by applying ¥ to each Li' »

< A * <x.
xo\y+l xi\P AX 1\}'+I1 Ko¥ A X 2lp+12 x3\{l AL A

. + <
*n1? ‘In-l ¥

where the I's denote the integer constants in the ine-
qualities. If the set of inequalities are summed,

xo,xl,x‘l,x2 X, cancel. The resulting inequality

asserts that; I .+1 .+ +...... +In_150.

0172

This is clearly unsatisfiable because the cycle has a
positive weight, i.e., sum of the integer constants in
the inequalities must be a positive integer. -We
proved that an instance of the conjunction of the ine-
qualities corresponding to the positive cycle is un-
satisfiable, thus we conclude the original set of ine-
qualities is unsatisfiable. (end of proof)

Since the literals corresponding to a positive
cycle may belong to nonunit disjunctive clauses, Th-
1 does not guarantee that the detection of a positive
cycle in G means the unsatisfiability of the analysis.
The algorithm to be described for detecting positive
cycles depends on an operation for removing nodes
within a cluster such that the positive cycles in the
original graph are preserved.Repeating this opera-
tion will eventually remove all nodes and subse-
quently all the clusters, so that positive cycles can be
detected.Each iteration removes a node and its inci-
dent edges, and adds the appropriate edges (and
some time nodes to other clusters) to preserve the
cycles that may have existed in the graph. A self-
loop with positive weight denotes a positive cycle in
the original graph.

Algorithm-2
(Detecting Positive Cycles);

For each cluster in the graph,

For each node in the cluster.

(1) S={x1,x2, xn}, be the cluster to which x be-

longs; (all the xi‘s have the same function symbol),
S also, includes x itself for each X, in S, if x and X,

can be unified ,
(a) Let ¥ be the most general unifiers of x and X,

(b) For each pair of nonself-loop edges (x',x) and
(xi,x“) with weights I], I2 add the nodes x* w and

X" to the respective clusters if not already there,
and add the edge (x'y,x" w0 with weight (Il+ I2)

where (x*) denote the label for a node after apply-
~ing wto x'. ’
x"y denote the label for a node after applying ¥ to

A

x.
(c) Repeat step b, for each pair of nonself-loop
edges (x‘,xi), and (x,x™).

(2) Remove node x and all edges incident on it from
the graph. ‘

(3) While generating edges in step (1) and (2), a
self-loop with a positive weight signifies a positive
cycle in the graph.

(An edge from a node to another node in the same
cluster is not a self-loop).

((A self-loop with a non-positive weight signifies a
non-positive cycle in the graph))

In the implementation of this algorithm after an
edge is added to the graph, a note is made of the two
edges combined to generate the new edge.

This information is important in identifying the
edges from the initial graph involved in a cycle after
detection.

Certain negative cycle detected in step-3 can be
useful to detect the unsatisfiabilty.

Theorem 2;

The node removal operation in Algorithm-2
preserves the cycle of the original graph.
(Appendix-B)

Theorem-3

The node removal operation described in
Algorithm 2 does not introduce any new cycle
which does not exist in the original graph.

How Algorithm-2 terminates;

Two types of functions appear in the clausal
form of our formula;

Occurance functions corresponding to particular
events, and Skolem function appearing as arguments
to the occurance functions.

Algorithm-2 may not terminate if a function is al-
lowed to take itself as an argument.

We add the condition to ensure that a function sym-
bol does not appear more than once in a term corre-
sponding to a node in our graph.

Therefore step 1 of Algorithm 2 can be written

‘to include this condition.
Let S={xl,x2, xn} be the cluster to which x be-

long;
For each X, in Sif x and X, can be unified ;

(a) Let ¥ be the most general unifier of x and X,

(b) For each pair of non-self-loop edges (x°,x) and
(xi,x“) with weights Il’ and 12. .

If a function symbol does not appear more
than once in x g and x""p add the nodes x"yp and x" "y
to the respective clusters if not already there, and
add the edge (x"y, x"y) with weight (I 1+12).

(c) Repeat step b for each pair of nonself-loop edge
(x‘,xi) and (x,x*").

The added condition in step (1b) that a function
symbol may not appear more than once in xy and
X ensures the termination of Algorthim-2.

(The same condition is also imposed on step 1c).

Since an occurance function does not take an in-
stance of itself as an argument, the condition in
step(1b) does not impose any restriction on the oc-
curance functions.

However, the condition prevents a Skolem func-
tion from taking an instance of itself as an argument.
For example a node labeled (f(h(h(x))) is not al-
lowed in our constraint graph where f denotes an_
occurance function and h is a Skolem function:
Skoelm function replaces an existentially quantified
variable. The clausal form of the initial set of for-
mulas under investigation does not have any term in
which a Skolem function appears more than once.
Hence the condition in step (1b) does not restrict the
subclass of formula described in this paper.

However, the node removal operation may in
some cases produce nodes in which a Skolem func-
tion symbol appears more than once.

The condition in step (1b) prevents the generation of
such terms. Although the completeness can not be
claimed for Algorithm-2 under this condition we
impose this condition in the implementation of this
algorithm since it seems to be a good compromise in
practice. It is straightforward to show that
Algorithm-2 terminates.

In each iteration nodes in a cluster are removed one

by one unit the cluster is empty.

However, as nodes in a cluster are removed new
nodes may be added either to the same cluster or to
the remaining clusters (not yet processed). The
number of nodes which are added to the same clus-
ter cannot grow without a bound because a Skolem
function symbol is not allowed to appear more than
once int any node, which is added to remaining clus-
ter is eventually removed when the respective clus-
ter is being processed.

Furthermore, after all node in a cluster are re-
moved the corresponding occurance function sym-
bol does not appear in any mode.

Hence, all clusters are eventually removed thus
ensuring termination.

6- Verification Procedure

Here we want to presents an algorithm for de-
termining the unsatisfiability of F** as positive cy-
cles are detected in the corresponding graph G. It is

straightforward to show that if all edges involved in
a positive cycle in G correspond to literals (inequali-
ties) which belong to unit clauses, F** must be unsat-
isfiable. The case where one edge corresponds to a
literal (inequality) which belongs to a nonunit dis-
junctive clause Ci is also involved in a difficult posi-

tive cycle. The problem becomes increasingly com-
putationally intensive when more edges in a positive
cycle belong to nonunit disjunctive clauses.

However, this problem is hard as the CNF satis-
fiability problem of propositional logic where each
disjunctive clause contains either all negated literals
or all unnegated (positive) literals.

The set of all clauses in a formula F** can be
viewed as a collection (conjunction) of m clauses,
Cl,Cz,C3,...Cm, where each Ck’ is a disjunctive

clause. Note that this is merely a notational conven-
tion and we are not requiring literals in different
clauses be distinct. Let the following notation de-
note the list of inequalities corresponding to the
edges in the ith positive cycle detected,

C1 1,Cl 2,C Ci,mi’ where Ci,j’ represents the jth

literal (edge) in the ith positive cycle detected and

each X 1s a literal in at least one of the C 's.

The followmg theorem is a variation of Herbrand‘s .
Theorem-4

A set of clauses is unsatisifiable if and only if
there is a finite unsatisfiable set of ground instances

of S and ~ Pi for 15i<n where each Pi is the conjunc-
tion of inequalities corresponding to the edges in a
positive cycle detected in the constraint graph for S.
The above formulation permits one to use any
method in propositional logic to check for unsatisfi-
ability as positive cycles are detected and the appro-
priate clauses are added to the existing set of clauses.
. How to test the unsatisfiability for formulas in
which each clauses contains either only negated or
only unnegated literals. This algorithm is more
suited for safety analysis of RT systems because;
(1) It is desirable to have a dynamic algorithm in
the sense that as each new cycle is detected , the cor-
responding clause is added to the set of existing
ones, and is then checked for unsatisfiability. If it is
. shown to be unsatisfiable we can stop at once.
Otherwise we need to continue the node removal op-
eration until another positive cycle is found. The
well-known procedures require redoing the compu-
tation each time a new clause is added, i.e., a posi-
tive cycle is detected. In contrast, the algorithm to
be described builds on top of the computation al-
ready done to check for unsatisfiability as each new
positive cycle is detected.
(2) Even though the algorithm to be described has
an exponential time complexity in the worst case as

one may expect, it is desirable to have an algorithm
whose running time in the worst case is exponential
with respect to the number of positive cycles detect-
ed rather than being exponential with respect to the
number of literals or the total number of clauses, the
rationale being that we expect to have only a few
positive cycle detected in most cases.

(3) While checking for satisfiability after detectmg a
positive cycle if the formula is still satisfiable, the
proposed algorithm may terminate very quickly
after generating only a small part of the search tree.

In constr act the Davis method[Da60] must still com-
plete removing almost all of the literals before con-
cluding satisfiability.

The running time for the algorithm to check the
unsatisfiability is proportional to the number of
conjunctions in the disjunctive normal form. A new
level may be added to the search tree each time a
positive cycle is detected. Therefore, in the worst
case the height of the search tree is the number of
positive cycles detected. This algorithm has expo-
nential time complexity.

We are also interesting to find a parallel version
of these algorithms to run them in parallel on inter-
connection network like that in{fHa89]. We can take
use of such parallelism to revise the notation of ver-
ficatication procedure of real time notation schemes
for distributed systems.

6- Conclusion

The methodology for specifying predlcatmg and
proving assertions about time is new and promising
but still incomplete and untested in practice. In
order to compute bounds on structured statements in
general and to compute times for statements in par-
ticular programs, it would be desirable to-build
some automatic tools to help in the analysis.

The main results and contributions of this work
are the techniques that in principle permit the pre-
diction of the timing as well as the logical behavior
of programs. Therefore, an approach is presented
for safety analysis of timing properties of real-time
system expressible in a subclass of logic. To show
the safety assertion is consistent with a given specifi-.
cation we need to prove that the corresponding for-
mula consisting of the specification in conjunction
with the negation of the safety assertion is unsatisfi-
able. The analysis procedure is based on three algo- -
rithmic steps:

(1) Construct a graph representing the specification
and the negation of the safety assertion.

(2) Detects positive cycles in the graph using a node
removal operation. ‘

(3) Decides unsatisfiability based on the positive cy-
cles detected.

References

[Be81] Bernstein, A., etal., "Proving real-time
properties of programs with temporal-logic,” in
Proc. 8th Symp., Opea. Syst. Priciples, ACM,
SIGOPS, 1981, pp.1-11.

[B180] Bledsoe, W., et.al., “Variable elemination
and chaining in a resolution based prover for ine-
qualities,” in 15th Conf. Automated Deduction,
Lecture Notes in Computer Science, Springer
Verlag, pp.70-87, 1980.

[Daé6] Davis, M. et.al., A computing procedure for
quantification theory,” JACM, 7, 201-215, 1960.
[Ha90] Hamid, I.A., et.al., A general solution for
the optimal mapping problem on bounded degree
graph,” Workshop on Computer Architecture, IPSJ,
81-1, March, 23, 1990, pp.1-8.

[Ha89] Hamid, I.A., et.al.,, "A new fast parallel
computation model for setting Benes interconnec-
tion Network," Trans. IEICE, vol.72, April, 1989.
[Ha86] Halpern, J.Y., et.al., "A propositional modal
logic of time intrvals,” Logic in computer Science,
Springer-Verlag, Newyork, June 1986.

[Le87] Lee, L., et.al., "Adding time to synchronous
process communications,” IEEE, Trans. Comput.,
c-36, No.8, August, 1987, pp.941-948.

[Li90] Liu, L., et.al., "Static analysis of real-time
distribute systems,” IEEE ,Trans. Soft.Eng.,
vol.16., No.4., April 1990, pp.373-388.

[Ja86] Jahanian, F., et.al., “Saftey analysis of tim-
ing properties in real-time systems,” IEEE Trans.
Soft.Eng., vol.SE-12, September, 1986, pp.890-
904.

[Sh89] Shaw,A., 'Reasoning about time in higher
level language software,” IEEE, Trans. Soft.Eng.,
vol.15, July, 1989, pp.875-889. -

[Ts90] Tsai, J.,et.al., A noninvasive architecture to
moniter real-time distributed systems,” IEEE,
Comput, Magazine, March, 1990, pp.11-23.
[Wo84] Wos, L. etal, ‘Automate Reasoning:
Introduction and applications's, Prentice-Hall,
Englewod, Cliffs, NJ. 1984.

Acknowledgement

The first author would like to give his thanks to
Prof. Gregor Bochmann of the University of
Montreal, for opening the opportunity to discover
such wonderful research problems discussed in this
paper. We would like also, to give our appreciations
to the visiting professors of RCAST, (endowed
chairs of CSK) and Profs. Hori, and Yamaguchi for
the encouraging helpful discussion.

