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Labeled Graphs as Semantics of Objects

Hideki YASUKAWA, Kazumasa YOKOTA
Institute for New Generation Computer Technology V(ICOT )
21F., Mita-Nokusai Bldg., 1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN
e-mail: yasukawa@icot.or.jp, kyokota@icot.or.jp

The purposes of the present paper is to propose a new approach to representing complex
objects which are used as object identity in the context of object-orientation, and give a
declarative part of its semantics on the domain of labeled graphs.

QUIXOTE [8] is a knowledge representation language based on the complex objects pro-
posed here, and provides knowledge representation and inference services, including represen-
tation of partial information, merging (unification) of partial information, inheritance of
properties, and so on. ’

Our methodology is ZFC~/AFA, a hyperset theory proposed by P. Aczel [1] which brings
to bear all of the familiar set-theoretic technique to deal with circular phenomena.
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1 Introduction

Complex data structure is used for various data and
knowledge representation in many application: complex
objects in a database area, feature structure in natu-
ral language processing, (recursive) record structure in
programming languages, and frames and taxonomies in
artificial intelligence. Even if different terms are used in
those areas, it has been known that there are many sim-

ilarities among them: partial or extended term represen- -

tation of objects instead of a first order predicate based
one, a subsumptxon relation among them, an inheritance
mechanism based on the relation, and identification of
an object. There have been many works focusing on
them, where boundaries among database, programming,
and. knowledge representation languages, and among lan-
guages for various applications become to be disappear-
ing gradually.

We have proposed a knowledge representation lan-
guage, called QUIXOTE, ancestors of which are Juan for
deductive and- object-oriented databases and QUINT for
natural language processing applications, and is designed
along the above line. In QUZIXOTE, an object consists of
the identifier and the properties, each attribute of which
is a triple of a label, an operator, and a value. We con-
struct it uniformly in the form of complex objects, pos-
sibly containing circular structure. Our complex objects
correspond to ones in a database area, and are considered
also as extended feature structure in a natural language
area. An object identifier corresponds also to concept de-
scription. A subsumption relation is defined among them
and used for property inheritance. Furthermore, a con-
cept of a module, the identifier is also in the form of
complex objects, is introduced and used for classification
of objects and rule inheritance.

One of the distinguished features of QUIXOTE is the
semantics, which is based on ZFC~/AFA, a hyperset the-
ory proposed by P. Aczel [1]. In this paper, we focus
mainly on the semantics, the domain of which are a set
of labeled graphs in the sense of ZFC~/AFA for treat-
ing circular structure. In Section 2, we informally explain
objects in QUIXOTE. Then, we define a labeled graph
in Section 3, subsumption relation over labeled graphs
in Section 4, and discuss about solvability of constraints
over them in Section 5. Concerning on the discussions
in Section 5, Barwise[2] and Mukai[5],[4] shows important
results on constraints over hypersets. Actually, the part
on constraints over labeled graphs in the present paper
much owes to Mukai’s work. As for the context, the re-
lated results are explained in Appendix A. Furthermore,
we explain property inheritance among objects in Section
6, and a concept of a module and rule inheritance among
modules in Section 7. .

2 Objects of QUIXOTE

In this section, objects in QUIXOTE are briefly ex-
plained.

Suppose we have a finite set BO of primitive objects
and a lattice BO* = (BO, <, T,.1). For any a,b € BO,
a < b means that b subsumes a, that is,aisa b. T and L

be the supremum and infimum of BO~, respectively. Also,
let aMb and aU b be the infimum and the supremum of
a and b, respectively. Elements of BO™ are called basic
objects.

lattice is BO* =
, T, 1) where the fol-

An  example of the
({animal, mammal, human dog}, =
lowing holds:

mammal < animal
human < mammal

dog < mammal

Also suppose that a finite set L of (atomic) la-
bels. The objects in QUIXOTE (called ground object
terms) are defined as follows:

Let o be a basic object, l},1,..
object terms, respectively.

. be labels, 0,,0,,... be

¢ Every basic object is an object.

o A term o[ly = 01,13 = 03,...] is an object term if it
contains only one value specification for each label.

o A term is an object only if it can be shown to be an
object by the above definition.

For an object term o[l; = 01,13 = 0s,...], we say that o be
the head and o; be the ;-value of that object term. A
head can be omitted only when it is T.

Let BO = {human,20,30,int, male, female}, 20 =
int,30 < int, and L = {age;sex}. Then, the following
terms are object terms in QUIZXYOTE:

human, ‘
humanlage = 20, sex = male],
[age = 20].

Contrary, the following terms are not object terms:

humanlage = 20][sex = male),
humanlage = 20, age = 30].

An object term is uniquely pictured by a graph such
that each node has a basic object as its value, and each
arc is associated with a label.

For example, the object term humanlage = 20} is
pictured by the graph consisting of the pair of the set
{n1,n2} of nodes and the set {n; % ny} where the value
n; | and ny | of the nodes njand n, are human and 20,
respectively.

It is possible to have object terms. containing variables
ranging over ground object terms as follows:

humanfage = X sex =Y.
Notice that X[aege = 20] is not an object term, since

variables are not ranging over basic objects.

Let x be a collection of variables, and T be a collection
of ground object terms, T[x] be a collection of object
terms possibly containing variables.
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The subsumption relation is a binary relation over
T x T (written C). Though the precise definition of sub-
sumption relation is given in Section 4, intuitive under-
standing of C-relation will suffice at this point. Intu-
itively, 0, C oy (we say o; subsumes o0;) holds if o, has
more arcs than o, and the value of a node of o, is larger
than the value of the corresponding node of o, with re-
spect to <-ordering.

For example, the object term animal subsumes
humanfage = 20, sex = male], since the latter has more
arcs than the former, and the value (animal) of the root
node of the former is larger than the value (human) of
the root node of the latter, that is, human < enimal
holds. Similarly, human[age = 20] C animallage = int]
holds, but human|age = 20] and human[sex = male] can
not be compared with respect to C. Moreover, the object
term T be the largest among all the object terms.

The congruence relation (written &) is defined as fol-

lows:
a=20¥0Conanlo

As a collection of object terms is partially ordered by C,
2¢ is just an equality. But, in QUIXOTE, a basic object
sometimes be defined in terms of an object term as:

20_aged = [age = 20).

This makes 2 be only an equivalence relation. Thus, we

are actually working on the quotxent T/ =, on which C is

partial order on 7/ .

Let u,v be object terms. An atomic constraint is a
literal if it is in the one of the following forms:

ulv
u =,

Without loss of generality, we can assume that at least u
or v be a basic object or a variable. A constraint is a set
of atomic constraints. A constraint is understood as the
conjunction of its elements, that is, the conjunction of
atomic constraints in it. Thus, our constraint language is
a sublanguage of a quantifier-free first order language in
which only conjunction is allowed as logical connectives.

By using constraints, it is possible to extend objects to
contain variables ranging over some subset of 7. For ex-
ample, the followings are the object terms in QUIXOTE
1,

humanlaf filiation = X]| {X © company},
humanlhobby = X | {tennis C X},
humanfage = X} | {X = 20}.
Notice that the last one is just same as human[age = 20].
Sometimes, we need to have a self-referential object such

as “a person who employs himself”. Such an object can
be defined by using a constraint as follows:

X|{X= pcrson[employee = X]}.

YThe hobby-value of the second object may seem to be a set.
Actually, in QUIXQOTE, sets are introduced, but it is beyond the
scope of this paper. The details of the treatment of object terms
including sets will be shown in {8]. For the moment, assume we
have special objects like tennis.and_ski or ball_games.

The following is the list of syntax-sugaring in
QUIXOTE:

ofl =0...]] ofl = X} {X =[...]}.
ofl = o[...]] ol = X] | {XE...]}.
ol —of...]] ol = X] | {X 3[...]}.

o[l = X@o[...]]
o[l = X@oT...]]
ol — X&o'f...]]

ofl=Y]|{¥y =X X=..]}.
ofl=Y][{y¥ EX, X =J[...]},
ofl=Y][{¥Y 2 X.X=...]}

FUINE N

For example, the object term representing “a person
who employs himself” can be written in QUIXOTE as
X@person[employee = X] is allowed, and called an an-
notated variable.

Due to the existence of self-referential object terms, we
must deal with circularity in general. That is the reason
why we adopt Aczel’s hyperset theory as the semantic
domain of QUIXOTE, which brings all of the familiar
set-theoretic techniques to deal with circular phenomena.

Our conception of objects is to see object terms as
identifiers for objects (object identifiers). For example,
human[age = 20, sex = male] is a term uniquely denot-
ing the concept of “20-aged male human”, but does not
mean that a human is 20 years old and male. The term
(object) human{age = 20, sex = male] possibly has labels
other than dge and sex, such as name and occupation,
but such labels are not essential for defining the object
according to our conception of objects. For example, the
following description (called an attribute term) can be
used to represent the fact that “20-aged male human” is
married (by default) in QUIAXOTE:

humanlage = 20, sex = male]/[married = yes].

The lefthand side of “/” is an object term and the right-
hand side is attribution of the object term which speci-
fies the attributes of the object term.

As we are working on the domain T[x] of object terms
containing variables and constraints over them. Thus,
in QUIXOTE, object identity is defined in terms of
the equivalence relation on 7[x]. What is needed is
to solve constraints or at least to check the solvability
of constraints. Barwise[2] shows an important result on
solvability of constraints over hypersets in terms of the
existence of Simulation Pair, that is. a set of equiv-
alences and subsumptions among hyperscts. in the case
that each variable is instantiated. Mukaif5}.[4] extends
the Barwise's result to the case of constraints containing
disjunctions and negations. and also shows that a sub-
class of Aczel's hyperset theory satisfies the criteria of
CLP-schema proposed by Jaffar and Lassez{3].

In Section 3, the solvability condition of our constraint
language is discussed based on the Mukai's result on a
constraint language over hypersets.

3 Labeled Graphs

In this section, a subclass of the domain of hypersets is
defined in order to give the domain for interpretation of
object terms.
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First of all, we will give a subclass G of the domain
of Aczel's hyperset. An element of G is called a labeled
graph, since it is a set-theoretical encoding of a graph
each of whose arcs is associated with a label.? The collec-
tion of (ground) labeled graphs is the largest collection G
such that every G € G be the pair (a,b) where a € BO*
and b be an empty set or a (finite) function with a subset
of L as a domain and a subset of G as a codomain.

It is easy to see that mapping from ground object
terms to ground labeled graphs is bijective, i.e., the corre-
spondence between 7 and G is one-to-one. For example,
the object terms human, humanlage = 20, sex = male],
and [age = 20] correspond to the following labeled
graphs, respectively:

(human, 0)

(human, {(age, (20,0)), (sex, (male, 0))})

(T, {(age, (20,)}).
For the sake of simplicity, let T be the interpretation
function which takes an object term and returns the cor-
responding ground labeled graph.

G is a subclass' of the domain V4 of Aczel’s hy-
persets with atoms. As in the case of object terms,
it is possible to have the domain G[xg] of labeled
graphs containing variables. Labeled graphs are set-
theoretical constructs in the sense of Aczel’s hy-
persets, and uniquely defined as the solution of a
system of equations. This is what Aczel's Solu-
tion Lemma says. For example, the labeled graph
(human, {(age, {(20,0)}), (sez, {(male,0)})}) is the solu-
tion of the variable z for the following system of equa-
tions: )

z = (human, {z,,z,})

7y = (age, {z3})

z2 = (sex; {z4})

T3 = (20) ﬂ)

z4 = (male, 0).
To be more precise, an assignment f is to be defined
as a function from a subset of xg to a subset of G.
An assignment f with a set X C xg of variables- as its
domain is the solution of the the system of equations
z; = az;(z; € X) iff for any z; € X

f(=z:) = f(az;)
holds.

The two important points of Solution Lemma are:

(1) existence of the solution,

(2) uniqueness of the solution.

Consider, for example, the interpretation (labeled graph)
of the object term X@human[employee = X]. It is given
by the following system of equations:

z = (human, {z,})

z; = (employee, z).

?Aczel(l] uses the term “label” in different meaning. On his
use, “label” is associated with each node of a graph; and corre-
sponds to the value of a node in our treatment.

According to the Aczel's lemma, the solution of
uniquely exists, call it ,. ©; is a hyperset which sat-
isfies the following condition:

N = (human, {(employee, 0)}).

‘4  Subsumption Relation over Labeled Graphs

First, a binary relation Cg is defined to be the largest
relation satisfying the following conditions:

If (a1,b1) Eg (@2,b2) where ay,a, are basic objects and
b1,b, are functions from a subset of atomic labels onto a
subset of G, then

® a3 X ay,

o for any pair (1, g;) € by, there exists a pair (I,¢,) € by
such that g, Cg go-

For example, the following holds:

(human, {(age, {(20,0)}), (sex. {(male,))})})
Cg (human,9),

(human, {(age, {(20,0)}). (sex. {(male,0)})})
Co (T, {(age, {(20,0)1)}).

Furthermore, as in the case of ) above, we get the inter-
pretation §2; of the object term X@human|employee =
X,name = “John”) as:

1y = (human, {(employee, 0;), (name, {(*John",0)})}).

It is not easy to see that Q; C¢ 0, holds in usual set the-
ory. But, it holds in Aczel's hyperset theory. Intuitively
speaking, sets including ©; and Q, are coinductively de-
fined in Aczel’s hyperset theory, which means that if we
compare () and Q then it suffices to unfold only one
time and compare them without ©; and ;. Thus, we can
conclude that 2, Cg O, holds by comparing the following
two labeled graphs:

(human, {{employee, )}), and
(human, {(employee, -), (name. {(*John",0)})}),

where _ is supposed to be a special atom.

Notice that g, be unique if it exists in the second
condition above, since b, is a function. It is easy to check
that Cg is a pre-order. Furthermore. Cg is a partial
order, i.e:, both g; Cg g, and g, C¢ ¢, hold then g, = g,,
without considering any additional equational theory on
G2 For the present purpose, we assume that Cg be a
partial order. Thus, ¢ defined below is the equality on

G:
~ def
Nn=Zg9 = gCgqAgCsa.

The subsumption relation T over object terms is defined
in terms of Cg as:

0 Co: ¥ I{o) Cg I(oy).

3That means we may add equality axioms in such a way that
woman = human(sez = female]. But, it is not clear whether we
could have this kind of equational theories over ‘the domain of
hypersets, since the basic principle of Aczel's hyperset theory is
that every hyperset has a unique picture. This principle seems to
be violated by adding an equational theory. -
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In general, a definition of an object term is associated
with a constraint as shown in Section 2. C-relation be-
tween object terms is interpreted as Cg-relation between
solutions of a constraint, for example, an object term
humanfage = Y] | {Y T int} is defined as the solution of
X in the following set of equations and subsumption:

X =g (human, {X,})
X1 g (age, {Y})

Xz gg (int, 0)

Y Cg X.

The problem is to have conditions on solvability of con-
straints such as the above. Section 5 shows the condition.
Next, the meet and the join operations over G are
introduced. For any pair of two labeled graphs (say, Gy
and (), it is possible to have the following description,
where 0 < ¢,j,k, 0, and o, are basic objects, I;, I}, and I
are labels, and z;, z}, yx, and y} are all labeled graphs:

G = (o, {(hyz1)s-- s (lr i)y (By 1)y o, (8,25)))
G? (021{(11’3/1)9" . 7(1i1yi)1 (llllv y;)v' “ey ( ;e”yl,e)})

The meet and the join of two labeled graphs G; and G,
above are defined recursively as follows?:

1l

meet (written G | Ga)

GilG ¥
(5, 24),- .-, (I, 2),
5, (g}

join (written'G, T G3)
G11G: ¥ (o1Uop (I (21 T 9o (in (i T w))})

The follt;\ving holds:

GlG
Gl G,

4To make this definition presice, it should be noticed that there
might be more than one definitional equations for one object,
since we have self-referential structure such as @, above. In such
case, the meet of two labeled graphs could not be defined by one
(definitional) equation. Consider the following two labeled graphs:

X =g (human, {(employee, {X})})
Y =g (human, {(employee, {(john,0)}}}).

To get the meet X | Y, we must define it as the following system
of equations:

X1Y =2 |2,
Zy =g (human, {(employee, {Z:})}),
Zq 25 X| (john,9) =g ((human N john), {(employee, {X})}).

In this case, X | Z, =g Z;and 2, | 2, =g Z, hold apparently.
Thus, we get

X 1 Y ¢ ((human N john), {(employee, {X | Y})}).
If Z =g (john, {(employee,{Z})}), then we have
X | Z =g ((humann john),{(employee, {X | Z})}).

‘This equation has a unique solution.

(o1 Moz, {(Ia (1 Lwn))s-- o (s (=i L 9i))s.

GilG: E¢ Gy

Gl T Gl ”=‘v Gl

Gi1G: ¥ G2 TG
G s Gi16G,

It seems to be the easy consequence of the above proposi-
tions that:

Proposition 1

Gl l G2 & inf{leG7}7
G] T Gz - Stl[){Gl.,Gz},

since Cg is a partial order on G.

5 Solvability of Constraints over Labeled Graphs

Barwise[2] shows the solvability conditions on a set of
hyperset-equations and hyperset-subsumptions over para-
metric hypersets (hypersets containing variables). In that
paper, Barwise defines the notion of Simulation Pair
which is consists of a pair of bisimulation relation and
simulation relation with the same field, and show that a
set of hyperset-equations and hyperset-subsumptions over
a set of parametric hypersets has a solution iff a simula-
tion pair satisfying obvious conditions exists for the same
set.

This means that if we have two relations which sat-
isfy the conditions on simulation pair, we could define a
constraint by means of the two relations, and moreover
we could check the solvability of the constraint over the
domain of hypersets.

To get the conditions on solvability of our constraints,
we must show that our constraint relation g and Cg
satisfies the conditions on the definitions of bisimulation
relation and simulation relation.

First of all, notice that the domain G of labeled graphs
are different from the ones in [2] in two ways:

(1) our domain is a subclass of the domain of hypersets,
i.e., a domain of labeled graphs,

(2) our class of atoms (basic objects) is partially or-
dered.

The first point causes no problem. The second point may
seems to cause difficult problems. But, we have no vari-
ables over basic objects, i.e., variables are ranging over
labeled graphs, and we suppose a fixed algebraic struc-
ture on basic objects. Thus. we only need the comparison
on two basic objects which can be deterministically un-
derstood by seeing the fixed domain of basic objects.

Furthermore, Barwise's result presupposes that each
variable in a constraint is instantiated, that is, for each
variable z, only one equation z = u® is in the constraint
where u is a hyperset or an atom. In general, some
variables might be uninstantiated. For such a case, we
must make sure the way to extend a constraint without
changing the solution space of the constraint.

85z 2 u where u is a labeled graph for our case.
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Mukai[5], [4] extends the Barwise’s result and shows
that constraints over a hereditary finite set is satisfaction-
complete and solution-compact, which suggests that a
subclass of an AFA-universe can be used as a domain
for CLP(X). That is also true for our domain of labeled
graphs.

In the following, we will show two results on the solv-
ability of the constraints over labeled graphs. One is on
the solvability conditions of a constraint similar to the
one in [2]. The approarch is to give obvious set of con-
straint rules on g and Cg and show that they satisfy
the defining condition of bisimulation and simulation re-
lation under the set of constraint rules. The other is on
the extensionability of a given constraint so that each
variable becomes instantiated.

These two results are given by Mukai’s work(5] directly.
Thus, we only show the results here with some additional
comments. For details, see [7] (in preparation).

First of all, we will give a definition of our constraints
and their solutions, similar to the one in [5] .

An atomic constraint is an equation u =g v or a
subsumption u Cg v, where u,v are elements of G[x] U x.

A constraint is a set of atomic constraints. A con-
straint is conjunction of the atomic constraints in it.

Satisfiability relation (f=) is defined as usual, i.e., a
binary relation between an assignment f and a constraint
¢ (written f [= ¢) with obvious clauses.

An assignment f is a solution of a constraint c if
fEec

To extend a given constraint, we use a set of rules
on constraints (call it constraint rules). The constraint
rules contains usual rules on equality (for ) and usual
rules on partial order (for Cg). Besides those, we have
the following rules:

o If (a1,b1) =g (@z,b;) then a; = a, and for each
(!, g1) € by there exists (I, g2) € by such that g, = g,

o if (a1,b1) Cg (az.b;) then a; <X a; and for each

(1, g2) € b, there exists (I, ;) such that g, Cg g,
o ifxCoyand zCg 2z thenz Cg (y | 2),
o if yCg z and 2 Cg 7 then (y T 2) Cg .

The first rule states the property (defining condition)
of 5, the second rule states the property of Cg, the
third and the fourth rules introduce the infimum and the
supremum of two labeled graphs into a constraint. For |
is the infimum of two labeled. graphs, (z | y) means that
the variable z such that z Cg 2,2 Cg y for the case where
z or y is a variable. )

Notice that the correspondence between (l,g,) and
(1,92) is unique if it exists.
- By applying the constraint rules to a given constraint,
a constraint (a set of atomic constraints) closed under the
constraint rules is obtained. Call it a closure of a given
constraint.

From the definition of constraint rules shown above,
2y satisfies the defining condition of bisimulation relation

and ‘the converse of Cg satisfies the defining condition
on simulation relation, and they constitutes a simulation
pair, while the treatment of atoms (basic objects) is dif-
ferent.

The appendix A shows the definition of bisimulation

"relation, simulation relation, and simulation pair. For

simplicity, the domain for their definition is changed to
the domain G[x] U x.

As we noticed, basic objects are atoms in our domain
and partially ordered, while in (2] a collection of atoms
is descrete. But, we have no variable ranging over atoms
(basic objects). So, the difference of the treatment of
atoms causes no problem in understanding (Cg,2) as
simulation pair®. )

The following is the restatement of the Unification
Lemma of Mukai[5] for our constraints:

Proposition 2 (¢f. Mukaif3]) the following two clauses
are equivalent, ‘

(1) @ constraint ¢ has a normal closure,

(2) a constraint ¢ has a solution in G. '

This proposition shows that our constraints over G is
decidable.

In general, the closure of a given constraint might not
be normal. But, it is guaranteed that any closure has a
normal closure as it extension (See [5] and [7]) with a
procedure to extend a closure. ’

Unification over object terms is given as the problem
of checking the solvability of a constraint over G. For the
purpose of defining unification of two object terms, the
following restriction is posed on the solution:

Definition 1 (Condition on Unification)
Unification succeeds only if a normal closure of a con-
straint contains no labeled graph g such that g C (L1, 0).

Following is the example of a constraint which cor-
responds to the unification of the two object terms
X and Y such that X C humen[name = N] and
Y C animallname = Ny.age = 20] | {N, C string},
where human < animal:

XY

X Cg (human, {{(name, {N:1})})

N Cg (T.0)

Y C¢ (animal, {(name, {N2}), (age, {Z})})
N,y Eg (string,0)

Z =4 (20,0).

It seems to be convenient to use Aczel's notion of a labeled
system to show that the treatment of atoms causes no problem.
In a labeled system, each node (corresponding to a variable in a
system of equations) has a unique set called label of it. Be careful
that the word “label” is used in a different way we used. It is
possible to suppose one-to-one mapping from a set of basic objects
to a set of labels.
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Starting from this constraint, the following equations and
subsumptions are obtained by applying the rules on con-
straints and closure extension procedure.

X Cg (human, {(name{N}),(age, {Z})})
NGg M

N gg Nz

X =g (human, {(name{N}), (age, {Z}H})
Nl gc (Tv 0)

Ng gg (string, ﬂ)

N =g (string,0).

This result show that the original constraint is solvable,
since all the variables in the original constraint becomes
‘instantiated. This also show that the assignment f in the
following is a possible solution of the constraint:

£(X) = (human, {(name, {(string, 0)}), (age, {(20,)})})
F(Y) = (human, {(name, {(string, 9)}), (age, {(20,))})
f(2) = (20,0)

f(Nh) = (string, )

f(INy) = (string, 0).

The solvability of constraints is essential in our notion
of object identity and inheritance of attributes. In the
next section, we will show how constraints are related to
inheritance of attributes. '

6 Inheritance of Attributes

In this section, inheritance of the attributes among ob-
ject terms is explained in terms of the general rule for
inheritance and constraints.

First of all, we define an attribute term, intuitively
explained in Section 2. Let o0,0y,...,0, be object terms
and h,...,I, be labels. An attribute term is defined as
follows:

oflly opy 01,..., 1 0pn 04},
where op; (1 < i < n) is =, «, or =. Each l; op; 0; is
called an attribute (specification) of o. Each attribute can
be written in the form of a constraint as object terms in
Section 2 and furthermore constraints of an object term
can be gathered into a set of constraint of an attribute
term by renaming variables appropriately.

For example, consider the following:
ol = XJ{X C oYl =X, b=Y]{X 20,¥ D oa}.
By renaming X in the attribution to Z, we can get

ol = X}/l = Z,b=¥]{X Cd.Z%0,} Jas}.

Next, it should be noticed that the treatment of labels
are different in object terms and attribution.

" Consider, for example, the following description which
specifies the attribution of an object term:

0[1 = 3]/[11 b 11,12 — Ta, 13 = 13]

As shown above, ofl = z] is an object term and inter-
preted as a labeled graph, that is, labels are used as the

name of the arcs in a labeled graph. To the contrary,
in attribution, labels are interpreted as unary functions

" over G[x]- The attribution in the above description are

interpreted as the following constraint:

Li((e, {(1,2)})) Cg 1
z; Eg l?(("’ {(1717)}))
la((0, {1, )})) =g 3.

To refer to the value of an attribute, say {; in the
above, a term ofl = z].l; is used, and called a dotted
term. The interpretation of the dotted term ofl = z].I; is

L((o, {1, z)}))-

- 'For the labels which are not explicitly specified, we
assume that their values exists but not be constrained.
Let I; be a label. The value of the attribute I; of the
above example is constrained as:

(o, {(12)})) o (T, 0).

Thus, in QUIXOTE, every label is interpreted as a
function defined for each object term.

It is natural to assume that attribution is inherited
among object terms with respect to C-ordering. For ex-
ample, consider the following example:

swallow C bird.
bird/[can fly — yes).

Since, swallow is bird and bird has the attribution
[canfly — yes], swallow should have the same attri-
bution by default.

General rule for inheritance of attributes among ob-
jects is:

Definition 2 (Rule for inheritance)

00Co, = o.dCol

By this rule, the following holds:
if 0, C o9, then

o if 07 has the attribution [[ — o], then o, also has the
same attribution,

o if o; has the attribution [l — o']. then o, also has the
same-attribution.

Notice that the both hold for the attribution [l = o'] by
definition.

Furthermore, it is possible to introduce the notion of
exceptions on inheritance of attribution by assuming
the additional rule for inheritance.

The rule for exception is stated as follows:

Definition 3 (Rule for exception)
The specification of labels in an object term is overridden
against the attribution of the object term.
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For example, consider the attribution of the object term
bird[canfly — no|] with respect to the fo]lowmg defini-
tion:

bird/[can fly — yes].

By the rule for inheritance, bird[canfly — no] inherits
the attribution [canfly — yes]. But, bird[canfly — no]
has the -specification on the label canfly in it. Thus,
bird[canfly — no) has the attribution [canfly — no] by
the rule for exception.

As a consequence of the rule for exception, the follow-
ing holds:
Ly op, 2],

0[11 op1 Z1,...,1n 0pn zn]/[’l op1 Ty,---,

where op; € {—,+~,=}(1<i S n).
Taking into accounts of inheritance and exceptions, the

attribution of an object term o having the specifications
of labels I} = z,,...,l, = z, is defined as follows:

Shhu{oh ... 010, Ez,},

(G UCTUC)\ {h,..

where C, be the set of constraints corresponding to the
attribution of the object term o which o itself has, C}{
be the set of constraints corresponding to the attribution
of the object term o inherited from the object terms
which are larger than o, C7 be the set of constraints
corresponding to the attribution of the object term o
inherited from the object terms which are smaller than o.
Also, C \ {li,..., 1} is the constraint which is the result
of removing the atomic constraints corresponding to the
liy. .., Iy attributes from C.

Sometimes, the attribution of an object term might
have no solution. In such a case, the definition of the
object term is said to be inconsistent. For example,
consider the following:

bird/{canfly = yes]
penguin/[canfly = no]
penguin T bird.
Here, as penguin inherits an attribute [canfly — yes]

from bird, penguin has a constraint [canfly C yes |
no] =[canfly — L], which is inconsistent.

7 Modules

In QUIXOTE, special kind of object terms called mod-
ule identifiers are introduced to modularize a set of
object terms.

The description of the form
m :: o||C

is called a (unit) rule, where m is a module identifier
and o is an attribute term, and C is a constraint. This
unit rule says that o is in m. Correspondmg to the umt
rule s :: o, the proposition m : o is deﬁned as:

(m:o)is true iff m:uo.

In QUIXOTE, a (non-unit) rule is also available:
muo<=my T, My Tg,. .., My T]C.

where m,m,,...,m, are module identifiers, and
0,T1,...,Tn are attribute terms, and C is a constraint.

This rule says that if m; : ; (1 < ¢ < n) are all true,
then o is in m (m : o is true). This rule also says that
this rule is in m (this rule is accessible from m only).

General rule for inheritance of rules among modules is:

mCm'mazt=>m':t

For the purpose of the present paper, we restrict atten-
tion to unit rules, and the relationship between modules
and inheritance of attribution.

Thus, for example, if

v it john = human|name = “John”).
ng i: johnflage — 20].

mg :: john[[age — 30).

my € ma.

my C mg.

then john is 20 years old or 30 years old depending on
whether it is in my or m3, while its name is “John” in
both m, and mj. Note that the existence of an object
term is global over the concept of modules, while the at-
tribution of object terms is local and is inherited through
subsumption relation between module identifiers. If we
specify mp; C my and ma C my, my has the constraint
[age — 20 | 30] = [age — L], that is, john becomes to
have inconsistent definition.

As a module identifier is defined as an object trem,
an module can be parameterized, i.e., abstraction. For
example, consider the following:

m[l = X] :: john[age — X].

The variable X' could be instantiated into some integer
during processing.
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A Bisimulation and Simulation

Here, we will give a definition of bisimulation relation
and simulation pair of [2]. For simplicity, we use the
domain of labeled graph instead of the one of hypersets.

Definition 4 A bisimulation relation (~) is an equiv-
alence relation ~ on some subclass of G[x] U BO~ U x
satisfying the following condition.

If (a1, 5,) ~ (az,b;), then

(1) ay = as,

(2) for every (I,q1) € by, there is a (I,92) € b, such that
g1~ g2,

and if z ~ u where z is a variable, then
(8) there is some labeled graph u such that z ~ u.

For the condition (2), symmetric condition follows, since
~ is an equivalence relation.

It is easy to see that =g satisfies the conditions (1) and
(2) for ground labeled graphs.

Next, we will give a definition of simulation pair, also
in the way suitable for some subclass G[x] U BO* U x.

Definition.5 A simulation pair(<,~) is a pair of rela-
tions <,~ with the same field which salisfies the follow-
ings:

(1) ~ is a bisimulation relation.

(2) < is a simulation relation:

If (a1,5) < (az b)) where (ay,b;),(az,8s) are two
labeled graphs, then

¢ a = az,

o for all (I,g1) € by, there is a (l.g2) € by such
that g, < g2.

(3) ~ is a congruence relation with respect to <. That is,

o u~v impliesu <v,

e u<v,u~u, andv~v implyu' <v'.
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