A T @ # 97—3
(1994. 11. 15)

BIEP S DT AT T LSBT 5
INA T A DRERNE

Faklw) INTy E7 4R, BRIFAT
H TR TR schl e Ty

Email: {rahman, numao}@cs.titech.ac.jp

BIBE L ERAFE 25 Prolog 7 U I AR EBHT AV AT AW OPRREIRL TS
B, BROKT — AT ETERW, BN 2 NA T A e T HLESS Y, LHEE
DTAT S L ENRETLEONFHEETH -7z, Prolog D7 TT 5 ATIE, BEH~OR
AN TENCHIBRENTB Y, EHEOPEERI L ICH LWEEER S, BEESK
EL GNP BETHAE, LIAN, ANEBOTOS I IVI2T{HRE L, BRiEOFITHSIC
BWTRSROLHITER LT, RSBROBKEDOEIMRR/NNI%S &) IBEELEIRL
TWBIZEMHP LA, KRBT, #0893 %70r 5307 EoE 2 FEERNIICE
HLT, BEIETEICEATAI L RREL, MMOFHLE DB EITo72. FOHE,
EERIIC BRI A 282 2 L ST &7

Relaxing Bias on First Order Theory Formation

Chowdhury Rahman Mofizur and Masayuki Numao
Department of Computer Science
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro 152, Japan
Email: {rahman, numao }@cs.titech.ac.jp

This paper presents a system for constructing first order Horn clause theories from exam-
ples and necessary background knowledge. The existing systems have adopted some form
of strong semantic and syntactic bias to bound the intractable search space, but in doing
so most of them have lost generality. Thus they behave well in specific fields, but fail
in other situations. The implemented system ILPCS has incorporated some innovative
natural semantic constraints which allows it to search in a restricted search space without
a serious loss of generality. The detection of unnecessary redundant information together
with limiting information explosion has enabled it as a natural system for learning first
order theories. It has been verified experimentally that the set of learnable problems by
ILPCS includes the set of benchmark problems learnable by the existing ILP systems
with fewer example set and computational efforts.

1 Introduction

There has been enormous efforts in achieving general purpose ILP system which will be able
to construct meaningful first order theory from teacher supplied examples. The main obstacle
to this aim is to search an enormous intractable hypothesis space even when the language
used to express the desired theory is very simple, like first order Horn clause expressions.
Researchers have attempted to overcome this difficulty in many ways, mostly using some
form of semantic and syntactic bias to constrain this search space. Some of these systems
have even sought the help of an oracle to select the appropriate building block from a number
of alternatives at each step of theory formation.

This paper presents a system for constructing first order Horn clause theories from ex-
amples and necessary background knowledge. The existing systems have adopted some form
of strong semantic and syntactic bias to bound the intractable scarch space, but in doing
so most of them have lost generality. Thus they behave well in specific fields, but fail in
other situations. The implemented system ILPCS has incorporated some innovative natural
semantic constraints which allows it to search in a restricted search space without a serious
loss of generality. The detection of unnecessary redundant information together with limiting
information explosion has enabléd it as a natural system for learning first order theories. It
has been verified experimentally that the set of learnable problems by ILPCS includes the
set of benchmark problems learnable by the existing ILP systems with fewer example set and
computational efforts.

2 Motivation

ILPCS borrows its idea from relational database concept. Learning a concept using first order
Horn clause representation is merely a search through a number of background databases to
find the consistency of the target relation. This is more evident when a system searches the
hypothesis space in top-down manner from more general towards more specific concepts. Let
us illustrate it using the following relational clause:

target(X,Y,Z):- backgri(X,X1), backgr2(X1,Y,Z1), backgr3(21,2).

We can view backgrl,backgr2 and backgr3 as relational databases with arity 2, 3 and 2
respectively. The learning task is to express the tuples {X, Y, Z} specified by the relation
target in terms of the existing background databases. In other words, the expression to be
learned, will tell us what databases to scarch using what attributes to find the consistency
of the information expressed by the tuple {X, Y, Z}. The top-down approach is a search to
find a link between the candidates of the target tuple (i.e. arguments of the target relation)
using background relations. The variables which are introduced in the body of the clause
thus represent linker or key attribute to search the next appropriate database. For example,
in the above clause, attribute X1 of relation backgri coupled with Y act as a key to search
relational databasc backgr2. Before that, X has been used to find an attribute X1 using
database backgri which acts as a key attribute to search the next appropriate relation. Note
that after the first literal, X has no role to play for the further clause development. Again
after the second literal, attribute X1 and Y have no function for the remaining clause. Thus

it is apprehensible that after generating appropriate key attribute, some of the old attributes
become redundant. Therefore, at points of clause development, some of the attributes become
dead, the others remain alive to play a role in subsequent search. But unfortunately, the
existing ILP systems did not attempt to get rid of this redundant attributes. In other words,
existing systems consider all attributes equally important at every point of clause construction
making the search space intractable. One of the innovative features of ILPCS, among others,
is to detect the redundant attributes at appropriate points using some mechanism which will
be described in the rest of the paper.

Another important point to consider is that if we view clause development is a kind of
database search, then newly generated alive attributes together with old alive ones must
be used to access the appropriate databases. As such, the total number of alive attributes
must be bounded by a maximum limit which is dictated by the nature of the user supplied
background predicates.

3 Overview of ILPCS

ILPCS learns from the following input:

* A sct of positive and negative examples of the target predicate in the form of ground
facts.

e Mode declarations declaring data types and input/output modes of variables in a literal.

» Background knowledge either in the form of first order Horn clause expressions or in
extensional format.

Before proceeding further, we like to define and illustrate some terminologies used in the
description of ILPCS.

Some Terminologies and their Explanations

The hypothesis search process involves discarding redundant variables and unpromising clauses.
These variables and clauses can be defined as follows:

3.1 Dead Variables

We argued in the previous section that an ILP system can get rid of a sufficient number of
redundant attributes from consideration at each point of clause development. Together with
it, putting a limit on the amount of working information and the detection of unpromising
clauses can enable an ILP system turn the intractable search space into tractable one. We
have already explained in detail the source of redundant information using database concept.
Let us now explain the phenomena from a programmer’s point of view.

When a programmer begins writing a logic program, he or she transforms the input data
(input state) to that of the output data (output state) using intermediate states (a set of
antecedent literals). In doing this he or she introduces many new variables and also discards
some variables which he or she will not use further in a clause development. For example, let
us consider the following quicksort program:

sort({1,[1).

sort ([X|Xs],Ys):- partition(X,Xs,Ls,Gs),
sort(Ls,L1), sort(Gs,Gl),
components(X,G1,G2), append(L1,G2,Ys).

Let a programmer P is trying to develop the second clause of this program. After adding the
partition literal, P knows he or she will not use the variable Xs any more because Ls and
Gs are now representing Xs. Again after adding sort(Ls,L1), P knows he or she will not use
Ls in his or her further development of the clause. From this example, it is observed that
a programmer introduces many new variables and at the same time discards some variables
already used in the partial clause. These variables which are discarded by the programmer
from future use have been termed in ILPCS as dead variables. The characteristic property
of a dead variable is that it does not discriminate the positive examples from the negative.
As noted in the previous section, since the dead variables are redundant, they must not play
a role for discrimination. In other words, since a dead variable will not take part in the
remainder of the clause, the other variables arc sufficient cnough to discriminate positive
examples from the negatives causing dead variable non-discriminating.

Now the question is how to detect these variables and how these variables help to wduce
the search space. ILPCS uses two alternatives to detect dead variables:

e The user can supply the position of dead variables in the background literals.

o ILPCS can explicitly check the discriminating ability of the variables to find out the
dead ones.

In current implementation ILPCS can use both because in real life situation the user may
have knowledge about exactly which are the dead variables in some particular background
literal whereas he or she may not have any knowledge of this sort for other literals as well.
The user can specify background knowledge like position (partition, [2]) to describe
that if partition is used as a literal in a clause, then variable in argument position 2 is
a dead variable. On the other hand the user may not supply such background knowledge
and in that case ILPCS will explicitly detect that variable as a dead one. The procedure for
detecting a dead variable explicitly is as follows:

ILPCS detects and stores dead variables literal by literal as the refinement process con-
tinucs. Let the refinement procedure adds the literal partition(X, Xs, Ls, Gs) on the
right hand side of the second clause of the quicksort program. ILPCS checks the set X, Xs
for dead variables excluding the newly introduced variables Ls,Gs, because the new ones will
be used as keys for further database search. ILPCS has now a sct of positive and negative
tuples consisting of the variables X, Xs, Ys, Ls, Gs. To check X, whether it is dead or not,
ILPCS removes X from the tuple set and checks whether without X, the positive tuples are

still different from the negative ones. If it is true, X is not necessary for discrimination and

included in the dead variable set. The procedure continues with other variables in the same
way. It is to be noted that after each round of refinement, the system has to check only
a small set of variables for redundancy which occur in a newly added literal at the input
argument positions.

If a clause which uses a dead variable in a subsequent literal after the point at which it has
been marked dead, is obviously an unpromising clause. This sort of unpromising clause forms
a huge hypothesis search space of no importance. By detecting and storing dead redundant
variables, a systemn can easily get rid of this huge search space. The existing top-down ILP
systems did not take into account of this kind of redundancy and thus could not take the
benefit of cscaping this huge search space.

3.2 Unpromising Clauses
3.2.1 Limiting the explosion of attributes

The set of dead variables may include variables from the target predicate as well as newly
introduced variables in the antecedents. Therefore, there is a subset of the newly introduced
variables which are out of date being members of the dead set. The remainder of the newly
introduced variables which are not members of the dead set have been termed in ILPCS as
alive new variables. It is to be noted that the set of alive new variables changes as the clause
development proceeds. These alive new variables are merely used for searching appropriate
background databases. Therefore, the arity of the background predicates must play a role
to limit the total number of this kind of variables. It is evident that since the creation
and destruction of new variables are carried out at the same time, the number of alive new
variables must be bounded by some threshold value. Otherwise a clause will have infinite
length. ILPCS has used the maximum between the following two values:

e The maximum number of input arity of the given background knowledge.
e The maximum number of output arity of the given background knowledge.

If any clause violates this threshold value, it is discarded from the beam being unpromising
in nature. This natural choice of unpromising clauses constitute a huge search space which
ILPCS has been able to escape by adopting this heuristic. It should be noted that the
adoption of threshold value has enabled ILPCS to decrease the tendency of inserting the
same determinate literal more than once which merely increases the number of alive new
variables without increasing gain.

3.2.2 Normalized Gain

FOIL[7] has used the information gain heuristic for hill climbing search through the hypoth-
esis search space. But this heuristic measure is not sufficient enough to find all concepts
expressible in first order Horn clause logic. Non-discriminating literals with zero or very
small gain poses a problem for the system to incorporating them in the clause. The concept
of determinant literal with post-processing has enabled it recover from this problem. We have
used information gain measure in a different form not for selecting the appropriate literal,
but for discarding unpromising clauses and constraining search space.
Gain of a literal L; is defined as follows:

Gain(L) = T * (I(T2) = I(Ti)

where Ti++ is the number of positive tuples in 7; that have extensions in Tiy . I{T;) and
I(T;y1) are the information required for signalling that a tuple in a training set T; and Tiy
are one of the positive kind, respectively. Gain is negative if the positive tuples are less
concentrated after adding a literal and small if either the concentrations are similar or few
positive tuples satisfy the literal. The usefulness of a literal is measured by its normalized
gain (I(T;) — I(T;41)), rather than gain, since the value of the normalized gain, does not
depend on the size of the training examples. The value of the gain can be large due to a large
training set even though the literal poorly discriminates the examples. We have measured the
normalized gain difference after each literal added by the refinement operator. If the addition
of a literal causes the partial clauseé to take negative value on absolute gain difference, we have
discarded that clause from our search space. Thus, using information gain measure loosely,
not for literal selection, but for the detection of unpromising clauses, has enabled ILPCS to
behave generally.

Let us now describe the ILPCS algorithm in details. ILPCS uses top-down induction like
FOIL using beam scarch. It uses the refinement operators in MIS[8] to specialize a clause
by: (i) instantiating a head variable to a function, (i) unifying variables, and (iii) adding
a background predicate to the body. ILPCS randomly selects a seed example and begin to
specialize the most general terrn MGT of this seed example. After cach round of refinement,
there are two tasks to be performed by ILPCS:

1. Discard the unpromising clauses from the scarch space:

(a) Detect the clauses which have added a new literal with dead variables. Discard
these clauses from the gencrated beam.
(b) Measure the absolute gain differences for the refined clauses. Discard the clauses
’ which take on negative values for absolute gain difference.

2. Check the remaining clauses for consistency. If one found, remove the +ve examples
covered by the clause and start from another seed example if there remains any +ve
examples to be covered. Otherwise

(a) check cach clause for the number of alive new variables. If this number exceeds
the predeterinined threshold number for some clanse, discard that clause from the
beam.

(b) Detect the newly formed dead variables in the newly added literal if any, for each
clause. Update the dead variable set for each clause. '

Arrange the clauses in order of their desirability. Take N (Beam width) clauses out of
the sorted clauses and repeat the refinement process.

Next we will discuss the ordering of the clauses as applied in ILPCS. The ordering of the
clauses depends on the number of alive new variables, N1 and number of newly incorporated
dead variables, N2. ILPCS has measured the desirability of a clause as directly proportional
to N1 (note that N1 is bounded by a threshold value) and inversely proportional to N2. This
implies that ILPCS gives credit to clauses which produce more alive new variables bounded

Procedure ILPCS
Input: A set of positive and negative examples of target predicate
A database of background knowledge either in extensional,
intensional or in mixed format
Output: A set of complete and consistent clauses
begin
N :- max of {max input arity, max output arity} of background literals
while there are some positive examples uncovered do begin
Randomly choose a sced example E from positive examples
Creat the most general term of E, call it MGT
Q := {MGT}; R := {}; DeadSet := {}
while all clements of Q cover any -ve example do begin
for each element of Q do (
Compute the refinements of the element that cover E using
the refinements operators, and add them to R
endfor
for each clause in R do
Compute the absolute gain difference and if negative
discard the clause from search space
Discard a clause if added new literal contains
member variables from the DeadSet otherwise
Update DeadSet and compute the number N1 of alive new variables
If N1 > N, discard the clause else include it in set R
endfor
Compute the desirability of each clause in R and order
them according to the desirability
Take first K (beam width) clauses as a set Q for refinement
endwhile
endwhile
end

Figure 1: ILPCS Algorithm'

by the threshold value and gives discredit to a clause which makes its variables redundant
very rapidly. ILPCS adds the desirability of clauses cumulatively as the refining process goes
on.

4 Initial Experimental Results

We have tested the learning ability of ILPCS in a number of examples. It includes the set of
logic programs learnable by the existing ILP systems. Note that most of the existing systems
can learn a subsct of the problem learned by ILPCS. Below is the listing of representative set
of logic programs successfully learned by ILPCS:

Quick Sort Program:
sort([],[1).

sort([X|Xs],Ys):- partition(X,Xs,Ls,Gs),sort(Ls,L1),sort(Gs,G1),
components(X,G1,G2), append(L1,G2,Ys).

List Reverse Program:

reverse([], []).
reverse ([X|Xs],Ys):- reverse(Xs,Zs), concat(Zs,X,Y¥s).

Can-reach Program:

can-reach(X,Y):~ link-to(X,Y).
can-reach(X,Y):- link-to(X,Z), can-reach(Z,Y).

N-queen Program:

nqueen([],Qs,Qs).
nqueen(UnpQs,SafeQs,Qs) :- select(Q,UnpQs,UnpQs 1), component(Q,SafeQs,SQs1),
nqueen(UnpQs1,SQ1,Qs) ,not-attack(Q,Safer) .

Multiply:

multiply(0,X,0):- zero(0).
multiply(1,X,X):- one(1).
multiply(X,Y,Z):- dec(X,W), multiply(W,Y,Z1), add(Z1,Y,Z).

In the above listing, both non-discriminating and non-determinant literals are present. For ex-
ample, the n-queens program is a generate and test program containing the non-determinant
literal select which is not learnable by GOLEM[6]. Again most of the literals in quicksort
program are non-discriminating in nature which has been learned efficiently by ILPCS with-
out applying any special heuristic as has been done in FOIL. Note that ILPCS learns all the

alternative definition of a clause if appropriate for that particular clause. For example it has
learned more than one definition for some clauses in the the quicksort and nqueens programs

which have not been shown due to the lack of space.

Problem | Training Set | Nodes Generated | Nodes Visited | Time used
in ms
Experiments with Smaller Example Set
QuickSort | 8 +ve Exs 161 29 4710
7 -ve Exs
Reverse 5 +ve Exs 19 9 209
7 -ve Exs
Can-reach | 7 +ve Exs 9 9 170
17 -ve Exs
N-queens | 6 +ve Exs 54 14 1089
© | 12 -ve Exs
Multiply | 12 +ve Exs 56 30 1589
11 -ve Exs
Experiments with Larger Example Set.
QuickSort | 23 +ve Exs 178 27 10129
17 -ve Exs
Reverse 16 +ve Exs 19 9 2859
256 -ve Exs
Can-reach | 19 +ve Exs 14 9 1120
62 -ve Exs
N-queens | 239 +ve Exs 68 14 34519
73 -ve Exs
Multiply 12 +ve Exs 56 30 2910
11 -ve Exs

In Table 1, we have shown the learning performance of ILPCS in the domain of logic
programs. It is to be noted that ILPCS can learn from a few number of selective examples
without the interaction of an oracle. We do not know any other existing top-down learning
system which can do the same without the interaction of user. The positive point is that
ILPCS can learn the same programs from a relative larger set of random examples. The
performance difference is that ILPCS now takes more time to handle a larger set of examples
as shown in Table 1. since ILPCS does not compute any heuristic parameter for hill climbing
scarch through the hypothesis space, it is natural that it will be able to induce meaningful

Table 1. Experimental Results

theory with much fewer examples.

5 Conclusion

The algorithm underlying the ILPCS system is different in nature from the other existing
systems and is more related to inducing a program like a human programmer. ILPCS evolves
in a natural way using some innovative idea which can be applied fruitfully to any existing
ILP system. Its original idea is to search in a limited search space using some natural
weak semantic bias. Since most of the existing ILP system either employ heuristics or seek
the interaction from the user to reduce the search space, they are smart in particular area of
application. The adoption of strong bias has limited existing ILP systems in their application
whereas ILPCS, influenced least by such a strong bias, naturally is able to learn a larger family
of first order Horn clause theories. We believe the idea reported in this paper will motivate
the rescarchers to update existing algorithms and to promote new approaches in learning
first order theories. Our future research direction is to enhance ILPCS system to withstand
noisy data. Since ILPCS works not only with the literal level, but also with the arguments
within a literal, we think it will be less affected with overfitting noisy data. However, it needs
experimentation to verify this conjecture.

References

[1] F. Bergadano and D. Gunetti. An interactive system to learn functional logic programs.
In Procedings of the 13th IJCAI 1993.

[2] B. Kijsirikul, M. Numao, and M. Shimura. Efficient learning of logic programs with non-
determinate, non-discriminating literals. In 8th Intl. Workshop on Machine Learning,
1991.

[3] B. Kijsirikul, M. Numao, and M. Shimura. Discrimination-based constructive induction.
In AAAIL 1992.

[4] Chowdhury Rahman Mofizur and Masayuki Numao. Constructive induction for recursive
programs. In Procedings of the 4th International conference on Analogical and Inductive
Inference, Lecture Note series, vol. 872, Springer-Verlag, 1994.

[5] S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting
resolution. In 5th Intl. Workshop on Machine Learning, 1988.

[6] S. Muggleton and C. Feng. Efficient induction of logic programs. In Procedings of the 1st
International workshop on Algorithmic Learning Theory, 1990.

[7] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239- 266,
1990.

[8] Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[9] R. Wirth and P. O’'Rorke. Constraints for Predicate Invention. Inductive Logic Program-
ming, Academic Press, 1992.

