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DCGA : A Diversity Control Oriented Genetic Algorithm

Hisashi Shimodai Svoichi Suzuki
Department of Information and Communication, Bunkyo University

Abstract: In order to attain the global optimum without geting stuck at a local optimum, the appropriate diversity of the struc-
tures in the population needs to be maintained. I propose a new genetic algorithm called DCGA (Diversity Contro} oriented
Genetic Algorithm) to attain this goal. In the DCGA, the structures of the population for the next generation are selected from the
merged population of parents and their offspring based on a selection probability, which is calculated using a hamming distance
between the candidate structure and the structure with the best fitness value. Within the range of my experiments, the performance
of the DCGA is remarkably superior to that of the simple GA and the DCGA seems to be a promising competitor of previously

proposed algorithms.

1. Introduction

Genetic algorithms (GA's) are one of promising means for
function optimization. Methods for function optimization are
required to attain the global optimum without getting stuck at a
local optimum. For multimodal functions, because the per-
formance of the simple GA is poor in this point, various re-
searches to improve the performance of the GA have been
performed as follows. '

Baker [1] observed that premature convergence
(convergence to a local optimum) often occurs after an indi-
vidual or a small group of individuals contributes a large num-
ber of offspring to the next generation. Booker [2] mentioned
that a large number of offspring for one individual means
fewer offspring for the rest of the population and when too
many individuals get no_offspring at all, the result is a rapid
loss of diversity and premature convergence. What is needed
to handle premature convergence is to prevent this situation.
-Baker and Booker explored the methods of selection and
crossover, respectively, to achieve this end.

Goldberg [3] proposed a method of sharing function by
which the issue is eased allowing the formation of species in
niches. This mechanism modifies the reproduction probability
of a population member by adjusting the fitness value of the
structures according to how many population members occupy
a niche of the solution space. The method proved superior, but
is computationally expensive, because the distance calculation
between the structures has a time complexity O(N?), where N

is the size of the population.

In the paradigm of the simple GA, Srinivas [4] proposed the
use of adaptive probabilities of crossover and mutation to
realize the twin goals of maintaining diversity in the population
and sustaining the convergence capacity of the GA. In his
algorithm, the probabilities of crossover and mutation are
varied depending on the fitness values of structures. High
fitness structures are protected, while structures with subaver-
age fitness value are totally disrupted. In the simple GA, how-
ever, because the selection for reproduction is biased toward
selecting the better performing individuals, premature conver-
gence often occurs and is essentially inevitable as indicated in
the results of Srinivas.

Eshelman [5] proposed an algorithm employing a highly
destructive uniform crossover and the Population-Elitist Selec-
tion (PES) method which is cross-generational deterministic
rank-based survival selection. In the reproduction stage, two
candidate structures are selected for mating, In order to main-
tain diversity, the hamming distance between them is calcu-

lated, and-if half that distance does not exceed a difference

threshold, they are not mated and deleted from the population.
Although the performance is remarkably superior to the simple
GA, the algorithm is rather complicated.

. In order to achieve the above goal, an essential method to
maintain appropriate diversity of the structures in the popula-
tion during the search so that local search and global search are
performed in a balanced way, needs to be developed. In this
paper, ‘1 propose a new genetic algorithm called DCGA



(Diversity Control oriented Genetic Algorithm). In the DCGA,
the structures for the next generation are selected from the
merged population of parents and their offspring eliminating
duplicates based on a selection probability, which is calculated

using the harming distance between the candidate structure

and the structure with the best fitness value and is larger for
structures with larger hamming distances. Within the range of
my experiments, the DCGA outperformed the simple GA and
seems to be a promising competitor of the previously proposed
algorithms.

This paper deseribes the DCGAand pmemstheresultsof
the experiments comparing with the simple GA [14].

2. The simple GA

The outline of the simple GA is described to facilitate the
later explanation. In the simple GA, the following processing is
performed. (1) The number N of individuals in the population
is constant and the population is initialized using random num-
bers. (2) In the reproduction stage, structures are selected from
the present population P(t-1) and recombined to form the
offspring population C(f), where ¢ is the generation and struc-
ture the genotype of an individual. The selection for reproduc-
tion (select,) is biased toward selecting the better performing
individuals. The recombination is performed using crossover
based on probability. A low rate of mutation is used in-the
recombination stage to maintain population diversity. (3) The
selection for survival (select;) is usually unbiased, typically
replacing the entire parent population P(-1) with the child
population C(f).

3.DCGA

In order to improve the performance of GA's, the algorithm
needs to have ability to robustly explore the solution space to
find out the best region containing the global optimum (global
search) and to escape from a local optimum when being stuck
at it. Attaching greater importance to only current better per-
forming structures may result in premature convergence. On
the other hand, a.current worse solution may have a greater
potential of evolving toward a better future solution to attain
the global optimum. The idea motivating my research is to
exploit these worse solution instead of discarding them by
maintaining the diversity of structures in the population. In
addition, it needs to exploit the best solution obtained so far
(local search), because it may be in the region containing the
global optimum. The DCGA is devised to achieve these twin
goals.

The skeleton of the DCGA is shown in Fig.1. The number
of structures in the population P(f) is constant and N. The
population is initialized using uniform random numbers. In the
selection for reproduction select,, all the structures in P(z-1) are
paired by selecting two structures without replacement to form
P\(¢-1). By applying mutation with probability p,, and always
applying crossover to the structures of each pair in P’(t-1), C(f)
is produced. The mutation rate p,, is constant for all the struc-
tures or changed for each structure based on an Individual

begin;
=0;
initialize population P(r);
evaluate structures of P(f);
while (termination condition not satisfied) do;
begin;
t=t+1;
select; P'(-1) from P(z-1) by randomly pairing all
structures without replacement;
apply mutation with p,, and crossover to each paxr
. of P(¢-1)and form Ct);,
evaluate structures in C(¢);
arrange structures of C(f) and P(¢-1) in their ﬁm&
values order and form M(#);
select; N structures including the structure with the
best fitness value from M(f) to form next popul-
ation P(f) according to the following procedure;

" (1) eliminate duplicate structures in M(Z);
(2) select structures with CDSS or CPSS;
(3) if the number of selected structures is
smaller than N, introduce new structures;
end;
end;

Figl Skeletonof DCGA

Probabilisticly sizing Mutation Rate (IPMR) method. In the
IPMR method, the size of mutation probability for each struc-
ture is determined using random number of which upper limit
is the prescribed mutation rate. The structures in C(f) and P(s-
1) are merged and sorted in their fitness values order to form
M(?). In the selection for survival select,, the structures includ-
ing the structure with the best fitness value are selected from
M’(?) and the population for the next generation P(f) is formed.

The details of the selection for survival select; are as follows.
(1) Duplicate structures in M(¢) are eliminated and M’(f) is
formed. (2) Structures are selected using the Cross-
generational Probabilistic Survival Selection (CPSS) method
and P(t) is formed from the structure with the best fitness value
in M’(f) and the selected structures. In the CPSS method,
structures are selected using random numbers based on a selec-
tion probability defined by the following equation:

ps ={1-ch/L+c}” §))]

where % is the hamming distance between the candidate struc-
ture and the structure with the best fimess value, L the length of
the string representing the structure, ¢ the shape coefficient, and
« the exponent. If the generated random number is smaller
than p; calculated for a structure, then the structure is selected,
otherwise it is deleted. The selection process is performed in
the fitness values order of the structures in M’(t) except the
structure with the best fitness value. (3) If the number of the
structures in P(t) is smaller than N, then new structures gener-
ated using random numbers are introduced by the insufficient
pumber. For the traveling salesman problem mentioned later,
the hamming distance is calculated considering the order and
the reverse order of the city in the structure, because the posi-
tion of the city does not have a meaning.

The reasons why the above methods are employed in the
DCGA are as follows.
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Fig2 Anexample curve of Eq.(1) (a=0.225, ¢c=0.0074)

Crossover and mutation may side-effectively destroy better
performing schemata obtained so far. In the DCGA, because
the structure with best performance obtained so far always
survives intact into the next generation, the influence of this
side-effect is small and large mutation rates can be used and
crossover can be always applied. This results in producing
offspring which are as different as possible from their parents
and examining regions.of the search space not yet explored. In
fact, the best result was obtained when using the crossover rate
equal to 1.0 in the examples mentioned later. On the other hand,
in the simple GA, mutation is a background operator, assuring
that the crossover has a full range alleles so that the adaptive
plan is not trapped on a local optimum [6] and generally small
mutation rates are used.

The mutation rate py, is constant for all structures or changed
for each structure with the IPMR method. With the IPMR
method, when a large mutation is applied to a structure, the
global search for the structure is performed, whereas when a
small mutation is applied to a structure, the local search for the
structure is performed.

Duplicate structures reduce the diversity of the structures in
the population and often cause premature convergence, be-
cause the same structures can produce a large number of off-
spring with the same structure to the next generation. Therefore
it is effective to eliminate duplicate structures in order to avoid
premature convergence as shown in examples later.

Eq.(1) represents a curve which intersects the two points
[A=0, p=c"} and [ A=L, p=1.0] as shown in Fig.2. The curva-
ture of the curve is larger in the region of smaller /, whereas it
becomes almost a straight line in the region of larger 4. The
smaller a becomes, the larger the curvature in the region of
smaller h becomes. When a is equal to 1, it becomes a straight
line. The larger ¢ becomes, the larger p; becomes and the curve
approaches a horizontal straight line. The selection of struc-
tures based on Eq.(1) is biased toward selecting structures with
larger hamming distance from the structure with the best fitness
value. The degree of the bias is extenally adjusted by the
values of ¢ and a. The appropriate values need to be explored
by trial and emor according to the problem. Eq.(1) is very
suitable to control the diversity of the structures in the popula-
tion so as to be in an appropriate condition by externally ad--
justing the values of ¢ and .

The structure with the best fitness value obtained so far al-

ways survives, because it may be in the region containing the
global optimum. Thus the best fitness value for the population
can increase monotonously. However, it may be in the region
containing a local optimum and the increase of similar struc-
tures to it may result in the premature convergence. Therefore,
the more similar to the structure with the best fitness value a
structure is, the smaller selection probability is applied to it
using the CPSS method and the increase of it is restricted. This
mechanism may slow the convergence speed to the global
optimum, whereas it can be compensated by preventing the
solution from getting stuck at a local optimum and stagnating.
In this sense, the convergence speed to the global optimum
depends upon the diversity of structures in the population. In
the DOGA, it can be controlled indirectly by the user through
the constants o and ¢ of Eq.(1).

The selection process is performed using the selection prob-
ability p; in the fitness values order of the structures, not con-
sidering the fitness values itself. This gives more chances to
survive and produce their offspring to cumrent worse structures
with the fitness value below the average. In the PES method
[5), because the structures are deterministicly selected in their
fitness values order, the diversity of structures is often rapidly
lost and it results in the premature convergence. The CPSS
method can avoid such a situation. The superiority of the
CPSS method to the PES method will be demonstrated later.

The introduction of new structures occurs when the iteration
proceeds and the diversity of the structures in the population
happens to become smaller. This is equivalent to very large
mutations introduced into the population and works effectively
to restore the diversity automatically.

‘When the structure is represented by a bit string, binary cod-
ing or gray coding is usually used. Caruana [7] suggested that
gray coding eliminates the “hamming cliff’ problem that
makes some transitions difficult when using a binary represen-
tation. With the gray coding, the hamming distance between
two structures can represent better the degree of their similarity
in the phenotype represented by decimal numbers. With the
DCGA, because the performance with gray coding is superior
to that with binary coding as demonstrated later, it is recom-
mended to use gray coding.

The methods employed in the DCGA can work to escape
from a local optimum or avoid premature convergence in the
following way.

In the DCGA, structures which survived and the structure
with the best fitness value obtained.so far can always become
parents and produce their offspring. The diversity of the struc-
tures in the population is maintained by eliminating duplicate
structures and by the selection with the CPSS method. In addi-
tion, when the diversity is lost, it can be automatically restored
by introducing new structures. Because large crossover and
mutation rates are used and diverse structures are maintained in
the population, variations of from small to large ranges are
applied to each structure. When a small variation is applied to
a structure, its neighborhood can be examined to result in the
local search. When a large variation is applied to a structure, a
region not yet explored can be examined to result in the global



search. In addition, the mutation with the IPMR method can
prompt such workings. In such a way, local as well as global
searches can be performed in parallel. The structure with the
best fitness value obtained so far always survives as a promis-
ing candidate to attain the global optimum and its neighbor-
hood can be examined by the local search. On the other hand,
because current worse solutions can survive, even if the per-
formance of a structure containing a schema conceming the
global optimum is not so high in a stage, this gives the structure
a chance by which it can produce an offspring with a fitness
value near to the global optimum. This mechanism is similar to
that of the simulated annealing (SA) that can escape from a
local optimum by accepting a solution based on a probability
whose performance is worse than the present solution. In the
DCGA, the solution can escape from a local optimum by the
similar working to the SA. )

‘With the simple GA, better performing structures can pro-
duce multiple offspring. Therefore, schemata for a dominating
local optimum can increase rapidly and eventually dominate
the population. On the other hand, with the DCGA, the chance
for each structure to become a parent is one time in spite of its
performance. In addition, the same structures are eliminated
and the number of structures similar to the best performing one
is restricted by the selection with the CPSS method. Because
these can prevent a structure (especially the structure with the
best fitness value) or a small group of structures from contrib-
uting a large number of offspring to the next generation, the
DCGA can avoid premature convergence. ‘

The comparison of the time complexity on the simple GA
and the DCGA is as follows. The number of function evalua-
tions in the reproduction selection stage is N times per a gen-
eration on both the methods. The amount of computations for
the selection for reproduction is almost the same-on both the
methods. In the survival selection stage, that on the DCGA is
much larger than that on the simple GA by the amount of the
computations for the processes (1), (2) and. (3) in Fig.1. The
time complexity on the check for the identity of structures in
the process (1) is not so large, because the check needs to be
performed among the structures having the same fitness value.
That on the distance calculation between the candidate struc-
ture and the structure with the best fitness value is O(V). With
the CHC [5], that is O(N/2). With the sharing function method
[3], that is O(Nz) Therefore, the DCGA requires much smaller
computational cost for maintaining the diversity of structures
than the sharing functionmethod. -

With the simple GA, the parameters to be tuned are N, p,,
and p,, whereas with the DCGA, N, p,,, ¢ and .

The originality of the DCGA is to have presented a new ge-
netic algorithm in the generation replacement type GA com-
bining the following ideas and to have experimentally proved
their effectiveness in attaining the global optimum: in the re-
production stage, the mutation with the IPMR method is used;
in the sclection for survival, (1) duplicate structures are elimi-
nated, (2) structures for the next generation are sclected based
on Eq.(1), and (3) new structures are introduced, if the number
of selected structures is smaller than N. It has a salient feature

that the diversity of structures in the population (therefore the
convergence speed to the global optimum) is externally con-
trolled through the constants of & and ¢ in Eq.(1) so as to be in
an appropriate condition according to the objective problem. [
believe that these ideas, the CPSS method defined Eq.(1)
among others, have not been presented in previous researches
as far as I know. The major difference between the DCGA and
the CHC [5] is in that the former employs the CPSS method
and the latter the PES method. With the PES method, struc-
tures for the next generation are deterministicly selected from
the merged population of parents and their offspring in their
fitness values order. The superiority of the former to the latter
will be demonstrated later. Comparing the DCGA with the
sharing function method [3}, the purpose and the method of
realizing the diversity of structures are essentially different. The
purpose of the former is to attain the global optimum effi-
ciently, whereas that of the latter is the parallel investigation of
many peaks of a multimodal function. The method of the latter
is in the paradigm of the simple GA and modifies the repro-
duction probability of a population member by adjusting the
fitness value of the structures according to how many popula-
tion members occupy a niche of the solution space. In addition,
the time complexity on the distance calculation for the former
is ouch smaller than that for the latter as mentioned above.

4. Experimental results

The performance of the DCGA has been tested on various
benchmark problems and compared with that of the simple
GA, because the simple GA has been treated as the standard
measure for comparisons on performance of various GA’s.
With simple problems, the differences of the performance
were small, whereas with complex problems, the differences
were large. Therefore, I present the results for the deceptive
functions [5], the multimodal functions f6 [8] and the 30-city
TSP [9] which are difficult for GA’s to optimize.

Each problem has only one global optimum and it was
searched by GA's. For both the DCGA and the simple GA,
two-point crossover was used. For the DCGA, crossover was
always applied to each pair-in P’(t-1). For the simple GA, the
performance -of (1) the roulette selection method using the
elitist strategy without the fitness scaling (De Jong’s standard
GA) [11],(2) the pure selection method with the fitness scaling
proposed by Grefenstette [11], and (3) the stochastic remainder
selection method without replacement [4,10] with or without
the fitness scaling, was compared. The results with the first one.
which showed the best performance ‘are described in the fol-
lowing. For the DCGA, the following four cases of computa-
tion conditions were tested in order to examine the effect of
each method employed in the DCGA. Case-1: constant muta-
tion rate; noneliminating duplicate structures and the PES
method: Case-2: constant mutation rate, eliminating duplicate
structures and the PES method. Case-3: constant mutation rate,
eliminating duplicate structures and the CPSS method. Case-4:
the IPMR method, eliminating duplicate structures and the
CPSS method. With the PES method, structures for the next



Table 1 Definitions of major symbols in Tables
B Gray cording
G Binary cording

N Population size
P Mutation rate
De Crossover rate

o Exponent for probability function, Eq.(1)

c Shape coefficient for probability function, Eq.(1)
Number of convergence

Average number of function evaluation times
Standard deviation of function evaluation times
Average number of error logarithm (EL)
Average number of best fitness values

Average number of new structures introduced

AVFE
SDFE
AVEL
AVBF
AVNS

Table 2 Goldberg's order-3 deceptive function
(000)=28 f(001)=26 f(010)=22 f(011)=0
100)=14 f(101)=0 f(110)=0 f{111)=30

generation are deterministicly selected from M(t) or M’(t) in
their fitness values order in the process (2) in Fig.1.

I examined the combination of best-performing parameter
values including the population size changing their values little
by little. I performed 20 trials per a parameter set changing
seed values for the random number generator to initialize the
population. The same 20 seed values were used for the trials
with each parameter set. The trial was continued until the
global optimum was attained by at least one structure (I call
this the convergence) or until the maximum number of func-

tion evaluation times was reached. The maximum number of

function evaluation times was 500,000. The performance was
evaluated by the number of instances out of the 20 trials in
which the GA converged and the average number of function
evaluation times in those trials which converged. (An algo-
rithm performs better on a function if it converged more often,
or if it converged the same number of times as its competitor
but in fewer evaluation times.). The reason why the number of
function evaluation times was used is because the amount of
computations for function evaluations is generally larger than
thatof GA itself. .

Table 1 shows the definitions of major symbols used in the
following tables. The symbol p,, in the case of case-4 for the
traveling salesman problem indicates the upper limit of the
mutation rate used in the IPMR method,

4.1 Deceptive functions

The Goldberg's order-3 deceptive furictions were used. Its
structure consists of a 30-bit binary string and the value of the
function is the sum of 10 3-bit subfunctions. The subfunctions
are defined as in Table 2. The tightly ordered and loosely
ordered functions were tested. In the case of the tightly ordered
deceptive function, the bits of the subfunction are adjacent (1,
2, 3 for the first subfunction; 4, 5, 6 for the second subfunction,
and so forth). In the case of the loosely ordered deceptive
function, the first subfunction is located at positions 1, 11, and
21, the second subfunction is located at positions 2, 12, 22, and
so forth. The global maximum is 300.

Table 3 shows the best result for the tightly ordered function

1.0
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on the simple GA. Tables 4, 5 and 6 show the best results for
the tightly ordered function on the DCGA with case-1, case-2
and case-3, respectively. Table 7 shows the best result for
the loosely ordered function on the simple GA. Tables
8, 9 and 10 show the best results for the loosely ordered func-
tion on the DCGA with case-1, case-2 and case-3, respectively.
4.2 Multimodal function
The {6 function [8] is as follows:

£6=05+ 05 -sin ‘/x +y @
[1+0.001(x* + y*)F
This function is cylindrically symmetric about the z axis and
has the maximum value 1.0 at the origin. Fig.3 shows a section
for y=0 including the x and z axes. The points in the search
space were coded as Cartesianx and y values in the range -100
to +100 with 22-bit code, respectively. The comparison of gray
coding and binary coding was performed. The maximum
value to be searched by GA's in the discrete space is the num-
ber with eight 9's below the floating point. The error of the best
fitness values (f,,.) obtained in each trial is calculated by the
following equation.

EL =- logm(l' f.m)

For the exact global optimum EL= 8,94,

Table 11 shows the best results on the simple GA. For the
DCGA, Tables 12, 13 and 14 show the best results for case-1,

case-2 and case-3, respectively. Although case-4 (the IPMR
method) was tested, the performance was not improved sig-
nificantly.
4.3 Traveling salesman problem

The Euclidean symmetric 30-city TSP [9] of which global
optimum is 420 was tested. The structure was expressed by the
path representation. For both the DCGA and the simple GA,
the order-based mutation [12] (two city are selected at random
and their positions are interchanged ) and the order crossover
[9] were used.

Table 15 shows the best results on the simple GA. For the
DCGA, Tables 16,17, 18, and- 19 show the best results for
case-1, case-2, case-3 and case-4, respectively.

4.4 Summary of the results and discussions

The followings have been experimentally confirmed by
these three problems. The performance with case-2
(eliminating duplicate structures) is superior to that with case-1

&)



Table 3 "The best result for tightly ordered deceptive
function on simple GA

N | pn p. |NCV | AVFE |SDFE |AVBF

180 {0003 |06 20 127868 {56716 [300.0

Table4  The best result for tightly ordered deceptive Table5 The best result for tightly ordered deceptive
function on DCGA with case-1 function on DCGA with case-2

N | pn |NCV |AVFE |SDFE |AVBF N | pn |NCV |AVFE |SDFE |AVBF

90 10.095] 20 |16880 | 4782 13000 100 10.035{ 20 | 6640 | 2918 3000

Table 6 The best result for tightly ordered deceptive function on DCGA with
case-3 i :

N | P o ¢ | NCV | AVFE | SDFE | AVBF | AVNS

4 10008 |049 1033 | 20 | 5018 | 1940 | 3000 | 2424

Table 7 The best result for loosely ordered deceptive
function on simple GA

N | pm p. |NCV | AVFE |SDFE |AVBF

110 |0.0034 |06 | 20 118844 147607 |300.0

Table 8 The best result for loosely ordered Table 9 The best result for loosely ordered

deceptive function on DCGA with case-1 deceptive function on DCGA with case-2
N_| pn |NCV |AVFE |SDFE |AVBF N | pn |NCV | AVFE |SDFE |AVBF
8 |0085]| 20 40277 |18725 {300.0 4 1008 | 20 | 24928 |11001 |300.0

Table 10 The best result for loosely ordered deceptive function on DCGA with
case-3

N D a c_|NCV|AVFE | SDFE | AVBF | AVNS
4 10045 1037 | 08 20 | 14511 | 5385 | 3000 55

Table 11 _The best result for f6 function on simple GA
Cord IN | pm p.__INCV | AVFE | SDFE |AVEL
G__|50 10001 }0.6 7 1109800 |147974 | 4.26
B |50 |0001 |06 9 | 26067 | 16500 | 5.07

Table 12 The best result for f6 function on DCGA with Table 13 The best result for f6 function on DCGA with

case-1 . case-2
Cod | N Pm_|NCV |AVFE | SDFE |AVEL Cord | N Dm |NCV |AVFE |SDFE |AVEL
G 92 10.091] 20 |25746| 6382 | 8.94 G 94 1008 | 20 |22814 6639 | 8.94
B 100 |008 | 18 |67467]186642 | 825 B 110 ]0.1 18 188251 94872 | 825

Table 14 The best result for f6 function on DCGA with case-3
{Cod | N | ps a- c NCV | AVFE | SDFE | AVEL [ AVNS
G 12 | 0015 | 051 | 0235 20 | 16604 | 12703 | 894 229.6
B 12 0015 | 051 | 0235 20 | 65529 | 101282 [ 894 | 259.1

Table 15 The best result for 30-city TSP on simple GA
N | pn p._|NCV | AVFE | SDFE |AVBF
56 10009 {061 | 10 |162428 |115786 |425.6

Table 16 ' The best result for 30-city TSP on Table 17 The best result for 30-city TSP on

DCGA with case-1 DCGA with case-2
N | p, INCV AVFE |SDFE | AVBF N | pn |NCV |AVFE |SDFE AVBF
100 {0058 | 8 {57800 |21772 |425.8 100 {0058 | 20 |78605 |34345 [4200




. Table 18 The best result for 30-city TSP on DCGA with case-3
“IN D o] c NCV | AVFE | SDFE | AVBF | AVNS
18 | 00097 | 0195 [00075 | 20 | 40132 | 20363 4200 | 0.65
Table 19 The best result 30-city TSP on DCGA with case4
N a c - | NCV | AVFE | SDFE | AVBF | AVNS
20 {00104 0225 |00074 | 20 | 43647 | 25533 | 420.0 29

(noneliminating duplicate structures). In the case of the decep-
tive functions and the 30-city TSP, the improvement of the
performance is remarkable. Therefore, it is obvious that elimi-
nating duplicate structures is very effective to improve the
performance for most problems. In all these three problems,
the performance with case-3 is remarkably superior to that with
case-2. Therefore, it is obvious that the CPSS method is re-
markably superior to the PES method. According to the results
for the f6 function on the DCGA, the performance with gray
coding is remarkably - superior to that with binary coding.
Therefore, it is recommended to use gray coding for the
DCGA. Although with the 30-city TSP, the IPMR method is
remarkably effective to improve its performance, with the f6
function, it is not true. The reason is as follows. With the f6
function, because many new structures are introduced during
the search, the working of variations by the mutation probabil-
ity is relatively small. On the other hand, with the 30-city TSP,
because very few new structures are introduced, variations
caused by the IPMR method work effectively to improve its
performance. It should be noted that with the DCGA, the
optimum population size is extremely small and the perform-
ance is robust to the changes of the parameter values and the
ranges of parameter values with which the global optimum is
attained in all trials are very wide.

The best results with case-3 for the deceptive functions and
the 6 fimction-and case-4 for the 30-city TSP, show obviously
that there exist an optimum population size and optimum
diversity of the structures in the population according to the
objective problem. The value of py which is p; for o = 0 repre-
sents the magnitude of the selection probability and the smaller
Pw is, the higher diversity of the structures in the population
can be realized. The value of py on the best results is 0.58 for
the tightly ordered deceptive function, 0.92 for the loosely
ordered deceptive function, 0.48 for the f6 function, and 0.33
for the 30-city TSP. Accordingly, it seems that the more diffi-
cult the problem is to optimize, the larger the optimum popula-
tion size is and the higher the optimum diversity required is. It
should be noted that the global optimum can be attained by
extremely small structures, if their diversity is appropriately
maintained.

In all these three problems, the performance of the DCGA is
remarkably superior to that with the simple GA.

It is interesting that how well the DCGA performs compar-
ing with the previous leading methods. The computation con-
ditions in the previous researches are different from each other
and some computation conditions and results are not described.
Therefore, although exact comparisons of the performance are
not impossible, the best results are described in the following

for the purpose of conjecturing the differences of the perform-
ance.

The results for the deceptive functions are as follows. With
the Srinivas’s method [4] using the population size of 100 and
the upper limit of function evaluation times of 20,000, al-
though the kind of the function used was not described, the 21
trials out of the 30 trials converged. With the CHC [5] using
the population size of 50 and the upper limit of function
evaluation times of 50,000 for the tightly ordered function, all
the 50 trials converged and the average, maximum and mini-
mum numbers of function evaluations to converge were
20,960, 36,297 and 9,933, respectively. With the DCGA using
the population size of 4 for the tightly ordered function, all the
20 trials converged and the average, maximum and minimum
pumbers of function evaluations to converge were 5,018,
7,684 and 1,834, respectively. With the DCGA using the popu-
fation size of 4 for the loosely ordered function, all the 20 trials
converged and the average, maximum and minimum numbers
of function evaluations to converge were 14,511, 30,216 and
9,173, respectively. It should be noted that all the trials con-
verged in much smaller function evaluation times than the
upper limit of 500,000.

The results for the f6 function are as follows. With the Srini-
vas’s method using a population size of 100, the upper limit of
function evaluation times of 20,000 and the convergence
threshold value of 0.999 for the function value, the 24 trails out
of the 30 trials converged. With the CHC using the population
size of 50, although other computation conditions such as the
length of the structure are not described, all the 50 trials con-
verged and the number of function evaluations to converge
was on the average 6,496. With the Whitley’s method using
the population size of 100, the number of 9’s below the float-
ing point almost presents a peak at the function evaluation
times 4,000 and the maximum value is smaller than 3 [12}.
With the DOGA using the population size of 12, all the 20
trials converged and the average, maximum and minimum
numbers of function evaluations to converge were 16,604,
28,286 and 3,489, respectively.

The results for the 30-city traveling salesman problem are as
follows. With the Srinivas’s method using a very large popula-
tion size of 1,000 and the upper lLimit of 100,000 function
evaluations, the only 7 trials out of the 30 trials converged.
With the CHC using the population size of 50 and the upper
limit of 50,000 function evaluations, the 29 trials out of the 50
trials converged (convergence rate = 58%) and the number of
function evaluations to converge was on the average 24,866.
According to this result, it seems that the CHC suffers from the
loss of diversity of structures and premature convergence. With



the Whitley’s method using a very large population size of
1,000 and the upper limit of the function evaluation times of
30,000, all the 30 trials converged [13]. With the DCGA using
the population size of 20, all the 20 trials converged and the
average, maximum and minimum numbers of function evalua-
tions to converge were 43,647, 65,964 and 16,260, respec-
tively and the number of the trials which required function
evaluation times of more than 50,000 was 5 (convergence rate
for the upper limit of the function evaluation times of 50,000 =
75%).

According to the above, the DCGA seems to be especially
suitable for problems of which the global optimum is isolated
as the deceptive function. It seems that the DCGA outperforms
the Srinivas’s method for all these three problems. It seems that
the DCGA outperforms the CHC remarkably for the deceptive
functions and slightly for the 30-city TSP. However, it seems
that the latter is superior to the former for the f6 function. It
should be noted that the optimum population size for the
DCGA is extremely small- comparing with the these previous
methods.

5. Conclusion

Within the range of the above experiments, the following
conclusions can be drawn. The methods employed in the
DCGA is effective to attain the global optimum. The DCGA
has a salient feature that the diversity of structures in the popu-
lation is externally controlled so as to be in a appropriate condi-
tion according to the objective problem. In addition, the opti-
mum population size is extremely small and its performance is
robust to the changes of the parameters. The performance of
the DCGA is remarkably superior to that of the simple GA.
The DCGA may be a promising competitor to the GA’s pro-
posed in the previous researches. However, further evaluations
of the DCGA on various problems is required before firm
conclusions may be drawn. In additional the theoretical analy-
sis of the convergence process of the DCGA is required.
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