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本論文では,自然言語処理技術と機械学習の手法を用いて,英語医学生物学論文要旨に含まれる医学用
語の意味クラス分類を行う. 医学用語の出現個所の前後の文脈情報,用語の内部情報,統語解析を行っ
て抽出した単語間の依存関係を素性として用い,各々,およびそれらの組み合わせの有効性について評
価する. MEDLINEアブストラクトを対象に MeSH Treeの最上位ノードを意味クラスとみなして行っ
た実験の結果は,単語間の依存関係が単純な前後の単語列と比較してより有効な素性となる可能性を
示している.
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We investigate a practical method of classifying technical terms from the abstracts of medical and biological
papers, with a main objective of identifying a set of features relevant to the task. The features considered
are: (1) spelling of a term, (2) words around the occurrence of a term, and (3) syntactic dependency of a term
with surrounding words. We evaluated the effectiveness of these features in a task of classifying terms in
the abstracts from the MEDLINE database, in which target classes were determined in accordance with the
first five top-level nodes of the MeSH tree. The results prove the dependency feature works more effectively
compared with the sequence of words around terms.

1 Introduction

The ability to cope with technical terms is essential
for natural language processing (NLP) systems deal-
ing with scientific and technical documents. Since a
majority of these terms are not in general-purpose dic-
tionaries, domain-specific lexicons are often used in
combination. It is still unrealistic to expect the lexi-
cons to enumerate all technical terms, because in the
active fields of research such as biology and medicine,
new terms are produced on a daily basis. Another dif-
ficulty in dealing with technical terms is that they are
often polysemous; even if terms are recognized with
the help of the lexicons, the meaning of each occur-
rence of the terms must be identified.

Robust techniques are thus required for (1) recog-
nizing technical terms, and for (2) identifying the se-
mantic class of those terms. The first task was tack-
led by several researchers, and some useful linguis-
tic properties common to technical terminology have
been identified. Moreover, recent advance in statisti-
cal NLP techniques allows the extraction of compound
terms at a practical level of accuracy. By contrast, se-
mantic categorization of technical terms have attracted

fewer researchers, mainly because the task is more
involved and requires extensive expert knowledge to
correctly evaluate the results.

In this paper, we construct an experimental system
for identifying the semantic class of biological and
medical terms using the state-of-the-art NLP and ma-
chine learning techniques. Our objectives with this
system is not only to evaluate the applicability of
these techniques, but also to examine the effectiveness
of new features extracted from syntactic dependency
structure within sentences. Several other features are
considered as well, such as the spelling of the terms
and the words occurring around the terms. We also
exploit publicly available resources as much as pos-
sible to avoid costly annotation of corpora by human
experts.

2 Background

Although there have been some earlier attempts
(e.g., [3]) using handcrafted patterns and rules to iden-
tify the class of technical terms, the non-negligible

研究会Temp 
知    能    と    複    雑    系

研究会Temp 
(  2   0   0   2  .  5  .   2  3   )

研究会Temp 
128－5

研究会Temp 
－23－



cost of constructing and maintaining such patterns has
since shifted the focus of the research area to auto-
matically acquiring the classification rules from large
annotated corpora using supervised machine learning
methods. The latter approach assumes that most of the
relevant features are domain-independent, yet class-
and domain-specific characteristics can be automati-
cally extracted from these features. The work along
this approach includes Collier et al. [1], Gouhara et al.
[4] and Yamada et al. [12], as well as the present pa-
per.

There are three factors dominating the performance
of terminological classifiers constructed with the su-
pervised learning approach: (1) the size and quality
of training corpora, (2) the choice of the leaning algo-
rithm, and (3) the choice of the features used for clas-
sification. Below, we review how these factors have
been addressed in the literature, as well as our own
approach.

2.1 Size and quality of training corpora

Previous work in the area [1, 4, 12] used a relatively
small number of examples due to the difficulty in con-
structing a large corpus of text with high-quality anno-
tations. The corpora used in the work consisted merely
of 35–100 abstracts containing 1500–3300 technical
terms. Moreover, Yamada et al., who employed two
human experts to annotate the same set of abstracts
in the MEDLINE database to evaluate the quality of
the corpus, observed about 20% disagreement rate of
the annotated tags between the two annotators1. Part
of this disagreement comes from large cross-over in
vocabulary of each semantic classes, yet it reveals that
the classification task is non-trivial even for human ex-
perts.

The size and the quality of annotated corpora are
thus non-negligible practical factors for supervised
learning approach. In this paper, the difficulty of con-
structing a training corpus is alleviated by the use of
existing thesaurus.

2.2 Learning algorithms

Several machine learning algorithms have been ap-
plied for terminology classification. Collier et al. [1]
used Hidden Markov Models; Gouhara et al. [4]
used decision trees with co-training; and most re-

1A similar disagreement rate has also been reported by Tateisi
et al. [10]

cently, Yamada et al. [12] used Support Vector Ma-
chines (SVMs) to deal with high-dimensional feature
space incurred by the use of abundant information on
spelling, parts-of-speech, and substrings. Compared
with Yamada et al., the former two researchers used
smaller number of features, due to the limited scala-
bility of the learning algorithms used.

Following Yamada et al., the present paper uses
SVMs, which are known to perform well in the pres-
ence of many features as in our formulation of the
problem.

2.3 Choice of the features

Both phrase-internal information and extra-phrase,
or contextual, information has been used for classifi-
cation of technical terminology. Phrase-internal infor-
mation includes features such as character types and
parts-of-speech of constituent words. The effective-
ness of these features has been demonstrated in [1]
and [12]. As to the contextual features, use of bi-
gram or trigram sequence of words surrounding the
terms is popular. However, fixed-length sequences are
problematic in that how far we should look beyond
its surroundings are actually situation-dependent. For
instance, Sentences (1) and (2) below, both retrieved
from MEDLINE database, are the examples in which
the bigram word sequence fails to capture words that
could possibly help in determining the class of terms.

Both the azide-insensitive and azide-sensitive
components of F1-ATPase activity are equally
inhibited by labelling the enzyme with 7-
chloro-4-nitrobenzofurazan, by binding the
natural inhibitor protein, or by cold denatura-
tion of the enzyme.

(1)

Results suggest that E. chaffeensis infections
are common in free-ranging coyotes in Okla-
homa and that these wild canids could play
a role in theepidemiology of human monocy-
totropic ehrlichiosis.

(2)

In Sentence (1), the bigram word sequence feature
conveys only the information on two words preced-
ing the term “7-chloro-4-nitrobenzofurazan,” namely,
“enzyme” and “with.” They hardly avail to elicit the
relationship between the term and “enzyme” because
the information on verb “labeling” is missing. Simi-
larly, in Sentence (2), there are three words between
the term “ehrlichiosis” and the key word “epidemiol-
ogy” which strongly suggests that the term is the name
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of a disease.
Making sequence length larger (e.g., 4) solves the

problem in the above examples, but it does not come
without cost; it would indeed provide the classifier
with richer information, but it would also result in
data sparseness in a high dimensional feature space,
making learning with a small number of examples ex-
tremely difficult. It is hence desirable to use a context
feature more adaptive and flexible than fixed-length
sequences.

3 Syntactic dependency structure

as a feature for classification
One way to overcome the inflexibility of fixed-

length context features is to utilize the dependency
structure of words within a sentence. It allows us to
make selective use of information on distant words,
without making the feature space too sparse. Such a
structure can be detected in multiple ways, but in this
paper we extract it from the parse trees of sentences.
We will sketch how this is done with an illustration
in Figure 1, which depicts a partial parse tree near the
occurrence of “7-chloro-4-nitrobenzofurazan” in Sen-
tence (1).

In the parse tree, each parent-child relation signi-
fies an application of a context-free production rule of
the formX → Y1, . . . , Yn, whereX is a non-terminal
symbol (denoting its syntactic categories such as NP,
VP and PP) of the parent node, andY1, . . . , Yn are the
symbols of the children. A node is labeled not only
with a symbol, but also with ahead word. For a ter-
minal node, it is the lexical entry of the node (shown
in italics in the figure); for a non-terminal node, it is
inherited from one of its children (shown in parenthe-
ses). If a nodeX has two or more childrenY1, . . . , Yn,
n ≥ 2, the so-called “head rule2” associated with the
production ruleX → Y1, . . . , Yn determines a child
(calledhead constituent) Yi from whichX inherits the
head word. In the figure, bold arrows depict how head
words are inherited; e.g., the bold arrow from NN to
PP shows that NN is the head constituent3 of produc-
tion rulePP → IN,NN.

When a parse tree is available, dependency structure
can be extracted by recursively merging every head
constituent node with its parent (i.e., by merging ev-

2We used a slightly modified version of the head rules used by
Collins [2].

3This is one of the major modification we made to the head rules
found in [2], in which IN instead of NN is the head consistuent of
the productionPP → IN, NN.

ery parent-child pair connected with bold arrow in the
figure), and marking the merged node with the same
label as the head constituent. Then, in the resulting
tree, a parent-child pair denotes a dependency of the
head word of the child on that of the parent.

Applying this procedure to the tree in Figure 1,
we can see that the preposition “with” depends
on “7-chrolo-4-nitrobenzofurazan,” the determinant
“the” depends on “enzyme,” and both “7-chrolo-
4-nitrobenzofurazan” and “enzyme” depend on “la-
belling.” Hence, by collecting the words that depend
on and those depended by the term of interest, we can
extract dependency information relevant to the term.
This allows us, for instance, using the verb “labelling”
as a feature for “7-chrolo-4-nitrobenzofurazan” in
Sentence (1); and in Sentence (2), since “epidemiol-
ogy” is the head word of the noun phrase containing
the term “ehrlichiosis,” the dependency of the term on
“epidemiology” can be extracted with this procedure
as well.

4 Experiments
To evaluate the effectiveness of the features ob-

tained from the dependency information extracted
from parse trees, we applied it along with other fea-
tures to the task of identifying the semantic classes of
technical terms in the MEDLINE abstracts.

4.1 Experimental setting

The experimental setting is described below.

Classes The target semantic classes were deter-
mined in accordance with the first five top-level nodes
of the 2002 MeSH Tree. They are (A) Anatomy, (B)
Organisms, (C) Diseases, (D) Chemicals and Drugs,
and (E) Analytical, Diagnostic and Therapeutic Tech-
niques and Equipments.

Data Sets A corpus of abstracts was obtained in the
following way. First, 15000 terms from the above
classes in the MeSH Tree were randomly sampled.
Next, using these terms as query keywords, we re-
trieved 216404 abstracts from MEDLINE, and then
resampled 1200 abstracts for each class from the set.
Removing duplicates from the resampled collection
resulted in a corpus of 5842 distinct abstracts.

In the corpus, 7531 terms belonging to exactly one
of the classes (A) to (E) were identified and used as
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Figure 1: Parse tree of a verb phrase containing “7-chloro-4-nitrobenzofurazen.” Bold arrows signify head word
inheritance, and parenthesized words the inherited head words.

Table 1: Number of examples for each class

Class # of examples

A 4571
B 2811
C 5004
D 7335
E 4101

Total 23822

the target terms. This yielded a total of 23822 distinct
examples. The number of examples for each class is
shown in Table 1.

Features The types of features used by the classi-
fiers were as follows. In addition to the ones using
only one of these feature sets, we constructed the clas-
sifiers with various combinations of the feature sets as
well.

• Suffix features— the suffix strings of the head
words of target terms. The head word of a tar-
get term is determined by the same head rule as
described in Section 3. We used the suffixes of
lengths 3 and 4.

• Bigram word sequence features— the surface
and the parts-of-speech (POS) of words in the bi-
gram sequences preceding and succeeding target
terms. To obtain the POS, every sentence in the
corpus containing one or more technical terms
was fed to Nakagawa et al.’s POS tagger4 [8].

• Dependency features— the words on which a tar-
get term depends, and the words which the term

4The POS tagger performs well even in the presence of unknown
words, with the accuracy of 87% for unknown words, and 96% over-
all in the Penn TreeBank [6].

is depended on, together with their corresponding
POS. To obtain these features, the output of the
POS tagger was further fed to Yamada and Mat-
sumoto’s bottom-up parser [13], under the con-
straint that technical terms occuring in the sen-
tence should be labeled as either NN (noun) or
NP (noun phrase)5. The output parse trees were
then used for extracting above features with the
method of Section 3.

Algorithm Given a set of examples and a combi-
nation of features, we constructed an SVMs for each
class (A) to (E). The examples whose target terms fall
into other four classes were used as negative instances.
In all cases, the SVMs used a linear kernel with a fixed
soft margin parameter ofC = 1.

Evaluation We conducted five-fold cross validation
with the data set. The examples were partitioned into
five sets so that no target terms appear in two sets, and
so that each set contains a nearly equal number of dis-
tinct target terms. This partitioning scheme avoids a
term to appear both in training and test sets during
cross validation; since we make use of spelling (suf-
fix) information as features, simply partitioning exam-
ples into five sets of equal size at random would make
the problem much easier. As a result, the number of
examples (occurrences of terms) in each set is not uni-
form, because some of these terms occur more than
once in the abstracts. Table 2 shows the numbers of
terms in each set.

5This constraint reflects the observation by Justeson and Katz [5]
that a vast majority of the occurrences of technical terms are noun
phrases.
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Table 2: Number of terms and examples in each cross-
validation set.

Set ID # of terms # of examples

1 1507 5236 ( 22.0%)
2 1506 4361 ( 18.3%)
3 1506 4844 ( 20.3%)
4 1506 4715 ( 19.8%)
5 1506 4666 ( 19.6%)

Mean 1506.2 4764.4 ( 20.0%)
Total 7531 23822 (100.0%)

4.2 Results

Under the setting described above, two experiments
were conducted.

The first experiment compares the performance of
the types of contextual features. Table 3 shows the
performance of two classifiers, each using only one
of the dependency or bigram word sequence features.
The result clearly shows the superiority of dependency
information over bigram sequences.

In the next experiment, we combined the contextual
features with the phrase-internal suffix features. The
performance of classifiers with various feature combi-
nations is listed in Table 4. As a base line, the perfor-
mance of the classifier using only the suffix features is
also included in the table.

The classifier using all of the dependency, bigram
sequence and suffix features performed best, but was
only slightly ahead of the one with dependency and
suffixes. Both of these outperformed the classifiers not
using dependency information in most of the classes.
Even in a few cases in which the latter surpassed the
former, the difference was not significant. However,
the performance advantage of dependency over bi-
gram sequences was much smaller than the one ob-
served in the previous experiment in which these fea-
tures were used alone.

5 Summary and future directions

We have constructed a system for terminological
classification in biological and medical papers. Mo-
tivated by practical considerations, the system takes
advantage of state-of-the-art natural language process-
ing and machine learning techniques, as well as pub-
licly available resources. We have further evaluated
the performance of the system over different set of fea-
tures. Although more thorough experiments are desir-

able, the experimental results of Section 4 suggest the
effectiveness of syntactic dependency information as
features for classification.

The future research directions include:

• Classification into more detailed sub-categories.
We used only the descriptors on the top-level
nodes of the MeSH Tree Structure as semantic
categories. It should be necessary to evaluate the
performance of our methods in the tasks of clas-
sification into more detailed sub-categories.

• Measurement of performance in disambiguating
multi-class terms. We trained classifiers only
with terms whose class could be uniquely deter-
mined according to the MeSH Tree, and excluded
multi-class terms from consideration. It would be
interesting to apply the classifier trained this way
to disambiguate the meaning of each occurrence
of the multi-class terms in the corpus.

• Utility of information on multiple occurrences of
terms. Justeson and Katz argued that when an en-
tity is referred to by a terminological noun phrase
and is rementioned subsequently, it is more likely
that the full noun phrase is used intact. This prop-
erty suggests that when a term is used more than
once within an abstract, it is likely that the refer-
ent entity and hence its semantic class is unique
in the abstract. Collier et al. [1] report that an im-
provement of 2.3% in F-score was achieved by a
similar post-processing.
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