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Abstract Information Extraction from semistructured data becomes more and more important. In order to ex-
tract meaningful or interesting contents from semistructured data, we need to extract common structured patterns
from semistructured data. A tag tree pattern is an edge labeled tree with ordered children which has tree structures
of tags and structured variables. An edge label is a tag, a keyword or a wildcard, and a variable can be substituted
by an arbitrary tree. In particular, a contractible variable matches any subtree including a singleton vertex. A tag
tree pattern is hence suited for representing common tree structured patterns in irregular semistructured daté. We
present a new method for extracting characteristic tag tree patterns from irregular semistructured data by using
an algorithm for finding a least generalized tag tree pattern explaining given data. We report some experiments of
applying this method to extracting characteristic tag tree patterns from HTML /XML files.
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1. Introduction

Due to the rapid growth of semistructured data such as
Web documents, Information Extraction from semistruc-
tured data becomes more and more important. In order to
extract meaningful or interesting contents from semistruc-
tured data, we need to extract common structured patterns
from semistructured data. Many semistructured data have
irregularities such as missing or erroneous data. In this pa-
per, we present a new method for extracting characteristic
tag tree patterns from irregular semistructured data which
are considered to be positive data.

Web documents such as HTML files and XML files have no
rigid structure and are called semistructured data. Accord-
ing to the Object Exchange Model[1], we treat semistruc-
tured data as tree structured data. To represent a tree struc-
tured pattern common to such tree structured data, we pro-
pose a tag tree pattern, which is a rooted tree consisting of
ordered children, structured variables and edges labeled with
tags, keywords or wildcards. A variable can be substituted
by an arbitrary tree.

In the Object Exchange Model, many essential data are
represented as leaves or subtrees. We hence introduce a new
type of variable, called a contractible variable, which is re-
garded as an anonymous subtree in a tag tree pattern and
matches any subtree including a singleton vertex. A usual
variable, called an uncontractible variable, in a tag tree pat-
tern does not match any singleton vertex.

Since a variable can be replaced by an arbitrary tree, over-
generalized patterns explaining given positive data are mean-
ingless. Then, in order to extract meaningful information
from irregular or incomplete tree structured data such as
semistructured Web documents, we need to find one of the
least generalized tag tree patterns. Consider the examples in
Fig. 1. Let T] be the corresponding tree which is obtained
by retaining the edge labels such as “Secl” or “SubSec3.1”
and ignoring the other edge labels in T;. The tag tree pat-
tern t; explains trees T;, T3 and T3. That is, Ty, T3 and
T3 are obtained from ¢; by substituting the variables of ¢;
with trees. Further, 1 is a least generalized tag tree pattern.
The tag tree pattern t» also explains the three trees. But
t2 explains any tree with two or more vertices. Hence ¢ is
overgeneralized and meaningless.

A tag tree pattern is different from other representations
of tree structured patterns such as in[2], {13] in that a tag
tree pattern has structured variables which can be substi-
tuted by arbitrary trees. Recently, Information Extraction
has been extensively studied [3],[5]. But most studies are
for free-text documents. Information Extraction or wrap-

per extraction from high-level data such as semistructured

data or tables is a hot topic in the field of Web learning or
Web mining[4], [12]. Further, many techniques in Informa-
tion Extraction are based on heuristics. But our extraction
method is an polynomial time algorithm which is guaranteed
to find a least generalized tag tree pattern from any set of
irregular semistructured data. Our extraction method of tag
tree patterns is applied to extracting elements or field data
from semistructured data. Since a tag tree pattern has a
variable which matches a subtree, extracting field data from
semistructured data is calculating a subtree which is substi-
tuted for a variable. As other methods for extracting char-
acteristics from tree structured data, in[13], Wang and Lia
presented the algorithm for finding maximally frequent tree-
expression patterns from semistructured data. In[2], Asai
et al. presented an efficient algorithm for discovering fre-
quent substructures from a large collection of semistructured
data. In our previous works [6], [8], we presented methods of
enumerating all maximally frequent tag tree patterns with
unordered or ordered children from tree structured data.

This paper is organized as follows. In Section 2, we in-
troduce ordered term trees and tag tree patterns as tree
structured patterns and present our extraction method for
finding a least generalized tag tree pattern explaining given
semistructured data. In Section 3, we report an implementa-
tion and some experimental results of our extraction method
on HTML/XML files.

2. Tag Tree Patterns and Extraction
Method

2.1 Ordered Term Trees
Let T = (Vr, Er) be a rooted tree with ordered children

. (or simply a tree) which has a set Vr of vertices and a set

Er of edges. Let E, and Hy be a partition of Er, ie,
Ey;UHy; = Er and E;NHy = . And let Vy = Vr. A triplet
g = (Vg, By, Hg) is called a term tree, and elements in Vg, Eg
and H, are called a vertez, an edge and a variable, respec-
tively. We assume that every edge and variable of a term
tree is labeled with some words from specified languages. A
label of a variable is called a variable label. A and X denote
a set of edge labels and a set of variable labels, respectively,
where AN X = ¢. For a term tree g and its vertices v; and
v;, a path from v to v; is a sequence vy, vz, ..., v; of distinct
vertices of g such that for any j with 1 < j < ¢, there exists
an edge or a variable which consists of v; and vj41. If there
is an edge or a variable which consists of v and v such that
v lies on the path from the root to v', then v is said to be
the parent of v' and v' is a child of v.. We use a notation
[v,v'] to represent a variable {v,v'} € Hy such that v is the
parent of v'. Then we call v the parent port of [v,v'] and o'
the child port of [v,v'].
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Fig. 1 Tag tree patterns t1, t2 and t3 and trees T1, T2 and T3. An uncontractible (resp.

contractible) variable is represented by a single (resp. double) lined box with lines

to its elements. The symbol “7” is a wildcard of an edge label. The label inside

a box is the variable label of the variable.

Let X° be a distinguished subset of X. We call variable
labels in X contractible variable labels. A contractible vari-
able label can be attached to a variable whose child port is
a leaf. We call a variable with a contractible variable label a
contractible variable, which is allowed to substitute a tree
with a singleton vertex, as stated later. We call a variable
which is not a contractible variable an uncontractible vari-
able. For a variable [v,v'], when we pay attention to the kind
of the variable, we denote by [v, v']° and [v, v']* a contractible
variable and an uncontractible variable, respectively.

A term tree g is called ordered if every internal vertex u in
g has a total ordering on all children of u. The ordering on
the children of v is denoted by <§. An ordered term tree g
is called regular if all variables in H, have mutually distinct
variable labels in X.

An ordered term tree with no variable is called a ground
ordered term tree, which is a standard ordered tree. OT s

" denotes the set of all ground ordered term trees whose edge
labels are in A. O7TT} denotes the set of all ordered term
trees which have contractible or uncontractible variables, and

edge labels in A. In this paper, we treat only regular or-

dered term trees with contractible or uncontractible vari-
ables. Therefore we call them term trees simply.

Let f = (Vy, By, Hy) and g = (Vy, Eg, Hy) be term trees.
We say that f and g are isomorphic, if there is a bijection
@ from V; to Vg such that the following conditions (i)-(iv)
hold: (i) The root of f is mapped to the root of g by . (ii)
{u,v} € E; if and only if {o(u),(v)} € E, and the two
edges have the same edge label. (iii) [u,v] € Hy if and only
if [p(u), ¢(v)] € Hy. In particular, [u,v]® € Hy if and only if
[p(w), p(v)]¢ € Hy. (iv) For any internal vertex v in f which
has more than one child, and for any two children »’ and u”
of u, w' <f u" if and only if @(u') < o(u").

Let 0 = [u,u'] be a list of two vertices in g where u is
the root of g and v’ is a leaf of g. The form z := [g,0] is
called a binding for z. If z is a contractible variable label
in X, g may be a tree with a singleton vertex u é,nd thus
o = [u, u]. It is the only case that a tree with a singleton ver-
tex is allowed for a binding. A new term tree f{z := [9,0]}
is obtained by applying the binding z := [g,0] to f in the
following way. Let e = [v,v'] be a variable in f with the

variable label z. Let g’ be one copy of g and w,w’ the ver-



tices of g’ corresponding to u,u’ of g, respectively. For the
variable e = [v,v'], we attach g’ to f by removing the vari-
able e from H; and by identifying the vertices v,v’ with the
vertices w,w’ of g’, respectively. If g is a tree with a single-
ton vertex, i.e., w = u/, then v becomes identical to v’ after
applying the binding. A substitution 8 is a finite collection of
bindings {z1 := [g1,01],...,%n := [gn,0n]}, where z;’s are
mutually distinct variable labels in X. The term tree f6,
called the instance of f by 0, is obtained by applying the all
bindings z; := [gi, 0:] on f simultaneously.

For example, let t3 be a term tree described in Fig. 1 and
6 = {z := [g1, [u1,v1]], ¥ == [g2, [u2, u2]]} be a substitution,
where g; and g are trees in Fig. 1. Then the instance t30 of
the term tree ¢3 by 6 is isomorphic to the tree T3 in Fig. 1.

2.2 Tag Tree Patterns

Let Arag and Axw be two languages which consist of in-
finitely or finitely many words, where Azrqg N Axw = 0. We
call words in Arag and Axw a tag and a keyword, respec-
tively. A tag tree pattern is a term tree such that each
edge label on it is any of a tag, a keyword, and a special
symbol “?”, which is a wildcard of an edge label. A tag
tree pattern with no variable is called a ground tag tree
pattern.

For an edge {v, v'} of a tag tree pattern and an edge {u, v’}
of a tree, we say that {v,v'} matches {u, '} if the following
conditions (i)-(iii) hold: (i) If the edge label of {v,7'} is a
tag, then the edge label of {u,u'} is the same tag or a tag
which is considered to be identical under an equality relation
on tags. (i) If the edge label of {v,v'} is a keyword, then the
edge label of {u,u'} is the same keyword. (iii) If the edge
label of {v,v'} is “?”, then we don’t care the edge label of
{u,v'}.

A ground tag tree pattern m = (Va, Ex,0) matches a
tree T = (Vr,E7) if there exists a bijection ¢ from Vx
to Vr such that the following conditions (i)-(iv) hold: (i)
The root of w is mapped to the root of T by ¢. (ii)
{v,v'} € E, if and only if {¢(v),(v')} € Er. (iii) For
all {v,v'} € Er, {v,v'} matches {p(v), p(v')}. (iv) For any
internal vertex w in m which has more than one child, and
for any two children «’ and %" of u, ' < " if and only if
@) <L) (u’). A tag tree pattern = matches a tree T
if there exists a substitution 6 such that 76 is a ground tag
tree pattern and 78 matches T. Then the language La(n),
which is the descriptive power of a tag tree pattern , is
defined as La(w) = {a tree T in OT a | © matches T'} where
A=Areg UAkw. '

2.3 Extraction of Least Generalized Tag Tree Pat-

terns

‘We propose a new method for extracting characteristic tag

tree patterns from irregular semistructured data which are

considered to be positive tree structured data. A tag tree
pattern 7 is a least generalized tag tree pattern explain-
ing a given set S of trees which are considered to be positive
data, if (i) SCLa(m) (7 explains S) and (ii) there is no tag
tree pattern n’ satisfying that SCLa(') G La(w). The
problem for finding a least generalized tag tree pattern for a
given set of trees is discussed as the minimal language prob-
lem (MINL for short) in the field of computational learning
theory [9], [11].

Our extraction method finds a least generalized tag tree
pattern explaining a given set of trees S, by using a poly-
nomial time algorithm for solving the MINL problem [11].
First, the algorithm finds a least generalized tag tree pattern
t which consists of only uncontractible variables and explains
S. Secondly, it finds a tag tree pattern ¢’ which is obtained
from t, by replacing a variable in ¢ with an edge labeled with
an edge label or a wildcard, or a contractible variable, if the
obtained tag tree pattern ¢’ explains S. The algorithm then
repeatedly applies the replacing to the tag tree pattern un-
til no more replacing is applicable. Finally it outputs the
resulting tag tree pattern. The extraction method uses a
polynomial time matching algorithm for deciding whether or
not a given tag tree pattern Vmatches a given tree for hypoth-
esis checking[11]. The matching algorithm is an extension of

the polynomial time matching algorithms [9], {10].

3. Implementation and Experimental Re-
sults

We have implemented the extraction method in Sec-
tion 2.3, which finds a least general tag tree pattern ex-
plaining the given semistructured data. The implementa-
tion is in GCL2.2 and on a Sun workstation Ultra-10 clock
333MHz. In Fig. 2 we report some experiments on sample
files of semistructured data. In these experiments, an input
tree represents a subtree of a parsed tree of an HTML/XML
file. The tree structure and HTML/XML tags in a parsed
tree are preserved in the corresponding input tree. Attributes
and their values are ignored. No equality relation on tags is
assumed. All string data in a parsed tree are converted to
the same dummy keyword, in order to pay attention to struc-
tures of tags in a parsed tree.

In Exp. 1 to 3 , we made samples of artificial HTML files
in order to evaluate our method. The input file for Exp. 1
consists of trees with about 40 vertices. The input file for
Exp. 2 consists of 90 % of trees with about 40 vertices. and 10
% of trees with about 20 vertices. The input file for Exp. 3
consists of 90 % of trees with about 40 vertices and 10 % of
trees with about 70 vertices. The graphs for Exp. 1 to 3 show
the running time of the method with varying the number of

data for the three experiments. The numbers of vertices of
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semistructured data.

the obtained tag tree patterns of the method are almost same
for the three experiments. This shows that the method has
robustness for irregularities of sample semistructured data.
In Exp. 4, the sample HTML file is a result of a
search engine of a web site with a local search function
(http://www.ael.org). The sample file consists of 10 trees
with about 18 vertices. A tree in the sample file is a record of
bibliographic data. The obtained tag tree pattern in Fig. 2
(Exp. 4) is a least generalized tree pattern explaining the
sample file. An edge with no edge label represents an edge
with the dummy keyword. The obtained tag tree pattern is
considered to be a wrapper for such tree structured data.
We have also experiments on a sample XML file which
is from the DBLP bibliographic database (http://dblp.uni-
trier.de/xml/dblp.xml). The experiments show that a small
number of data are sufficient for the method to extract a

characteristic tag tree pattern from such bibliographic data.
4. Conclusions

In this paper, we have studied Information Extraction
from semistructured data. We have proposed a new method
for extracting characteristic tag tree patterns from irregular
semistructured data. We have also reported some experi-
ments of applying this method to extracting least generalized
tag tree patterns from HTML/XML files.
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Abstract In this paper we propose a method for knowledge discovery from distributed data on distributed com-
puters. Each of the computers is assumed to have a knowledge discovery system which searches hypotheses from
general ones to specific ones. We also assume that each hypothesis can be represented as a logic program. Then
the discovery method is to correct hypotheses generated by the computers and then merge them. For the merge of
hypotheses we use the most general specialization of clauses. We also validate each clause in the merged hypotheses.
We implement our method on the EVLD system, which we developed previously, and call it Distributed EVLD
(Distributed EVLD). In the paper we report how our method works well with a well-known data set.
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