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Abstract This paper presents a new feature subset selection algorithm than can take into account higher order
correlation between variables. The algorithm is a kind of wrapper methods using Support Vector Machines (SVMs)
for learning classifiers represented as hyperplanes spanned by combinations of variables. It is known that kernel
functions enable efficient learning of the high dimensional hyperplanes, while this paper considers another use of
kernel functions for analyzing the learned classifiers to determine irrelevant variables. In the analysis, the algorithm
computes the restriction of a classifier obtained by removing the components containing a variable, and the variable
is identified as irrelevant if the restriction discriminates data as well as the classifier. Although there exist numerous
components to be removed, it is shown that the restriction can be computed efliciently by using restriction kernels.
It is also shown that the presented algorithm outperforms existing algorithms in empirical studies on the synthetic
data sets. Furthermore, the algorithm is applied to text categorization tasks and an encouraging result is obtained.
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ing an appropriate subset of vartables is important because

1. Introduction . . .
not merely it conserves computational resources, but also it

For data mining, which deals with overwhelming quantity  significantly improves prediction accuracy or affords better

of data, the problem of focusing on the most relevant infor- understanding of the data.

mation is quite important. As a specific task of the problem,
feature subset selection has been received significant atten-
tion [6], [7]. In terms of supervised inductive learning, it is the
problem of selecting a small subset of variables that ideally

is necessary and sufficient to predict desired output. Select-

Among a number of feature subset selection algo-
rithms [3]~[5] presented so far, perhaps the simplest ap-
proach is to evaluate each variable individually based on its
correlation with the target concept and then to select k vari-

ables with highest value. As the evaluation metric, mutual



information between the target concept and each variable is
typically used. However this approach easily mistakes rel-
evant variables for irrelevant ones because it does not take
into account higher order correlations. For example, let us
consider Boolean variables X, X2, X3, X4, and a target
Boolean concept Y = X; X2 V X2X3. We see that the mu-
tual information between Y and X: is zero though X, is
indispensable for Y. The relevance of X, to Y is correctly
estimated by taking into account X; or X3 at the same time.

On the other hand, wrapper methods, which use induc-
tion algorithms as a subroutine to evaluate optimality of a
given subset of variables, can take into account higher order
correlations to some extent with the help of the induction
algorithms. For example, a wrapper method described in [3]
uses a decision tree learner as the induction algorithm. Since
the induction algorithm constructs decision trees by identi-
fying sets of variables correlated with the target concept, the
wrapper method can utilize information about the correla-
tion. However, as illustrated in the literature [8], there exist
the cases that the decision tree learner fail to capture the cor-
relation because of its univariate node-splits strategy: they
split nodes by a single variable most relevant to the target
concept during construction of a decision tree.

To capture the higher order correlations in a more di-
rect way, this paper considers a new feature subset selec-
tion algorithm employing kernel methods. The algorithm is
a kind of wrapper methods using Support Vector Machines
(SVMs)[1]. To capture higher order correlations, it uses a
SVM for training classifiers represented as hyperplanes in
feature spaces’’spanned by combinations of variables. It is
known that learning of the classifiers in the high dimensional
spaces can be done efficiently by using kernel functions, this

paper considers another use of kernel functions for efficient

analysis of learned classifiers. In the analysis, the presented .

algorithm computes the restriction of a classifier obtained
by removing the components containing a variable, and the
variable is identified as irrelevant if the restriction discrimi-
nates data as well as the original classifier. Although there
exist numerous components containing to be removed, it is
shown that a class of kernel functions called restriction ker-
nels enables efficient computation of the restriction.

It is also shown that the presented algorithm outperforms
existing algorithms in empirical studies on the synthetic data
sets of randomly generated Boolean concepts. Furthermore,
the algorithm is applied to a real-world data set of text cat-

egorization tasks and an encouraging result is obtained.

11 In the literatures of SVMs, the space where SVMs train classifiers
is referred to as the feature space and coordinates spanning the space
is referred to as features. To avoid confusion, variables selected by

feature selection are not referred to as features.

2. Support Vector Machines

Although, SVMs produce non-linear discriminant func-
tions in a data space- that discriminate positive data from
negative ones, the functions are not obtained directly in the
data space. Instead, SVMs learn a linear discriminant func-
tion in a feature space spanned by derived features consid-
ered as effective in the discrimination.. That is, by transform-
ing data into a space where the classification task becomes
easy, SVMs simply learn hyperplanes separating the data.

Among the hyperplanes separating the data, SVMs find
magzimal margin hyperplanes f(z) = (w-z) +b = 0 that
maximize Euclidean distance from the closest datum z* in
the feature space. Since the Euclidean distance of 2 equals
to m; under the normalization such that |[f(z*)| = 1,
SVMs tries to minimize |jw]||* as shown in the following spec-

ification of quadratic programming problem:

n
minimize lw|?®+C Z &i,
i=1
yif(zi)21-6&
& 20, 1<i<n,

subject to 1<i<n

where each datum x; with a class label y; € {+1,-1} is
mapped to z; in a feature space. Notice that the constraint
yif(z:) 21 (1 £1i £ n) requires linear separability of data
and variables &; are introduced to relax the constraint to
cope with non-separable cases, which are often in practical
applications. It is known that minimizing the above objec-
tive function amounts to approximately minimizing a bound
of generalization error for a suitable positive constant C.
According to the optimization theory, the above problem

is transformed into the following dual problem:

Zai - % Eai&jyiyj (zi z5),

i=1 i=1 j=1

maximize

0Sa;<C (1Lign), Y aigs =0.

i=1

subject to

It is known that the above convex quadratic programming
can be solved efficiently. For a solution af,...,a), the max-
imal margin hyperplane f*(z) = 0 can be expressed in the

dual representation in terms of these parameters:

il

f1(z) =) aiyilz2) +b

i=1
n
b=y — za;‘yi (z; - zs) for some aj # 0
i=1
An advantage of using the dual representation is that we

can side-step a difficulty in the transformation of data from

the data space into the feature space. Since the feature space



tends to have numerous features considered as potentially ef-
fective, the dimension of the feature space tends to be very

high and thus it is often infeasible to explicitly map the data

into the feature space. Notice that, in the dual representa- v

tion, the mapping ¢ of data appears only in the form of inner
products (z; - z;) = (¢(x:) - ¢(x;)) . Therefore, if we have a
way of computing the inner product directly as a function of
the input points, i.e. K(z;,x;) = (¢(x:) - ¢(x;)), then we
can side-step the computational problem inherent in evaluat-
ing the mapping. The use of such functions K called kernel
functions makes it possible to map the data implicitly into
a high dimensional feature space and to efficiently find the
optimal hyperplane in the feature space.

In addition to the use of kernel functions for the learning
of classifiers with derived features, the next section considers

another use of them for analysis of learned classifiers.
3. Feature selection kernels

This section considers a use of kernel functions for selecting
irrelevant variables with taking into account higher order cor-
relations. In order to capture the higher order correlations,
a classifier is first trained in the feature space spanned by
combinations of variables. Then by removing the combina-
tions containing a variable X, the restriction of the classifier
is obtained, and its discriminative power is compared with
the classifier to determine whether X is relevant or not. The
restrictions of classifiers are obtained by computing the re-
strictions of discriminant functions defined as follows. For a
linear discriminant function f(z1,...,2¢) = Zf=1 wizi+bon
a feature space Z spanned by features V = {z1,...,2¢}, and
for a subspace Z’ spanned by features V' C V, f' is the re-
striction of f onto Z' if f'(z1,...,2¢) = Zz‘»eV' w; z; +b. For
our examples, let us consider the feature space Z spanned
by all conjunctions of X1, X», X3 and X4. Then, it is shown
that any 4-variable Boolean function can be represented as
a hyperplane with zero threshold i.e. b = 0, in this feature
space, and the maximal margin hyperplane in this space is ef-
ficiently learned by using the DNF kernel [13]. For a Boolean
concept Y = X; Xz V X3 X3, we see that a hyperplane

f(X1, X2, X3, X4) =
X1(1 — X2)+X2X3—(1 — Xl)(l — Xz)—Xz(l — X3) =0

discriminates all data of Y. From this feature space
Z, by removing 52 conjunctions containing X4, e.g.
X4,_X_4, X4X1,X4-X;, X4X1X5,..., we obtain the subspace
Z_x, of Z, and by using a kernel function described later,
we can compute the restriction f' of f onto Z_x, efficiently.
In this case, because f does not contain any term contain-
ing X4, f is equivalent to f and has same discriminative

power as f has. Therefore, we can conclude Xy is irrelevant

to Y. On the other hand, for the subspace Z_x, obtained
by removing conjunctions containing X», the restriction f”
of f onto Z_x, is identically zero and has no discriminative
ability since all terms in f” contain X». Therefore, we can
conclude that X3 is relevant to ¥ and cannot be removed.

Now, we consider how to compute the restrictions. The fol-
lowing theorem establishes the principle of the computation.
[Theorem 1]
Z, and K’ be a kernel function in a subspace Z’ of Z. Then,

Let K be a kernel function in a feature space

for a linear discriminant function in Z

F@) =b+ Y yiosK(z;,@),

j=1

its restriction f onto Z’ can be computed as

n

F@)=b+Y yio,K (z;,).

j=1

The kernel K’ above is referred to as a restriction kernel.
The literature [12] uses restriction kernels in the learning of
Boolean functions for reducing the length of conjunctions of
learned Boolean functions. This paper considers another use
of restriction kernels for feature subset selection.

Let us consider again the feature space spanned by all
possible conjunctions consisting of Boolean variables. In
the feature space, it is shown that the inner-product can
be computed with the DNF kernel [10], [13]: K(u,v) Lef
—1+ 25V where s (u, v) denotes the number of bits that
have the same value in w and ». This is because non-zero-
valued conjunctions must agree with both # and v, and the
number of such conjunctions except the empty conjunction is
exactly —1+25("V) In a similar argument, we see that for
the subspace obtained by removing conjunctions containing
variables X1, ..., X, the inner-product in the subspace can
be computed by using the following kernel function:

[ Definition 1] (feature selection kernels for the DNF kernel)

KM (u,v) & 14 8@ Mo

where ™™ denotes the vector obtained by removing com-
ponents corresponding to Xi,..., X, from u.

These arguments above are also valid for other Boolean
kernels such as k-DNF kernel [10], [12] or the monotone k-
DNF kernel {10], [12]. Furthermore, whereas the Boolean ker-
nels are applicable only for nominal variables, we can define
restriction kernels for the polynomial kernels that can be ap-
plicable for continuous variables. .

Using the feature selection kernels, a new feature selection
algorithm FERK is devised and shown in Table 1.

The distance d between f and f' captures the difference
on their discriminative ability, and is defined as follows.
For a discriminant function f(z) = b+ Z; yjo; K (x;, @),

the distance d between f and its restriction f'(z) = b+



0. Let V be a set of variables. Let K™ be a feature selection
kernel insensitive to variables in M.

1. ME rE V.

2. Train a SVM using K™ and obtain a discriminant function f.
3. Analyze the learned discriminant function f.

For each v € R, compute the restriction f’ of f using KMO{v}
and measure the distance d between f and f’. Let v be the vari-
able that yields the minimum distance.

4. If the stopping condition holds then terminates and output R.
5. M MU}, R R\ {0} Goto2.
Table 1 A feature subset selection algorithm FERK

Z;‘ y;0; K’ (z;, ) is computed as follows:

A F) =Y i (f@) = £()

n n n
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Concerning the stopping condition, there may exist vari-
ous candidates depending on the purpose of feature selection.
In the empirical study described in the section 5.1, FERK
stops when the number of the remaining variables reaches a
given threshold. On the other hand, in the empirical study
described in the section 5.2, FERK stops when the accuracy
of f' on the training data becomes lower than that of f.

Finally, we should notice that FERK is extendable to re-
move more than one variable at each iteration in order to
reduce computational cost. In fact, an extended FERK is
applied to a text categorization task with thousands of vari-
ables in the section 5.2, and it is shown that removing mul-

tiple variables at each iteration saves computational costs.
4. Related works

Among a wealth of feature subset selection algorithms, per-
haps the simplest algorithm is to evaluate each variable in-
dividually based on its correlation with the class variable
and then to select k variables with highest value. As the
evaluation metric, mutual information between the class and
each variable is typically used. Since this method, denoted
by MINFO, is computationally efficient, it is used for tasks
with high dimensional data e.g. text categorization.

RELIEF {5] is another method that evaluates each variable
individually, but its evaluation is done in a different way.
RELIEF samples data randomly from the training data and
updates relevance weights of each variable based on the dif-
ference between the selected data and the two nearest data
of the same and opposite class.

Compared with these methods, recent works (e.g. [6]) show

that wrapper methods perform better. In wrapper meth-
ods, a feature subset selection algorithm exists as a wrapper
around an induction algorithm and uses it as a subroutine
rather than as a post processor.

For example, in the literature [3], a wrapper method using
decision tree learners e.g. C4.5[9], is presented. It use the
decision tree learners to estimate the accuracy of the learned
classifier using only a given subset of variables. Based on
the estimate for each subset of variables, it conducts greedy
search for an optimal subset of variables.

In contrast to those methods that evaluate the relevance
of each variable individually, the wrapper method can take
into account higher order correlations to some extent with
the help of decision tree learners. However, as illustrated
in the literature [8], the decision tree learners have a risk
of failing to capture the relevance of variables in the case
that they are not relevant by themselves but they are rele-
vant when other variables’ values are known. This is because
of their univariate node-splits strategy: they split nodes by
a single variable most relevant to class membership during
construction of a decision tree.

On the other hand, FERK takes into account higher order
correlations by using hyperplanes spanned by combinations
of variables. While this could be an advantage of FERK,
the wrapper method also have an advantage. The method
evaluates each subset of variables in a more elaborate way:
it re-learns for every subset of variables and estimates accu-
racy of the learned classifier using the n-fold cross validation.
The evaluation scheme is expected to make a more precise
evaluation although it requires high computational cost and
limits its application to data sets with many variables.

The use of kernel methods for feature subset selection also
appears in [4]. The algorithm describe in the paper, denoted
by SVM RFE, is similar to FERK. The difference is the way
of evaluation of each subset of variables. FERK evaluates
the discriminative ability of the restriction for a subset of
variables, while SVM RFE evaluates the magnitude of coef-

ficients of features containing variables in the subset.
5. Empirical studies

In this section, FERK is compared with the feature subset
selection algorithms described in the previous section. To
compare them in various aspects, experiments on synthetic
data of randomly generated Boolean concepts are performed.
Moreover, to show the applicability of FERK to real world
data, experiments on classification of news articles are done.

5.1 Learning of Boolean concepts

FERK is compared with MINFO, RELIEF, SVM RFE and
a wrapper method using C4.5 denoted by WCBE. WCBE

uses the backward elimination of variables and performs 10-
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Figure 1 The error rates vs. the number n of data.

fold cross-validation to estimate the accuracy of each classi-
fier. Each of SVM RFE and FERK uses a Boolean Kernel
Classifier (BKC)[12] as an inductive learning engine, where
the BKC uses the DNF kernel with its capacity control capa-
bility. It should also be mentioned that we use a determin-
istic version of RELIEF that uses all instances, all near-hits
and all near-misses of each instance.

Data sets used in the following experiments are synthetic
ones obtained from randomly generated Boolean concepts.
In the generation of the Boolean concepts, the following pa-
rameters are varied: the number » of irrelevant Boolean vari-
ables, the number n of training data, the complexity of the
target Boolean concepts defined by the length £ of conjunc-
tions. In a certain parameter setting, 160 different Boolean
concepts generated as follows. First, a Boolean concept is
The DNF
formula consists of conjunctions of randomly generated ¢
The number of the

generated in DNF using a fixed 16 variables.

variables negated with probability 1.
conjunctions is set to 2°7! so as to produce approximately
equal numbers of positive and negative data. Then, for each
Boolean concept, n training data and 2000 test data with
dimension 16 + r are independently drawn from the uni-
form distribution. The training data are then fed to the
feature subset selection algorithms and k variables are se-
lected, where k is determined by the generated DNF formula
in some experiments, or is explicitly controlled in the other
experiments. From the selected variables and the training
data, BKC with £-DNF kernel learns a classifier and its mis-
classification rate is measured on the test data. Finally, The
rate is averaged across 160 different Boolean concepts.
Figure 1 describes the result of the experiment varying n
when £ = 4, r = 48 and k is set to the number of variables
appearing in each Boolean concept. Figure 2 describes the
result of the experiment varying r when ¢ = 4, n = 1000
and k is set to the number of variables appearing in each
Boolean concept. Figure 3 describes the result of the exper-
iment varying ¢ when r = 48, n = 1000 and k is set to the
number of variables appearing in each Boolean concept.

In all of the experiments described above, the number k of
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Figure 2 The error rates vs. the number 7 of irrelevant variables.
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variables selected by each feature selection algorithm is set to
the correct value, i.e. the number of variables appearing in
each DNF formula. Although the setting is for the purpose
to clearly see the influence of other parameters, it is imprac-
tical to use the size of the correct feature subset. Therefore
another experiment is performed to see the influence of the
size of feature subsets. Figure 4 describes the result of the ex-
periment varying the number % of variables selected by each
feature subset selection algorithm when r = 48, n = 1000
and ¢ = 4. The average number of variables appearing in
each DNF formula is 14.5. We see that SVM RFE and FERK
have sharp downward peaks around this value.

5.2 Text categorization

In order to investigate the applicability of FERK to real
world data sets, experiments on the Reuter-21578 collection
are performed. It is a collection of newswire stories clas-
sified under categories related to economics, and is widely

used in text categorization [14]. The following experiments



category | method | dimension | accuracy(%) | BEP(%) | k
money 1,000 85.1 81.0 |2
money | FERK 999 85.5 81.5 |2
trade 1,000 92.8 82.0]3
trade FERK 310 93.2 84.6 13
trade | MINFO 310 91.8 78.0 [ 2
interest 1,000 90.0 68.4 |8
interest | FERK 1,000 90.0 68.4 |8

gnp 1,000 96.6 61.5| 2
gnp FERK 208 97.2 61.5 |2
gnp MINFO 298 95.6 53.8 (1
cpi 1,000 98.6 88.2 |1
cpi FERK 1,000 98.6 88.2 |1

Table 2 The result of experiments on Reuter-21578.

uses a date set named “re0” from pre-processed data sets of
Reuter-21578 provide by G.Forman[2]. The data set con-
tains 1504 stories, and each story is represented as a 2886
dimensional binary vector associated with a category. From
the data set, 150 vectors are set aside for validation, and
the remaining 1354 vectors are used for training. For com-
putational reason, these vectors are further pre-processed by
MINFO and converted into 1000 dimensional binary vectors.
The preprocessed training data set is then fed into FERK
that uses feature selection kernels for the monotone k-DNF
kernel. Since the dimension of the data is still high, FERK
is modified so as to remove more than one variable according
to the dimension at each iteration. For the dimension d, the
modified FERK removes 1019610 4=1 variables. During the
iterations, if the restriction is less accurate than the learned
classifier, FERK stops and outputs the remaining variables.
From the variables and the training data, BKC [12] using the
monotone k-DNF kernel learns a classifier. Then, its accu-
racy and its Precision/Recall Break Even Point (BEP)[14]
are measured. In this way, experiments are done for the five
most frequent categories. Table 2 describes the result of the
experiments, where the rows with the empty method rep-
resent experiments without feature selection. We see that
FERK does not remove any variable for two categories in-
terest and cpi. But notice that according to the conserva-
tive stopping condition, FERK does not degrade accuracy
and BEP. On the other hand, for categories money, trade
and gnp, FERK reduces the dimension of each data set, and
yields higher accuracy and higher BEP compared with exper-
iments without feature selection. Especially, for trade and
gnp, FERK removes a considerable number of variables. To
see the appropriateness of the feature set selected by FERK,
additional experiments using MINFO are performed for trade
and gnp. In these experiments, by using MINFO, the dimen-
sion of each data set is reduced to the same dimension as
FERK. As the result, MINFO performs worse than FERK,

and therefore it seems that FERK selects a more appropriate
feature subsets than MINFO does.

6. Conclusion

This paper presented a new feature subset selection algo-
rithm that can take into account higher order correlations
between variables. To identify irrelevant variables, the algo-
rithm analyzes learned classifiers represented as hyperplanes
spanned by combinations of the variables. In the analysis, it
computes the restriction of a classifier obtained by removing
components containing a variable, and the variable is identi-
fied as irrelevant if the restriction discriminates data as well
as the classifier. Although there exist numerous components
to be removed, it was shown that feature selection kernels
enable efficient computation of the restriction. Furthermore,
empirical studies using synthetic data sets showed that the
presented algorithm outperforms several existing algorithms.
Finally the algorithm was also applied to text categorization

task and an encouraging result is obtained.
Acknowledgment

We would like to thank George Forman for the prepared
datasets Reuters-21578. We also extend our thanks to the
WEKA project for their open-source machine learning soft-
ware. This work is partially supported by Grant-in-Aid for
Young Scientists (B) (No.14780315) from the Ministry of Ed-
ucation, Culture, Sports, Science and Technology (MEXT).

References
[1] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines. Cambridge Press, 2000.
[2] G. Forman. An extensive empirical study of feature selec-
tion metrics for text classification. JMLR, 1289-1305, 2003.
[3] G.H.John et al. Irrelevant features and the subset selection
problem. Proc. of ICML, 121-129, 1994.

[4] I. Guyon et al. Gene selection for cancer classification using

support vector machines. Machine Learning,389-422,2002.
[5] K. Kira and L.A. Rendell. A practical approach to feature
selection. Proc. of ICML, 249-256, 1992.

[6] L.C.Molina et al. Feature selection algorithm: a survey and
experimental evaluation. Proc. of ICDM, 306-313, 2002.

[7] H.Liu and H. Motoda. Feature extraction construction and
selection. Kluwer Academic Publishers, 1998.

[8] J.R. Quinlan. An empirical comparison of genetic and
decision-tree classifiers. Proc. of ICML, 135-141, 1988.

[9] J.R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[10] R.Khardon, D.Roth, and R.Servedio. Efficiency versus con-
vergence of Boolean kernels for on-line learning algorithms.
NIPS, volume 14, 423-430, 2002.

[11] K. Sadohara. Feature subset selection using restriction ker-
nels. Technical Report AIST02-J00030-3, 2003.

[12] K. Sadohara. On a capacity control using Boolean kernels
for the learning of Boolean functions. Proc. of ICDM, 410—
417, 2002.

[13] Ken Sadohara. Learning of Boolean functions using support
vector machines. Proc. of ALT, pages 106-118, 2001.

[14] F. Sebastiani. Machine learning in automated text catego-
rization. ACM Computing Surveys, 34(1):1-47, 2002.



