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Abstract Gini ' s definition of variance for categorical data was “ naturally ” extended to covariance for mixed
categorical and numerical data. In this research, we describe a procedure for calculating the covariance. Using this
covariance, kernel PCA for categorical data is introduced.
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1. Introduction

Covariances and correlation coefficients for numerical data
express the strength of a correlation between a pair of vari-
ables. Such convenient measures have been expected for cat-
egorical data, and there have been many proposals to de-
fine the strength of a correlation [6]. However, none of these
proposals has succeeded in unifying the correlation concept
for numerical and categorical data. Recently, variance and
sum of squares concepts for a single categorical variable were
shown to give a reasonable measure of the rule strength in
data mining [3]. If we can introduce a covariance definition
for numerical and categorical variables, more flexible data
mining schemes could be formulated. In this paper we pro-
pose a generalized and unified formulation for the covariance
concept.

Principal Component Analysis(PCA) is an orthogonal ba-
sis transformation. The new basis is found by diagonalizing
the covariance matrix. The directions of the first n Eigenvec-
tor corresponding to the biggest n Eigenvalues cover as much
variance as possible by n orthogonal directions. In many ap-
plications they contain the most interestion information: for

instance , in data compression, where we project onto the
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directions with biggest variance to remain as much infor-
mation as possible. Clearly, one cannnot assert that linear
PCA will always detect all structure in a given data set. By
the use of suitable nonlinear features, one can extract more
information. Intorducing kernel function, such nonlinear fea-
tures can extract from data. Such method is called Kernel
PCA [1]. We apply the technique of Kernel PCA to categor-
ical data. Using this technique, we give nonlinear extension

of Gini’s variance and covariance.

2. Gini's Definition of Variance and its
Limitations

Gini successfully defined the variance for categorical data
[2]. He first showed that the following equality holds for the

variance of a numerical variable z;.
_ . 2, 1 N2
Vi = Z(zm — ) /n= S Z zb:(zm Tip) (1)

where V;; is the variance of the i-th variable, ;, is the value
of z; for the a-th instance, and n is the number of instances.
Then, he gave a simple distance definition (1) for a pair of
categorical values. The variance defined for categorical data

was easily transformed to the expression at the right end of

@3).



# 1 A samplc contingency table with high corrclation.

Table 1 A samplc contingency table with high correlation.

T
u v oW
rj{10 0 0
T
st 0 100
t| 0 1. 100

1 if ZiaFzn
0 if Tie=zn

Vi= 5% ;;(m-’a —za)’ = %(1 - Zpi(r)z) (3)

Here p;(r) is the probability that the variable z; takes a
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value r. The resulting expression is the well-known Gini-
index. The above definition can be extended to covariances
by changing (#ia —:t)? to (Tia — i) (Tje —Z50) [4]. However,
it does not give reasonable values relative to correlation co-
efficients. The difficulty can be seen in the contingency table
example of Table 1. There are two variables, z; and z;, each
of which takes three values. Almost all instances appear in
the diagonal positions, and hence the data should have a high
Vi;. The problem arises when we consider an instance at (t,
v). Intuitively, this instance should decrease the strength of
the correlation. However, there appears to be some positive
contribution to V;; between this instance and that at (r, u).
It comes from the value difference pair, (z: : r/t,z; @ u/v),
which is different from the major value difference pairs (z::
t/s, T u/v), (z:t v/t, zj: u/w) and (2:: s/t, z;: v/w). This
contradiction comes from (2) in that it does not discriminate

between these four types of value difference pairs.
3. Generalized Covariance

‘We proposed a scheme to generalize the definition of a co-
variance for categorical data[5]. It employs Gini' s variance
definition (3) as the starting point, and introduces two addi-
tional concepts. The first is to represent the value difference
as a vector in value space. The other is to regard the covari-
ance as the extent of maximum overlap between vectors in
two value spaces.

3.1 Vector Expression of a Value Difference

We employ a vector expression, ZTii:, instead of the
distance, Zi. — T, , in the variance definition. When z;
is a numerical variable, the expression is a vector in one-
dimensional space. The absolute value and sign of (zi —Z:a)
give its length and direction, respectively. Now let us think
of a categorical variable, ;, that can take three values, (r
st ). We can position these values at the three vertices of
an equilateral triangle as shown in Figure 1. Then, a value

difference is a vector in two-dimensional space. The length

1 Valuc’space.
Fig.1 Value space.
of every edge is set to 1 to adapt the distance definition of
(2). If there are ¢ kinds of values for a categorical variable ,
z;, then each value can be matched to a vertex of the regular
polyhedron in (¢ — 1)-dimensional space.

3.2 Definition of Covariance, V;;

Our proposal for the V;; definition is the maximum value
of Qi;(Ls;)while changing L;;, and Qi;(Li;)is defined by the

subsequent formula,

Vi; = max(Qi; (Li;)) O
Qij = 21? Z zb: < Tzl Li;|T5emst > )

Here, L;; is an orthogonal transformation applicable to the
value space. The bracket notation, < e|Li;|f >, is evaluated
as the scalar product of two vectors e and Lf (or L:jle and
f). If the lengths of the two vectors, e and f, are not equal,
zeros are first padded to the vector of the shorter length.

In general, L;; may be selected from any orthogonal trans-
formation, but we impose some restrictions in the following
cases.

e When we compute the variance, V;i, L must be the
identity transformation, since two value difference vectors
are in the identical space.

e A possible transformation of Ls; is (1) or (—1) when
the vector lengths of e and f are unity. However, if both z;
and z; are numerical variables, we always have to use the
transformation matrix, (1), in order to express a negative
correlation.

3.3 Assumed Properties for Bracket Notations

We assume several properties when using bracket nota-
tion, as follows. All these properties are easily understood

as properties of a vector.

< rr|Lij|luv >=< rs|Lj|luu >=0 (6)
< r8|Lijluv >= — < rs|Lij|vs >

= — < sr|Lyj|luw >=< sr|Lijlvu > (7)
< rs|Lijluv > + < rs|Lijlow >

=< rs|Ljluw > (8) .
< rs|Lijluv > + < st|Lij|luv >

=< rt|Lijluv > 9)



function [VertexList]=makingTetraVecs(c)
do=1;
VertexList=[];
v={0];
VertexList=[VertexList;v];
v=[1];
VertexList=[VertexList;v];
for dd=dO+1:c
vMean=mean (VertexList) ;
sumNorm =0;
for k=1:dd
distance=norm(VertexList (k,:)-vMean);
sumNorm=sumNorm+distance;
end
length=sumNorm/dd;
height=sqrt (1-length"~2) H
v=[vMean,height ];
VertexList=[ [ VertexList,zeros(dd,1)];v ] ;
end

® 2 Procedure for yiclding the regular polyhedron in (c)-

dimensional
Fig.2 Procedure for yielding the regular polyhedron in (c)-

dimensional

< rs|Lifrs >=1 (10)

3.4 Regular polyhedron
In our defnition, a categorical variable ,z;, are represented
by each vectors of a vertex of the regular polyhedron. When
there are ¢ kinds of values for a categorical variable , the reg-
ular polyhedron is a regular polyhedron in (¢—1)-dimensional
space. ‘To hold the properties (10),(9), the regular polyhe-
dron should be the following polyhedron.
e When ¢ = 2, the regular polyhedron should be a seg-
ment.
o When ¢ = 3, the regular polyhedron should be an
equilateral triangle.
o When ¢ = 4, the regular polybedron should be an
equilateral tetrahedron.
For the case ¢ > 4, all faces of the regular polyhedron should
be equivalent equilateral tﬁangula.r faces. Such regular poly-
hedron can be yielded by a procedure described in figure 2.
Let us represent vertexes of this polyhedron by

Vi(e) = [vi(1),vi(2),vi(3), ...vi(c)],

where v;(r) denotes a vector of a vertex represents a state
that z; takes r th value.

3.5 Determining the orthogonal matrix: L

By using Vi(c), the optimization problem (4) can be de-

scribed as follows.

max trace(Aij L;jt)
ij

Regular polyhedron in 2-dimensional

Regular polyhedron in 3-dimensional

Regular polyhedron in 5-dimensional

LiLi;* =B (11)
where

A =Y (vil@ia) = vilwn))(vi(@ia) = vi(250))"
a b

t represents transpose. v;i(r) is a column-vector. Station-
aly points of a Lagrangian relaxation problem of (11) are

solutions of the following simultaneous equations.

ALy = (AyLi)
Li;L; =E (12)

The simultaneous equations can be solved numerically. A
certain solution of the simultaneous equations is chosen as

the orthogonal matrix L.
4. Nonlinear extension using Kernel

In this section, nonlinear extension of the covariance de-
fined in section 3., is discussed.

vi(z:) is regarded as mapping from categorical variable
z; to real valued feature space U; C R°™'. In this feature
space, mutual distance between one category vi(r) and an-
other category v;(s) is always 1. This feature space is not
appropriate to some type categorical data. For example, if

z; is ordered categorical variable, it is natural to assume the



following mapping

vi(1) =1,vi(2) =2,v4(3) =3,....

However, in this mapped feature space, the mutual distance
is not always 1. )

To define covariance based on Gini’s variance on such ap-
propriate feature space ©, we introduce nonlinear mapping
®; from U; to ©. In section 3., relation between feature space
U; and Uj is defined by the orthogonal matrix L.;. We de-
fine same relation on nonlinearly mapped feature space © as

follows
Bi(vi(r)) = Y _ Lijru®; (vi(w), (13)

where, Lij .. is a (r,u) element of matrix L;;. Using ®; and

&;, we can define covariance V;; as follows.
(®:(vil@i0)) — ilvi(za)))(®5(vi(zia)) — i (vi(zp)))
(14)

Then we get similar formulation.

Vij =trace(As;Li;), (15)
where

Ay = %(Nin;n — NN KT

[Kilre = 8:(vi(r)®i(vi(s)) = K;(v;(r), vi(s))

(Nislrs = 3 nigrbas0.0

1=(1,1,1,..1)"

K;(z,y) is kernel function. From the discussion same as
section 3., the orthogonal matrix L;; is determined by the

following optimization problem.
max trace(Ai;Lij t)
Li;
L,'J‘Lijt =E (16)

5. Kernel Principal Component Analysis
(Kernel PCA)

Using definitions of covariance in section 3., 4., we can

define the covariance matrix of a categorical data.

Vii. Vi Vis
C=[Vyl=| Vaa Ver .. @n)

By diagonalizing the covariance matrix, PCA and Kernel
PCA for a categorical data is achieved. In this section, exper-
iments of PCA and Kernel PCA for some sample categorical

data are discussed.

5.1 Samples of Covariance Matrices

There is no way to prove the proposed covariance defini-
tion. Covariance matrices are derived for typical contingency
tables to facilitate the understanding of our proposal.

Our first example is the following 2 x 3 contingency table

shown

zi|r|{n/6 0 =n/6
n/6 n/3 n/6

w

For this contingency table,PCA gives covariance matrix C is

and it’s eigenvalues.
0.22  0.096
C=vyl= (18)
0.096 0.33

It’s eigenvalues are
2= (0.39,0.17)
A1/Xre =23

The correlation coefficient is
R;; =035

Kernel PCA is introduced to realize PCA on appropriate
feature space. If in the above data, differences among each
category are small, then, such feature can be introduced by

using Gaussian kernel with large variance :

K(z,y) = exp(—(z — y)*/10).
Results of Kernel PCA using this kernel function are as fol-
lows

O = Vil = 0.0044 0.0017 (19)
M 0.0017 0.0066

A = (0.0075, 0.0035)
AI/AQ =21
R;; =031

The correlation coefficient and the ratio of maximum and
minimum of eigenvalues are smaler than results of normal
PCA. These decreases seem to be reasonable results, because
the Kernel function decreases differences among each cate-
gory.

Next, example is the following 2 x 3 contingency table

shown
T
u v o w
z;|r|{n/3 n/3 0
st 0 0 n/3




In this contingency table, z; and z; have high correlation.
For this contingency table, we gives covariance matrix C' and

it’s eigenvalues by using PCA.
0.22 0.60
C=[Vy]= 20
[V ( 0.60 0.33 ) (20)

The eigenvalues are

X = (0.48,0.078)

A1/A2 =6.2
Ry =071
Results of Kernel PCA using the kernel function are as fol-
lows
0.0044 0.0038
C=[Vil= (21)
0.0038 0.0066

X = (0.0095, 0.00015)
A1/A2 = 6.3
Rij =0.71

The correlation coefficient and the ratio of maximum and
minimum of eigenvalues are almost same. These results also
seem reasonable. Because most data are on principal compo-
nent, thus decreases differences among each category do not
affect to the correlation coefficient and the ratio of eigenval-
ues.

5.2 Postoperative Patient Data

Our method can give the covariance of mixed categorical
and numerical data. To execute the experiment for mixed
categorical and numerical data, we select Postoperative Pa-
tient Data from the UCI repository. This data consists of 8
attributes, one numeric with missing values, objective vari-
able consists of 3 classes, 90 instances are recorded. By using
our method, covariance matrix C of this data and it’s eigen-
values are calclated. Figure 3 shows eigenvalues of this data.
eigenvalues indexed 1 and 2 are much smaller than other val-
ues. From this result, we can say Postoperative Patient Data
can be explained by fewer variables. Further interpretation
of this result is the future work.

6. Conclusion

We discribed a definition for the variance-covariance ma-~
trix that is equally applicable to numerical, categorical and
mixed data. And it’s nonlinear extension is discussed. Cal-
culations on sample contingency tables yielded reasonable
- results. When applied to numerical data, the proposed
scheme reduces to the conventional variance-covariance con-
cept. When applied to categorical data, it covers Gini’s vari-
ance concept. The previouse work did not give an explicit
algorithm to compute the variance-covariance matrix. This

current work gives the explicit algorithm.

eigenvalue

1 2 3 4 5 6 7 8 9
index of eigenvalue

X 3 Eigenvalue-list
Fig.3 Eigenvalue-list
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