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Extracting Diagnostic Knowledge from Hepatitis Data
by Decision Tree Graph-Based Induction
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Abstract Decision Tree Graph-Based Induction (DT-GBI) is a technique for constructing a decision tree from
graph-structured data. In DT-GBI, substructures (discriminative patterns) are extracted by stepwise pair expansion
(pair-wise chunking) and used as test attributes at nodes of a decision tree. We applied DT-GBI to a classifica-
tion task of hepatitis data. In the first experiment, the stages of fibrosis are used as classes and a decision tree is
constructed for discriminating patients with F4 (cirrhosis) from patients with the other stages using only the time
sequence data of blood inspection. In the second experiment, the types of hepatitis (B and C) are used as classes
and a decision tree is constructed by DT-GBI as in the first experiment. The preliminary results of experiments,
both constructed decision trees and their predictive accuracies, are reported in this paper.
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spection and proper treatment are important in order to pre-

1. Introduction T
vent this situation, there are problems of expensove cost and

Viral hepatitis is a very critical illness. If it is left with- physical burden on a patient. Although there is an alter-

out undergoing a suitable medical treatment, a patient may native much cheaper method of inspection (blood test), the

The progress

suffer from cirrhosis and fatal liver cancer. amount of data becomes enormous since the progress speed

speed of condition is slow and subjective symptoms are not of condition is slow.

noticed easiiy, hence, in many cases, it has already become

very severe when they are noticed. Although periodical in-

The hepatitis data set we are attempting to analyse is
a real-world data provided by Chiba University Hospital.



GBI(G)

Enumerate all the pairs P,y in G

Select a subset P of pairs from P,y (all the pairs in
G) based on typicality criterion

Select a pair from P,y based on chunking criterion

Chunk the selected pair into one node ¢

G, := contracted graph of G

while termination condition not reached
P = P U GBI(G:)

return P

Figure 1 Algorithm of GBI

There are some other analyses already conducted and re-
ported on this dataset. [8] analysed the data by constructing
decision treces from time-series data without discretizingg nu-
meric values. [2] proposed a method of temporal abstraction
to handle time series data, converted time phenomema to
symbols and used a standard classifer. {9] used multiscale
matching to compare time series data and clustered them
using rough set theory. 5] also clustered the time series data
of a certain time interval into several cateogories and used a
standard classifier.

We have proposed a method called Decision Tree Graph-
Based Induction (DT-GBI), which constructs a classifier (de-
cision tree) for graph-structured data while simultaneously
constructing attributes themselves for classification using
GBI[10]. We conducted experiments to test our DT-GBI
using this hepatitis data. The stages of fibrosis are used as
classes in the first two experiments, and the types of hep-
atitis (B and C) are used as classes in the third experiment.
The decision trees are constructed to discriminate between
two groups of patients using no biopsy results but only the

time sequence data of blood inspection.

2. Decision Tree Graph-Based Induction
(DT-GBI)

GBI employs the idea of extracting typical patterns by
stepwise pair expansion (we call this process “chunking”).
In GBI, an assumption is made that typical patterns repre-
sent some concepts and “typicality” is characterized by the
pattern’s frequency or the value of some evaluation func-
tion based on its frequency. Repeated chunking enables GBI
to extract typical patterns of various sizes. The search is
greedy and no backtracking is made. Because of this, some
typical patterns that exist in the input graph may not be
extracted. However, GBI’s objective is not to find all typ-
ical patterns nor all frequent patterns, but to extract only
meaningful typical patterns of certain sizes.The stepwise pair
expansion algorithm is summarized in Figure 1.

To increase the search space and extract more discrim-

DT-GBI(D)
Create a node DT for D
if termination condition reached
return DT
else
P := GBI(D) (with the number of chunking
specified)
Select a pair p from P
Divide D into Dy (with p) and Dy (without p)
Chunk the pair p into one node ¢
Dy := contracted data of Dy
for D; := Dyc, Dn
DT; := DT-GBI(D;)
Augment DT by attaching DT; as its child along
yes(no) branch
return DT
Figure 2 Algorithm of DT-GBI

inative patterns while still keeping the computational com-
plexity within a tolerant level, a beam search is incorporated
to GBI, still, within the framework of greedy search [4]. A
certain fixed numbers of pairs ranked from the top are se-
lected to be chunked individually in parallel. To prevent each
branch growing exponentially, the toal numbers of pairs to
chunk (the beam width) is fixed at every time of chunking.
Thus, at any iteration step, there is always a fixed number
of chunking that is performed in parallel.

If pairs are expanded in a step-wise fashion by B-GBI
and discriminative ones are selected and further expanded

while constructing a decision tree, discriminative patterns

- (subgraphs) can be constructed simultaneously while con-

structing a decision tree. The algorithm of DT-GBI is sum-
marized in Figure 2. Since the values for an attribute are
yes (contains pair) and no (does not contain pair), the con-
strucuted decision tree is represented as a binary tree. Every
time when an attribute (pair) is selected to split the data,
the pair is chunked into a larger node in size. ‘Thus, although
initial pairs consist of only two nodes and one link between
them, attributes useful for classification task are gradually
grown up into larger pair (subgraphs) by applying chunking
recursively.

Recursively partitioning data until each subset in the
partition contains data of a single class often results in over-
fitting to the training data and thus degrades the predictive
accuracy of decision trees. To improve the predictive accu-
racy, a pessimistic pruning used in C4.5(7] is implemented
by growing an overfitted tree first and then pruning it based

on the confidence interval for binomial distribution.

3. Analysis of Hepatitis Data

The data set contains long time-series data (from 1982 to
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Figure 4 An example of graph conversion in phase 3

2001) on laboratory examinations of 771 patients of hepatitis
B and C. The data can be broadly split into two categories.
The first category includes administrative information such
as patient’s information (age and date of birth), pathological
classification of the disease, date of biopsy, and result. The
second category includes temporal record of blood test and
urinalysis. It contains the results of 983 types of both in-
and out-hospital examinations.

To apply DT-GBI, we use two criteria for selecting pairs.
One is frequency for selecting pairs to chunk, and the other is
information gain [6] for finding discriminative patterns after

chunking.

3.1 Data Preprocessing

In phase 1, a new reduced data set is generated because
the data of visit is not synchronized across different patients
and the progress of hepatitis is considered slow. The data
set provided is cleansed ®*™*™*V | and the numeric attributes
are averaged over two-month interval and for some of them,
standard deviations are calculated over six month interval
and added as new attributes. Numerical average is taken for
numeric attributes and maximum frequent value is used for
nominal attributes over the interval. Further, numerical val-
ues are discretized when the normal ranges are given. In case
there are no data in the interval, these are treated as missing
values and no attempt is made to estimate these values. At

the end of this phase, reduced data is divided into several

files so that each file contains the data of each patient.

In phase 2, data in the range from 500 days before to
500 days after the first biopsy of each patient were converted
into a graph. Here, the date of first biopsy and the result,

(Remark2) ' of each patient are searched

to be treated as class
from the biopsy data file. In case that the result of the sec-
ond biopsy or after differs from the result of the first one,
the result from the first biopsy is defined as the class of that
patient for the entire 1,000-day time-series.

In the last phase of data preparation, one patient record
is mapped into one directed graph. Assumption is made
that there is no direct correlation between two sets of patho-
logical tests that are more than a predefined interval (here,
two years) apart. Hence, time correlation is considered only
within this interval. Figure 4 shows an example of conver-
sion of data to graph. In this figure, a star-shaped subgraph
represents values of a set of pathological examination in the
two-month interval. The centre node of the subgraph is a hy-
pothetical node for the two-month interval. An edge pointing
to a hypothetical node represents an examination. The node
connected to the edge represents the value (processed result)
of the examination. And the edge linking two hypothetical

nodes represents time difference.

3.2 Classifying Patients with Fibrosis Stages

Fibrosis stages are categorized into five stages: FO (nor-
mal), F1, F2, F3, and F4 (severe). We constructed decision
trees which distinguish the patients at F4 stage from the pa-
tients at the other stages. In the following two experiments,
we used 32 attributes. These attributes are: ALB, CHE,
D-BIL, GOT, GOT-SD, GPT, GPT_SD, HBC-AB, HBE-
AB, HBE-AG, HBS-AB, HBS-AG, HCT, HCV-AB, HCV-
RNA, HGB, I-BIL, ICG-15, MCH, MCHC, MCV, PLT, PT,
RBC, T-BIL, T-CHO, TP, TTT, TTT.SD, WBC, ZTT, and
ZTT.SD. Table 1 shows the size of graphs after the data
conversion.

As shown in Table 1, the number of instances (graphs)
in cirrhosis (F4) class is 43 while the number of instances
(graphs) in non-cirrhosis ({FO0+F14+F2+F3}) class is 219.
Unbalance in the number of instances may cause a biased
decision tree. In order to relax this problem, we limited the
number of instances to the 2:3 (cirrhosis:non-cirrhosis) ratio
which is the same as in [8]. Thus, we used all instances from
F4 stage for cirrhosis class and select 65 instances from the
other stages for non-cirrhosis class, 108 instances in all. How
we selected these 108 instances is describe later.

A decision tree was constructed in either of the following

(Remark1) : Letters and symbols such as H, L, +, or - are deleted from

numeric attributes.

(Remark?2) : Activity, progress of fibrosis, hepatitis type, etc. can be
taken as class.



Table 1 Size of graphs (classified by fibrosis stage)
Stage FO | F1 | F2 | F3 | F4 | Total
No. of graphs 41125 53| 37| 43 262
Avg. No. of node | 303 | 304 | 308 | 293 | 300 303
Max. No. of node | 349 | 441 | 420 | 414 | 429 441
Min. No. of node | 254 | 152 | 184 | 182 | 162 152

Table 2 Average error rates (%) in exp. 1 and 2

Experiment 1 Experiment 2
cycle Np=20| Ne=20 | N.=20 | N.=20
1 14.81 11.11| 27.78 | 25.00
2 13.89 | 11.11| 26.85| 25.93
3 1574 12.03| 25.00| 19.44
4 16.67 | 15.74| 27.78| 26.68
5 16.67 | 12.96 | 25.00| 22.22
6 15.74 | 14.81 1 23.15| 21.30
7 12.96 9.26 | 29.63| 25.93
8 17.59 | 15.74| 25.93| 2222
9 1296 | 1111} 27.78; 21.30
10 12.96 11.1| 27.78! 25.00
average | 15.00| 12.50| 26.67| 23.52
SD 1.65 2.12 1.80 2.39

two ways: 1) apply chunking N,=20 times at the root node
and only once at the other nodes of a decision tree, 2) ap-
ply chunking N.=20 times at every node of a decision tree.
Decision tree pruning is conducted by postpruning: conduct
pessimistic pruning by setting the confidence level to 25%.

3.2.1 Experiment 1: F4 stage vs {FO+F1} stages
All four instances in FO and 61 instances in F1 stage
for non-cirrhosis class were used in this experiment. We per-
formed 10 cycles of 10 fold cross-validation. In the first cycle,

Figure 6 One of trees from the worst cycle in exp.1 (Ne_20)

Evaluation = 0.2945
Lc =18
non-LC= 0

Eval. =0.0004
LC (total) =16
non-LC (total) = 40
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Figure 8 Pattern 112 = Pattern 122

the beam width was changed from 1 to 15. The lowest pre-
diction error rates were obtained when the width was 15 for
both methods (N-=20 and N.=20). Thus, for the rest nine
cycles, we set the beam width to 15 when running DT-GBL

The overall result is summarized in the left half of Table
2. The average error rate was 15.00% for 1) (N,=20) and
12.50% for 2) (Ne=20). Figure 5 and Figure 6 show one of
the decision trees each from the cycle with the lowest error
rate (cycle 7) and from the cycle with the highest error rate
(cycle 8) respectively. Comparing the both decision trees,
there are three pairs of identical patterns appeared at the

upper level of each tree.

3.2.2 Experiment 2: F4 stage vs {F3+F2} stages
In this experiment, we used all instances in F3 and 28
instances in F2 stage for non-cirrhosis class. As in experi-
ment 1, we performed 10 cycles of 10 fold cross-validation.

P
LO38, w-LCws8 |
-
N

Figure 10 One of trees from the worst cycle in exp.2 (Ne=20)
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Figure 12 Pattern 212 = Pattern 222

The lowest prediction error rate was obtained in the first
cycle when beam width was set to 14 for both 1) and 2).
Thus, we set beam width to 14 when operating DT-GBI in
the remaining nine cycles.

The overall result is summarized in the right half of Ta-
ble 2. The average error rate was 26.67% for 1) (N,=20)
and 23.52% for 2) (N.=20). Figure 9 and Figure 10 show
examples of decision trees each from the cycle with the lowest
error rate (cycle 3) and the cycle with the highest error rate
(cycle 4) respectively. Comparing the both decision trees,
there are two pairs of identical patterns appeared at the up-

per level of each tree.

3.2.3 Discussion

The average prediction error rate in the first experiment
is better than that in the second experiment, as the differ-
ence in characteristics between data in F4 stage and data in
{F0+F1} stages is intuitively larger than that between data
in F4 stage and data in {F34F2}. The averaged error rate of
12.50% in experiment 1 is fairly comparable to one of 11.8%
obtained by the decision tree reported in [8].

Patterns shown in Figure 7, 8, 11, and 12 are sufficiently
discriminative since all of them arc used at the nodes in the
upper level of all decision trees. The certainty of these pat-
terns is ensured as, for almost patients, they appear after the
biopsy.

These patterns may appear only once or several times in
one patient. Figure 13 shows the data of a patient for whome
pattern 111 exists. As we did no attempt to estimate missing
values, the pattern was not counted even if the value of only

one attribute is missing. At data in the Figure 13, pattern

111 would have been counted four if the value of TTT_SD in

the second line had been “1” instead of missing.

3.3 Classifying Patients with Types (B or C)

There are two types of hepatitis recorded in the data set;
B and C. We constructed decision trees which distinguish be-
tween patients of type B and type C. The attributes of anti-
gen and antibody (HBC-AB, HBE-AB, HBE-AG, HBS-AB,
HBS-AG, HCV-AB, HCV-RNA) were not included as they
obviously indicate the type of hepatitis. Table 3 shows the
size of graphs after the data conversion. To keep the number
of instances at 2:3 ratio, we used all of 77 instances in type
B as “Type B” class and 116 instances in type C as “Type
C” class. Hence, therc arc 193 instances in all.

The lowest prediction error rates obtained in the first
cycle (out of 10 cycles of 10 fold cross-validation) were ob-
tained when beam width was set to 5. Thus, we set beam
width to 5 when executing DT-GBI in the remaining nine

cycles.

19330718

19931113
Fieedoz L ]
19940313
19540512

19940809
19941108
19950107
TessoRn
19950507 | L
19950706 | L
19850904 | L.
19951103 § L

Figure 13 Data of No.203 patient
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Table 3 Size of graphs (classified by type)

Stage Type B | Type C | Total
No. of graphs 7 185 | 262
Avg. No. of node 238 286 | 272
Max. No. of node 375 377 377
Min. No. of node 150  167| 150

Table 4 Average error rates (%) in exp. 3

Experiment 3
cycle Nr=20 | Ne=20
1 21.76 | 18.65
2 21.24| 19.69
3 21.24, 19.17
4 23.32| 20.73
5 25.39 | 22.80
6 25.39 | 23.32
7 22.28 | 1865
8 24.87 | 19.17
9 22.80 | 19.69
10 23.83 21.24
average | 23.21| 20.31
SD 1.53 1.57




Figure 15 One of trees from the worst cycle in exp.3 (N,=20)

The overall result is summarized in Table 4. The aver-
age error rate was 23.21% for 1) (IN,=20) and 20.31% for 2)
(N.=20). Figure 14 and Figure 15 show a sample of decision
trees from the cycle with the lowest error rate (cycle 1) and
the cycle with the highest error rate (cycle 6) respectively.
Comparing the both decision trees, two patterns (shown in
Figure 16 and 17) were identical and used at the upper level
nodes. There patterns alsp appeared at almost all the deci-
sion trees and thus are considered to be sufficiently discrim-

inative.

4. Conclusion

This paper reports the preliminary results of analysing
the hepatitis data set from Chiba University Hospital by us-
ing DT-GBL Decision trees were constructed to distinguish
patients at the most severe stage of fibrosis and those at
the other stages in the first two experiments, and decision
trees distinguishing patients of type B and those of type C
were constructed in the third experiment. We believe that

CHE D-BiL

14 months
TG

Pigure 16 Pattern 311 = Pattern 321, if exist then type B

Eval. =0.2431
LC (total) =38
non-LC (total) = 3

Eval. = 0.0240
LC (total) = 31
nen-LC (total) = 108

CHE

TIT_SD

®

Figure 17 Pattern 322 = Pattern 314
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the obtained prediction error rate results are satisfactory in
spite of the fact that many continuous attributes had to be
discretized to keep the running time of DT-GBI within a
reasonable amount.

The future work includes examining the effectiveness of
DT-GBI against this hepatitis data set with another way of
preparing data, e.g., randomly selecting instances from non-
cirrhosis class both for training and testing in {cirrhosis vs
non-cirrhosis} discrimination. Also, the validity of extracted
patterns is to be evaluated and discussed by the domain ex-

perts (medical doctors).
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