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Using Inductive Logic Programming for Predicting Protein-Protein
Interactions — Some Preliminary Results

TuAaN NAM TrRAN' and Tu BAo Hot

Inductive Logic Programming (ILP) is differentiated from most supervised learning meth-
ods both by its use of an expressive representation language and its ability to make use of
background knowledge. This has led to successful applications of ILP in molecular biology,
such as predicting the mutagenicity of chemical compounds, predicting protein secondary
structures, and discovering protein fold descriptions. In this paper, we attempt to apply
ILP to the problem of predicting protein-protein interactions, which plays an essential role
in bioinformatics since many major biological processes are controlled by protein interaction
networks. We have used the Yeast Interacting Proteins Database provided by Ito, Tokyo Uni-
versity as training examples. Various kinds of background knowledge have been constructed
by either extracting from protein databases or using computational approaches. Early results
indicate that ILP is useful for obtaining comprehensible rules to differentiate those protein-
protein interactions that are highly reliable. The predictive accuracy obtained using ten-fold
cross-validation is nearly 80%, demonstrating a promising result of using ILP for predicting

protein-protein interactions.

1. Introduction

The interaction between proteins is funda-
mental to a broad spectrum of biological func-
tions, including regulation of metabolic path-
ways, immunologic recognition, DNA replica-
tion, progression through the cell cycle, and
protein synthesis. The binding of one signaling
protein to another can have a number of conse-
quences. Firstly, such binding can serve to re-
cruit to a signaling protein to a location where
it is activated and /or where it is needed to carry
out its function. Secondly, the binding of one
protein to another can induce conformational
changes that affect activity or accessibility of
additional binding domains, permitting addi-
tional protein interactions. A cell in which sud-
denly the specific interactions between proteins
disappear would become deaf and blind, par-
alytic and finally would disintegrate, because
specific interactions are involved in almost any
physiological process. Moreover, the study of
protein-protein interactions plays an essential
role in cancer treatment, providing important
insight into the functions of many of the known
oncogenes, tumor suppressors, and DNA repair
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proteins. Pharmacogenetic research has also
expanded to include the study of drug trans-
porters, drug receptors, and drug targets.

The full network of protein-protein interac-
tions in model cellular systems should provide
new insights into the structure and properties of
these systems. An enormous amount of protein-
protein interaction data have been obtained
recently for yeast and other organisms using
high-throughput experimental approaches such
as yeast two-hybrid'®, affinity purification and
mass spectrometry?, phage display??). How-
ever, a potential difficulty with these kinds of
data is a prevalence of false positive (interac-
tions that are seen in an experiment but never
occur in the cell or are not physiologically rele-
vant) and false negatives (interactions that are
not detected but do occur in the cell). Although
assessing the reliability of protein-protein inter-
actions is an essential issue, there are still just a
few studies that formulates mathematical mea-
sures. For example, Deng et al. have used a
maximum likelihood method!?) to estimate the
reliability of different data sets. In this paper,
we apply ILP to predicting protein-protein in-
teractions with high reliability for the budding
yeast Saccharomyces cerevisiae. We used the
Yeast Interacting Proteins Database provided
by Ito, Tokyo University as training examples
since this data set contains a specific field called
“IST hit” indicating how many times each in-
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teraction was observed. Various kinds of back-
ground knowledge have been constructed by ei-
ther extracting from protein databases or using
computational approaches. Early results indi-
cate that using ILP is a promising approach to
differentiate protein-protein interactions that
are highly reliable from a large amount of ex-
perimental data.

The remainder of this paper is organized as
follows. Section 2 introduces some related work
concerning protein-protein interactions. Sec-
tion 3 focuses on ILP and the Progol system'?).
Section 4 describes our methodology and ex-
perimental result for predicting protein-protein
interactions using Progol 5.0. Section 5 will
summarizes our work and presents some future
works.

2. Related work

This section describes some conventional
methods applying computational approaches
concerning protein-protein interactions. The
computational methods concerning protein-
protein interactions, in our view, can be clas-
sified into several groups: discovering protein-
protein interactions, predicting and discovering
knowledge on protein-protein interactions, and
evaluating the reliability of protein-protein in-
teractions. We will look at each group in detail.

2.1 Discovering PPI

Although there are many experimental meth-
ods for detecting protein-protein interactions,
they suffer from many limitations such as hold-
ing high false positive and high false neg-
ative rates.  Computational approaches in
a rapid, automatic, and reasonably accurate
manner would complement the experimen-
tal approaches. There exist many different
computational approaches for screening entire
genomes to discover protein-protein interac-
tions from a variety of sources of information:
Based on structural homology Lu et al.'

have used a threading-based algorithm in
which we align the sequence of the protein
of interest to a library of known folds to find
the closest matching structure.

Based on interacting orthologs Matthews
et al.'® have investigated the extent to
which a protein interaction map generated
in one species can be used to predict inter-
actions in another species under the inter-

acting orthologs or “interologs” principle.

Based on gene neighborhood Dandekar et
al.¥), based on the notion of conservation of
gene neighborhood, have identified a num-
ber of genes which have been previously de-
scribed to be physically interacting, show-
ing that gene neighborhood is quite a pow-
erful method for inferring protein-protein
interactions in bacteria.

Based on gene fusion The study of Mar-
cotte et al'® is based on the so-called
Rosetta Stone'®) or gene fusion method,
knowing that many genes become fused
through the course of evolution due to se-
lective pressure.

Based on phylogenetic profiles Pellegrini
et al.?®) have constructed the phylogenetic
profiles of proteins across a selected set of
different genomes using the binary vector
representation. In their study, the clusters
of proteins formed by similar phylogenetic
profiles tend to share the same functions
comparing with random groups of proteins.

Based on phylogenetic tree similarity In
a study by Goh et al.'?), they found a high
correlation coefficient between the corre-
sponding distance matrices of the two in-
teracting protein domains, indicating that
in a control set of known interactions, in-
teracting protein pairs tend to have high
correlation values in their distance matri-
ces.

Based on (correlated) mRNA expression
There is a significant relationship between
gene expression and protein interactions on
the proteome scale’®. In fact, the mean
correlation coefficients of gene expression
profiles between interacting proteins are
higher than those between random protein
pairs.

For further readings on experimental and
computational methods for discovering protein-
protein interactions, the tutorial by Ng and
Tan?!) provides a systematic review on these
issues.

2.2 Predicting and discovering knowl-

edge on PPI

There have been many studies using machine
learning and data mining techniques for pre-
dicting and discovering knowledge on protein-
protein interactions. Bock and Gough® have

0 2140


研究会temp
テキストボックス
－214－


successfully applied a Support Vector Machine
learning system to predict directly protein-
protein interactions from primary structure
and associated data. Deng et al.?) predicted
yeast protein-protein interactions using inferred
domain-domain interactions, showing the inter-
acting domain pairs can be useful for compu-
tational prediction of protein-protein interac-
tions. Oyama et al.?*) have applied Association
Rule Mining to extracting the knowledge from
protein-protein interaction data.

On the other hand, there are a growing num-
ber of papers aim to extract protein-protein in-
teractions from biomedical literature®) 17,

3. ILP and Progol

Inductive Logic Programming (ILP) is the
area of AT which deals with the induction of hy-
pothesized predicate definitions from examples
and background knowledge. Logic programs
are used as a single representation for examples,
background knowledge and hypotheses. ILP is
differentiated from most other forms of Machine
Learning (ML) both by its use of an expressive
representation language and its ability to make
use of logically encoded background knowledge.
This has allowed successful applications of ILP
in areas such as molecular biology and natu-
ral language which both have rich sources of
background knowledge and both benefit from
the use of an expressive concept representation
languages?®).

The ILP is normally provided with back-
ground knowledge B, positive examples E and
negative examples £~ and constructs an hy-
pothesis h. B, ET and E~ and h are each logic
programs. A logic program is a set of definite
clauses each having the form

h+by,....,b,
where h is an atom and by, ..., b, are atoms.
Usually ET and E~ consist of ground clauses,
those for ET being definite clauses with empty
bodies and those for E~ being clauses with
head ’false’ and a single ground atom in the
body.

The conditions for construction of h are as
follows.

Necessity: B £ E*+
Sufficiency: BAhE ET
Weak consistency: BAh [ED

Strong consistency: BAhAE™ DO

The Sufficiency condition captures the no-
tion of generalizing examples relative to back-
ground knowledge. A theorem prover cannot
be directly applied to derive h from B and E7.
However, by simple application of the Deduc-
tion Theorem the Sufficiency condition can be
rewritten as follows.

Suf ficiency* : BA E+ = h

This simple alteration has a profound effect.
The negation of the hypothesis can now be de-
ductively derived from the negation of the ex-
amples together with the background knowl-
edge. This is true no matter what form the
examples take and what form the hypothesis
takes. This approach of turning an inductive
problem into one of deduction is called inverse
entailment'?) . Progol'® is an ILP system based
on inverse entailment, finding the most specific
hypothesis (MSH) among all hypotheses with
no conflict that can explain given positive ex-
amples.

4. Using ILP for predicting protein-
protein interactions

We applied Progol 5.0 to predicting protein-
protein interactions with high reliability. We
used the Tto data set”) to provide the train-
ing examples since this data set contains an at-
tribute called IST hit, standing for how many
times the corresponding interaction was ob-
served. Intuitively, the higher IST hit, the
much more reliable that interaction is. Ito et
al.'Y conducted comprehensive analysis using
their system to examine two-hybrid interactions
in all possible combinations between the 6000
proteins of the budding yeast Saccharomyces
cerevisiae.

Suppose F is a set of whole records with 4549
interactions, where each records is represented
by e; with the IST hit n;. We can denote

E = Uzozl Ey
where

FEi = {61' S E|nl = k}
. Given a IST hit threshold k, we divide into
the set of positive (E;") and negative (E, ) ex-
amples as below.

EI—: = {ei S E|’I’Lz > k}
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Fig.1 Number of interactions for each IST hit among
whole 4549 interactions

E, ={e; € Eln; <k}

Figure 1 indicates the probability distribution
and the average number of interactions per pro-
tein by varying the IST hit. Originally, Ito con-
siders two kinds of data: full data with 4549
interactions, and core data consisting of 841 in-
teractions (18.5%) with the IST hit is greater
than two (k = 2). Note that the average num-
ber of interactions for a protein of the Ito data
set is less than 3 and decreases when increasing
the IST hit.

4.1 Preparing for training examples

The Tto data set consists of 4549 interactions,
of which 841 interactions are positive (E; ), and
3708 interactions are negative examples (FEj ).
The original interactions are concerned with
two ORFs (bait and prey ORF), however, in
order to exploit the background knowledge in
the SWISS-PROT database®, we need to con-
sider the related proteins, not ORFs. It should
be noted that some ORFs occurred in the Ito
data set may not occur in the SWISS-PROT
database. Limited to the pairs of correspond-
ing proteins occurring in the SWISS-PROT
database, we obtained 592 positive and 2546
negative examples, respectively. The portion of
positive examples before and after converting
training examples is almost unchanged (18.5%
and 18.9%, respectively). There are 2571 yeast
proteins occurred in the training examples after
converting.

4.2 Preparing for background knowl-

edge

It should be noted that the key success to
prediction of protein-protein interactions us-
ing ILP depends on how well we can provide
the background knowledge. The background
knowledge may be explicit, such as the location
of a protein in the cell, or whether a protein con-

tains a specific domain or not. In general, this
information could be extracted from protein
databases such as SWISS-PROT database®.
This database can also be used as pointers to
information related to entries and found in data
collections other than SWISS-PROT. For this
type of background knowledge, we have used
the following predicates since they have a strong
link to the functional property of proteins.
subcellular_location(proteinID,location)
This predicate describes the location of the
corresponding protein in the cell. For sim-
plicity, we considered only three kinds of
subcellular location including nuclear, cy-
toplasmic, and mitochondrial.
ec(proteinID,ec_category) This predicate
describes the EC numbers concerning en-
zymes. Enzymes are classified based on
their functions into four-level hierarchical
categories, each of which is labeled by EC
number. In the current work, we considered
only three-level hierarchical categories, ob-
taining 87 EC categories.
dr_pir(proteinID,pir_category) Thisshows
the link between the corresponding protein
and entries in the PIR database®®. We to-
tally obtained 2534 PIR categories.
dr_interpro(proteinID,interpro_category)
This shows the link between the corre-
sponding protein and entries in the Inter-
Pro database®. We totally obtained 1404
InterPro categories.
dr_pfam(proteinID,pfam_category) This
shows the link between the corresponding
protein and entries in the Pfam database!?).
We totally obtained 1007 Pfam categories.
dr_prosite(proteinID,prosite_category)
This shows the link between the corre-
sponding protein and entries in the Prosite
database??).  We totally obtained 577
Prosite categories.
dr_go(proteinID,go_category) This shows
the link between the corresponding protein
and entries in the Gene Ontology®?. We
totally obtained 1333 GO categories.

On the other hand, the background knowl-
edge can be implicitly provided using compu-
tational approaches. For example, we may use
homology search to find proteins with similar
functions. For this type of background knowl-
edge, we have calculated the correlation coeffi-
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high_reliability ppi(A, A) : —
dr_interpro(A, ipr003593).
A homotypic interaction occurs if the corre-
sponding protein contains the InterPro do-
main “AAA_ATPase”.
high_reliability ppi(A, A) : —
dr_interpro(A, ipr008631).
A homotypic interaction occurs if the corre-
sponding protein contains the InterPro do-
main “Glycogen_synth”.
high_reliability ppi(A, A) : —
ec(A,ec2.31).
A homotypic interaction occurs if the cor-
responding protein contains the EC num-
ber 2.3.1 (transferring groups other than
amino-acyl groups).
high_reliability ppi(A, A) : —
ec(A,ecl 1.1).
A homotypic interaction occurs if the corre-
sponding protein contains the EC number
1.1.1 (with NAD or NADP as acceptor).
high_reliability ppi(A, A) : —
subcellular location (A, cytoplasmic).
A homotypic interaction occurs if the cor-
responding protein is located in the cyto-
plasmic of the cell.
high_reliability_ppi(A, B) : —
correlation(A, B, C), gteq(C,0.806).
Protein A interacts with protein B if their
gene expression correlation coefficient is
greater than 0.806.
high_reliability ppi(A, A) : —
correlation(A, B, C),lteq(C,—0.043).
A homotypic interaction corresponding to
protein A occurs if there exists a protein B
that the gene expression correlation coeffi-
cient between A and B is less than -0.043.
high_reliability_ppi(A, B) : —
dr_go(A, go0000778), correlation(A, B, C),
gteq(C,0.297).
Protein A interacts with protein B if A is
related to the GO term “C:condensed nu-
clear chromosome kinetochore” and there
exists a protein B that the gene expression
correlation coefficient between A and B is
greater than 0.297.
Fig.2 ILP rules obtained.

cient between all protein pairs occurred in the
positive and negative examples using the cell
cycle gene expression data provided in3%). This
data contains 6,080 genes with 77 data points
(2 cln3, 2 clb, 18 alpha, 24 cdcl5, 17 cdc28,
and 14 elut). We have used this predicate as
the background knowledge due to the result ob-
tained in'® demonstrating the relation between
the correlation coefficients of gene expression
profiles and the interacting proteins.

Having provided training examples and back-
ground knowledge described above, Figure 2
shows some rules obtained as well as descrip-
tion for each rule.

We also conducted ten-fold cross-validation to
examine the accuracy of the learner, by varying
k as in Table 1).

Table 1 Accuracy obtained by varying IST hit
threshold k

IST hit threshold & Accuracy
1 64.28 + 2.58 (%)
2 79.84 + 2.34 (%)
3 87.03 + 1.36 (%)

5. Conclusions

In this paper, we have applied ILP to the
problem of predicting protein-protein interac-
tions with high reliability. We have used two
kinds of background knowledge by extracting
useful information from protein databases, and
by using a computational approach. The re-
sults obtained are promising, both for the com-
prehensibility of rules generated using ILP and
the cross-validated accuracy. In future work,
we are attempting to exploit more background
knowledge, such as by using homology search.
The proposed approach also needs to be tested
on other data sets, for example BINDY), DIP27),
and MIPS?).
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