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Multiple-Instance Learning Based Heuristics

for Mining Chemical Compound Structure

Cholwich Nattee,† Sukree Sinthupinyo,† Masayuki Numao†
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Inductive Logic Programming (ILP) is a combination of inductive learning and first-order
logic aiming to learn first-order hypotheses from training examples. ILP has a serious bot-
tleneck in an intractably enormous hypothesis search space. This makes existing approaches
perform poorly on large-scale real-world datasets. In this research, we propose a technique
to make the system handle an enormous search space efficiently by deriving qualitative infor-
mation into search heuristics. Currently, heuristic functions used in ILP systems are based
only on quantitative information, e.g. number of examples covered and length of candidates.
We focus on a kind of data consisting of several parts. The approach aims to find hypothe-
ses describing each class by using both individual and relational features of parts. The data
can be found in denoting chemical compound structure for Structure-Activity Relationship
studies (SAR). We apply the proposed method to extract rules describing chemical activity
from their structures. The experiments are conducted on a real-world dataset. The results
are compared to existing ILP methods using ten-fold cross validation.

1. Introduction

Inductive Logic Programming (ILP)2) aims
to learning first-order rules from examples and
background knowledge. ILP combines induc-
tive learning and first-order logic to overcome
limitations of inductive learning which is based
on propositional logic or attribute-value lan-
guage. First-order logic representation pro-
vides capability to handle data which consist
of complicated relations. Such as, data that
is scattered over many tables with relations
among tables. Though, propositionalization al-
lows attribute-value learning system to handle
this kind of data, it causes the number of fea-
tures to become larger and difficult to be man-
aged. Another advantage of ILP is compre-
hension. Learning results are given in form of
first-order rules which are understandable by
human. Nevertheless, a bottleneck of ILP is an
intractably enormous search space caused from
flexibility of first-order logic.

To reduce the search space size, two tech-
niques are mainly used: language bias and in-
formed search. Language bias aims to define
description of learning results to limit possibil-
ity in candidate generation. Informed search

† The Institute of Scientific and Industrial Research,
Osaka University

†† School of Science and Technology, Kwansei Gakuin
University

uses heuristic function to cut unnecessary parts
from searching process. In this research, we fo-
cus on using heuristic function to limit search
space and lead to appropriate rules. Heuristic
functions used in the existing ILP systems are
based only on quantitative information, such as,
the number of examples covered by the consid-
ered candidate or length of the candidate. This
causes the existing approaches sometimes per-
form worse than attribute-value learners. To
overcome the shortcoming, qualitative informa-
tion is required, such as the quality of the cov-
ered examples should be considered.

We therefore propose an improved heuristic
function based on Multiple-Instance Learning
(MIL)1). MIL is an extended two-class propo-
sitional learning approach for data that can-
not be labeled individually, albeit several in-
stances of data are gathered and labeled as a
bag. Each positive bag may consist of both pos-
itive and negative instances. Nevertheless, MIL
aims to obtain models that predict instances
not bags, thereby rendering itself similar to
supervised learning where there are noises in
positive examples. Algorithms from MIL solve
the ambiguity by using similarity or distance
among instances within feature space. Using
distance, target concept is an area where several
instances from various positive bags are located
together and that area is far from instances
from negative bags. We derive this basic idea
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of MIL to evaluate quality of first-order objects
consisting of multiple parts. Each object is con-
sidered as a bag containing several parts. We
evaluate each part using MIL based measure us-
ing similarity or distance among parts. There-
fore, the part whose features are common com-
pared to parts from various positive objects is
evaluated as high value. We evaluate all parts
and incorporate obtained values as weights into
heuristic function. Then, hypothesis candidate
covering high-valued parts is evaluated as high
value and selected first.

The paper is organized as follows. In the
next section, we present details of proposed
method that improves heuristic function used
in ILP to efficiently learn rules from objects
consisting of multiple parts. We focus on clas-
sifying chemical compound according to their
structures. The experiments conducted on real-
world datasets are then presented in Section 4.
Finally, we conclude the paper and consider fu-
ture directions in Section 5.

2. Background

2.1 FOIL
FOIL3) is a top-down ILP system for learn-

ing function-free Horn clause definitions of a
target predicate using background predicates.
The learning process in FOIL starts with train-
ing examples containing all positive and nega-
tive examples, constructs a function-free Horn
clause (a hypothesis) to cover some of the pos-
itive examples, and removes the covered exam-
ples from the training set. Next, it continues to
search for the next clause. When the clauses
covering all the positive examples have been
found, they are reviewed to eliminate any re-
dundant clauses and re-ordered so that all re-
cursive clauses follow the non-recursive ones.

FOIL uses a heuristic function based on the
information theory for assessing the usefulness
of a literal. It provides effective guidance for
clause construction. The purpose of this heuris-
tic function is to characterize a subset of the
positive examples. From the partial developing
clause below

R(V1, V2, . . . , Vk)← L1, L2, . . . , Lm−1

the training examples covered by this clause are
denoted as Ti. The information required for Ti

is given as

I(Ti) = − log2

|T+
i |

|T+
i |+ |T−i |

(1)

If a literal Lm is selected and yields a new set
Ti+1, then the similar formula is given as:

I(Ti+1) = − log2

|T+
i+1|

|T+
i+1|+ |T−i+1|

(2)

From the above, a heuristic used in FOIL is
calculated as an amount of information gained
when applying a new literal Lm;

Gain(Li) = |T++
i | × (I(Ti)− I(Ti+1))(3)

T++
i in this equation is the positive example

extended in Ti+1.
This heuristic function is used over every can-

didate literal and a literal with largest value is
selected. The algorithm will continue until gen-
erated clauses cover all positive examples.

2.2 Diverse Density
Diverse Density (DD) algorithm aims to mea-

sure a point in an n-dimensional feature space
for multiple-instance domains. The DD at
point p in the feature space shows how many
different positive bags have an instance near p,
and how far the negative instances are from p.
Thus, the DD value is high in the area where
instances from various positive bags are located
together, and is rather far from instances from
negative bags. It can be calculated as

DD(x) =
∏

i

P (x|B+
i )

∏

i

P (x|B−i ) (4)

P (x|B+
i ) = 1−

∏

j

(1− e−‖B
+
ij
−x‖2) (5)

P (x|B−i ) =
∏

j

(1− e−‖B
−
ij
−x‖2) (6)

where x is a point in the feature space and Bij

represents the jth instance of the ith bag in
training examples. For the distance, the Eu-
clidean distance is adopted
‖Bij − x‖2 =

∑

k

(Bijk − xk)2 (7)

In the previous approaches, several searching
techniques were proposed for determining the
value of features or the area in the feature space
maximising DD value.

3. Using ILP in Structure-Activity Re-
lationship Studies

The studies of Structure-Activity Relation-
ship aim to find structures in chemical com-
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pounds describing their characteristics or activ-
ities. Knowledge discovered will be useful for
developing new drugs. In recent years, advance
in High Throughput Screening (HTS) technol-
ogy has produced vast amount of SAR data.
Once the rules which predict the activities of ex-
isting SAR data are found, it significantly helps
the screening process. Since each compound
consists of multiple parts, we then gain benefits
from the improved heuristics for a large-scale
data.

The proposed approach incorporates existing
top-down ILP system (FOIL) and applies MIL
based measure to find common features among
parts of positive compounds. The measure is
then used as the weight attached to each part of
the example and the common parts among pos-
itive examples are attached with high-valued
weights. With these weights and heuristic func-
tion based on example coverage, the system
generates more precise and higher coverage hy-
potheses from training examples. Next, we ex-
plain first-order representation used in the pa-
per. After that, the improved heuristic function
is then be explained.

3.1 First-Order Representation
To apply ILP for SAR studies, training ex-

amples are required to be denoted in form of
the first-order logic. Because of flexibility of
first-order logic, there are many ways to de-
note data. We set a common way for data
representation to make preprocessing easier. A
part is denoted using only one predicate. The
first two parameters denote the identification
of data and part. The rest parameters are
used for attributes. For denoting a relation be-
tween parts, we use one predicate for one re-
lation in similar manner to a part. The pred-
icate is written as: part(Data-ID, Part-ID,
Attr1, Attr2, . . .) and relation(Data-ID,
Part-ID1, Part-ID2, . . .).

Each chemical compound is considered
a first-order object. We denote them
based on their structure using two predi-
cates: atom(Compound, Atom, Element) and
bond(Compound, Atom1, Atom2, Type). Fea-
tures related to atom and bond are put as pa-
rameters of predicate. Predicate atom denotes
an Atom of Element in a Compound. Predicate
bond denotes a bond of Type consisting of two
atoms (Atom1 and Atom2). Figure 1 shows an

a 2 a 3 a 4a 1
atom(c1,a1,c) atom(c1,a2,c)
atom(c1,a3,c) atom(c1,a4,c)
bond(c1,a1,a3,1) bond(c1,a2,a3,1)
bond(c1,a3,a4,1)

Fig. 1 Examples of first-order representation of
chemical compound

example of first-order representation. More fea-
tures can be used to represent atoms and bonds
in real-world dataset. In this research, we con-
sider an atom as a part of compound, and a
bond is a relation between two parts. In other
words, a compound is a group of atoms relat-
ing to each other. An atom as a part is used
in the improved heuristic function explained in
the following section.

3.2 Improved Heuristics
The original heuristic function used in FOIL

is based on information theory. Partially de-
veloping hypothesis is evaluated by using the
number of positive and negative tuples cov-
ered. Hence, FOIL selects the literal that cov-
ers many positive tuples but few negative tu-
ples. To make heuristics select better literals,
we derive DD to evaluate literals. From Equa-
tion 1, T+

i and T−i denote set of positive and
negative tuples respectively. We consider each
compound as a bag and each part of compound
as an instance in the bag (Figure 3). DD of
parts are then computed and used as a weight
attached to each part. Therefore, a part with
common features among parts from positive
compound is given a high-valued weight. The
weights are incorporated to the heuristic func-
tion by altering |T+

i | to be the sum of weight. If
heuristic value is high, it means that the candi-
date covers many common parts among positive
compounds. The heuristic function is modified
as follows.

DDs(T ) =
∑

Ti∈T

DD(Ti) (8)

I(Ti) = − log2

DDs(T+
i )

DDs(T+
i ) + |T−i |

(9)

Nevertheless, we still use the number of nega-
tive tuples |T−i | in the same way as the original
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FindBestRule(Examples, Remaining)
• Initialize Beam with an empty rule.
• Do

– NewBeam← {}
– For each clause C in Beam

∗ Generate Candidates by adding all possible
literals to C.

∗ For each new clause nC in Candidates
· Calculate heuristic of nC using DD

values.
· Append nC to NewBeam.

– Beam← Best BeamWidth clauses in NewBeam
– R← Best clause in Beam

• Until Accuracy(R) > ε and PositiveCoverage(R) > γ
• Return R

Fig. 2 The algorithm for finding the best rule from
the remaining positive examples.

a 2 a 3 a 4a 1 a 1 a 2a 3 a 4
Fig. 3 A bag representation of compound

heuristics, since we know that all parts of neg-
ative examples show the same strength. There-
fore, it is similar to weighing all negative parts
with value 1.

3.3 Algorithm
From the modified function, we implement

the prototype system called FOILmp. The
system basically uses the same algorithm as
FOIL. However, to construct accurate hypothe-
ses, beam search is applied. The algorithm
maintains a set of good candidates instead of
selecting best candidate at that time. This
searching strategy makes the algorithm possible
to backtrack to the right direction and finally
get to the goal. Moreover, to obtain rules with
high coverage, we define the coverage ratio, and
the algorithm is set to select only rules cover-
ing positive examples higher than that ratio.
The modified subroutine for selecting rules is
shown in Figure 2. There are two user-defined
parameters: ε for minimum accuracy and γ for
minimum positive example coverage.

4. Experiments and Discussions

4.1 Datasets
We aim to discover rules describing the ac-

tivities of dopamine antagonist. Dopamine
antagonist dataset contains 1,366 compounds
separated into four classes; D1, D2, D3 and
D4. They are obtained from MDDR database
of MDL Inc. Each compound is originally

d1(A) :- atom(A,B,C,D,E,F), E>=3.7, F=3.3,
bond(A,L,B,H,M,N),
bond(A,G,H,I,J,K), K=1.5,
bond(A,O,B,P,Q,R), not_equal(H,P).

The rule shows a compound contains an atom B

with distance to nearest oxygen is larger than 3.7Å,

and distance to nearest nitrogen is 3.3Å. From B,

there are two bonds to H and P. There is another

bond from H to I of length 1.5Å.

Fig. 5 Rules obtained by FOILmp using data for D1
activity.

described in term of the position in three-
dimensional space. Each atom is denoted by
element type. Each bond is represented by re-
lation between two atoms and bond type. Af-
ter preprocessing, three kinds of predicates are
used to denote a compound as shown in Figure
4.

4.2 Comparing to existing ILP ap-
proaches

We conduct ten-fold cross validation to pre-
dict D1, D2, D3, and D4 activities and compare
the experimental results with Aleph5). Aleph
is an ILP system based on inverse entailment.
It has adopted several search strategies, such as
randomized search which helps improve the per-
formance of the system. In this experiment, we
set Aleph to use GSAT4) where the best results
can be generated. Table 1 shows the prediction
accuracy computed for both positive and neg-
ative examples, and then, for only the positive
examples. The table also shows the results of
significance test using one-tailed paired t-test.
The experimental results show that FOILmp
predicts more accurately than Aleph in both ac-
curacy computation methods. The significance
tests also show the confidence level in the differ-
ence between accuracy. Figure 5 and 6 show the
details of rules obtained by FOILmp. We also
found that FOILmp generates rule with higher
coverage than Aleph.

4.3 Comparing to different parts
In the previous experiment, an atom is used

as a part of compound. Its features are
then used to compute DD for weighing. We
can consider a compound composing of dif-
ferent kind of part, and features of that part
can be used to compute DD for weighing.
In this experiment, we consider two adja-
cent bonds as a part of compound. Thus, a
new predicate twobond(compound, twobond,
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atom(compound, atom, element, o-connect, o-min-dist, n-min-dist) – describing an atom
atom in compound with element element. It forms a bond with oxygen atom if o-connect is
1 and has distance o-min-dist and n-min-dist to the nearest oxygen and nitrogen atom
respectively.

bond(compound, atom1, atom2, bondtype, length) – describing a bond bond in compound
compound. This bond links atom atom1 and atom atom2 together with type bondtype and
length length.

link(compound, atom1, atom2, length) – describing a relation link in compound compound.
It links atom atom1 and atom atom2 with length length.

Fig. 4 Predicates used to describe dopamine antagonist compound.

Table 1 Ten-fold cross-validation test comparing the accuracy on dopamine
antagonist data; Superscripts denote confidence levels for the dif-
ference in accuracy between FOILmp and Aleph, using a one-paired
t-test: * is 95.0%, ** is 99.0%; no superscripts denote confidence
levels below 95%.

Activity FOILmp Aleph
Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)
(overall) (only positive) (overall) (only positive)

D1 97.0 85.5 96.0* 78.6**
D2 88.1 79.1 86.4* 70.5*
D3 93.4 78.4 93.1 75.1*
D4 88.4 85.1 87.6* 83.2*

Fig. 6 Structure of compound specified by rule in
Figure 5

bond1, bond2) is generated and included into
the dataset. Figure 7 shows a bag representa-
tion which is different from one shown in Figure
3.

However, to compute DD, features of
twobond are required. As a twobond composes
of two bonds, features of bonds and atoms re-
lated to those bonds are used. In other words,
we construct a new feature space for twobond
based on features of bonds and atoms. This
approach is useful when only features of atom
or bond are unable to discriminate positive and
negative compounds. For instance, if feature of
atom is only an element type, they can be found
in all compounds, such as carbon, oxygen or ni-
trogen. One way to solve this limitation is to
append some special features like one used in
the previous section. The other way is to con-
sider a new part composing of simple parts as
twobond. From this experiment, different rule
is generated as shown in Figure 8 and 9.

5. Conclusion and Future works

We have presented an improved heuristic
function for a data consisting of multiple parts.
Diverse Density, a measure for MIL data, is ap-
plied to weigh parts, so that parts with com-
mon features among positive compounds have
high-valued weights. The weights representing
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a 2 a 3 a 4a 1 a 1 a 3 a 2a 1 a 3 a 4a 2 a 3 a 4
Fig. 7 A bag representation when considering two

adjacent bonds as a part.

d1(A) :- twobond(A,B,C,D), bond(A,C,E,F,G,H),
H<1.3, bond(A,D,E,I,J,K), K<1.5,
K>=1.4, twobond(A,L,M,N),
twobond(A,O,M,P),
N\==P, D\==P, C\==P.

The rule shows a compound contains two adjacent

bonds, C of length shorter that 1.3Å, D of length

between 1.4 and 1.5Å and three adjacent bonds M,

N, and P.

Fig. 8 Rules obtained by FOILmp using twobond as a
part.

Fig. 9 Structure of compound specified by rule in
Figure 8

quality of examples enable ILP to cut off unnec-
essary searching paths from an enormous search
space and produce more efficient rules.

For future works, scaling factor of features
should be considered in DD computing to pro-
duce more suitable heuristics. We plan to eval-
uate the proposed approach on other domains.
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