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Extention of Basket Analysis and Quantitative Association Rule Mining

TaAkASHI WASHIO, ATsUSHI FusiMoTOo and HIROSHI MoTODA'®

Basket Analysis is mathematically characterized and extended to search families of sets in
this paper. These theories indicates the possibility of various new approaches of data mining.
We demonstrate the potential through proposal of a novel approach QARMINT. It performs
complete mining of generic QARs within a low time complexity which has not been well
addressed in the past work. Its performance evaluation shows high practicality.

1. Introduction

Since an algorithm of Basket Analysis was
proposed by Agrawal and Srikant!), a large
number of researches on more efficient Basket
Analysis have been presented in the field of data
mining. A basic principle underlying all of the
algorithms is the bottom up building of can-
didate itemsets in a lattice under a downward
closure property of itemsets, i.e.;, “if any given
itemset a 1s not large, any superset of a will also
not be large.” The most representative measure
to introduce the downward closure property of
the itemsets 1s “support,” i.e., occurrence fre-
quency of an itemset in given transaction data.
If an itemset a occurs more than a threshold
value, i.e., “minimum support,” 1t is called a
“frequent itemset.” When two itemsets ar_1
and by_y sharing their & — 2 elements are fre-
quent, their join ¢i is a candidate frequent item-
set.

Some issues remain in the current Basket
Analysis where transactions and itemsets are
limited to finite Boolean sets. The aforemen-
tioned basic principle has wider applicability
not limited to the search on the finite Boolean
lattice, because it requires only a search space
having (1) a join operation between two sets
and (2) a downward closure property among
sets. In spite of this wide applicability, the
framework of the Basket Analysis has not been
extended to address more generic tasks.

Another issue is the analysis of transac-
tion data including items with numeric val-
ues such as “Age : 32”7 and “NumCars : 2.”
These items are called “numeric items” whereas
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the items having categorical values such as
“Married : Yes” are called “categorical items.”
The clause of an item such as “Age” is called
7 Some categorical item may be
only a clause as “Beer” without its value. An

an “attribute.

association rule in which every numeric item
has appropriate intervals of its value is called a
“quantitative association rule” (QAR). An ex-
ample QAR is “{Age : [30,39] and Married :
Yes} = {NumCars : [2,2]}” which states “a
person who is thirties and married owns two
” Since Srikant and Agrawal proposed an
approach to mine QARs®), number of studies
on the QAR mining have been made. However,
the problem to mine a complete set of QARs in
generic form under representative mining mea-
sures is known to be NP-complete!l). The state

cars.’

of the art has not addressed the complete min-
ing of generic QARs within tractable time com-
plexity as explained in a latter section.

In this paper, first, we extend the framework
of the Basket Analysis to searching families
of sets based on the mathematical character-
ization of the aforementioned basic principle.
Second, we propose a novel approach and its
implementation for complete mining of generic
QARs within a low time complexity O(N log N)
based on the extension where N is the num-
ber of transactions in data. This approach
is called QAR mining by Monotonic INTerval
(QARMINT) by the nature of its mining crite-
rion. Third, its performance evaluation is pre-
sented to show practicality.

2. Extension of Basket Analysis

As mentioned earlier, the basic principle of
the Basket Analysis requires only a search space
having (1) a join operation between two sets
and (2) a downward closure property among
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sets. The operation (1) introduces a structure
on the search space. Let L be a “family of sets”
in which elements are sets. Let a “join” of two
elements a,b in L be an “upper bound” a Ub
which follows the rules
Commutative Rule : a Ub=>0Ua, and
taU(bUe) = (aUb)Uec.
L is called an “upper semilattice” when a U b
exists in L for any pair of elements a,b in L.
Accordingly, the space searched by the join op-
eration is an upper semilattice. On the other
hand, the search space of the conventional Bas-
ket Analysis is a finite Boolean lattice where it
1s finite, an upper bound aUb and a lower bound
a N b exist, and commutative rule; associative
rule, absorption rule, distributive rule and com-
plement rule must hold for the upper bound and
the lower bound. The former search space is far
less constrained than the latter space.

The property (2) of a search space is defined
in a more generic way than that by the con-
ventional support. Let an “inclusion relation”
a C b be an “ordered pair” {a,b} of two ele-
ments a, b where {ay,b1} = {as,bo} iff a1 = as
and by = by hold. Let L be an “ordered family
of sets” where some pairs of its elements have
the inclusion relations. Give a property P of L
where P(a) means that a(€ L) has the property
P. Then the downward closure property P of
L 1s defined as

aCb= P(b) = P(a), (1)
where a,b € L. When L is an upper semilattice,
a C bis given by aUb = b. In familiar settings,
Pla) is sup(a) = |D| = [{tlt € D,a C t}] >
minsup where D is a database, { a transaction
in D and minsup minimum support.

Upon the above characterization, the basic
principle of the Basket Analysis is known to be
applicable to wider classes of problems whose
search space has the upper semilattice struc-
ture and the generic downward closure prop-
erty. We further extend the Basket Analysis to
the search on families of sets. Given two fami-
lies of sets A, B and two sets a € A,b € B, let
f(a,b) be aset function to map the pair of ¢ and
b onto a family of sets F'. Under this definition
of f, we define the following join operation.
AUB ={c|lc€ F = f(a,b),a € A and b € B}.(2)
A set of families of sets L is an upper semilat-
tice, if AU B € L for any pair of families of
sets A, B € L. We also introduce an extended

Associative Rule

downward closure property. Given two families
of sets A, B, let an inclusion relation a C b be
an ordered pair {a,b} of a € A,b € B. Let
L be an “ordered set of families of sets” where
some pairs of sets a, b in some pairs of families
of sets A, B have the inclusion relations. Then
the downward closure property P of L is defined
by Eq.(1) where ¢ € A;b € B and A, B € L.
When L is an upper semilattice, a C b is given
by f(a,b) = {b}. By these definitions, L is a
search space of the Basket Analysis on families
of sets.

3. Complete Mining of Generic QARs

3.1 State of the art of mining QARs

An initiative work to mine QARs was made
by Srikant and Agrawal®). They pointed out a
“catch-227 situation that some rules may not
have minimum confidence if the intervals are
too large, while some rules may not have min-
imum support if they are too small. To avoid
this situation, they proposed a preprocessing
approach consisting of equi-depth partitioning
a numeric attribute space and merging the ad-
Jacent parts to increase a specified interesting-
ness. Subsequently, conventional algorithms of
the Basket Analysis is applied to the prepro-
cessed transaction data. Wang et al. proposed
a more efficient approach to merge adjacent in-
tervals of each numeric attribute rather than to
merge parts in the attribute space?)
complexity O(N log N) is feasible for practical
applications where N 1s the number of trans-
actions in data. However, a drawback of these
approaches is the incompleteness of QAR solu-
tions due to the greedy search strategy.

Approaches to mine optimized QARs have
been explored under an optimized confidence
problem and an optimized support problem.
The former is to mine QARs having maximum
confidence under a minimum support threshold
and the latter to mine QARs having maximum
support under a minimum confidence threshold.
Algorithms to mine QARs including one nu-
meric item and two numeric items along these

. Its time

criteria were proposed®?). Later, an algorithm
to derive general QARs including more than
two numeric items was proposed®). However,
the optimized QARs in generic form are not
mined in tractable time. The time complexity
for mining QARs having one numeric item is
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known to be O(N) and that for two numeric
items O(N®)3). The mining general form of
QARs is known to be NP-complete!V). Some
studies explored to mine interesting and fre-
quent regions in attribute space other than hy-
per rectangles. Fukuda et al. proposed an al-
gorithm to mine two dimensional rectilinear re-
gions in O(N?log N)™). Chen et al. proposed
algorithms to mine stabbed-union of orthogonal
regions, generalized base-monotone regions and
digitized star-shaped regions in d dimensional
attribute space within O(dN'5¢log® N)?). The
state of the art of mining optimized QARs still
faces the intractability of the algorithms.

3.2 QAR mining by MINT

We propose a novel approach called “QAR
mining by Monotonic INTerval (QARMINT)”
for complete mining of generic QARs within
a low time complexity. The key ideas of
QARMINT are to use the aforementioned ex-
tension of the Basket Analysis to families of
sets and to introduce a “Monotonic INTerval
(MINT)” measure having the downward clo-
sure property on hyper rectangles formed by
numeric items.

First, we define some mining measures. Let
a binary (p,q) be an item. (p,q) is called a
numeric item if ¢ is a closed interval on con-
tinuous number field, whereas (p, ¢) is called a
categorical item if ¢ is a categorical symbol. p
stands for an attribute of (p,¢). Let an item-
set a be a set of items (p,¢)s and a set of at-
tributes of a a, = {p|(p,¢) € a}. Given a pair
of itemsets a and b, b supports a, when b is more
or equally restrictive to a. It is represented as
a C b, and defined as Y(p,r) € a,3(p,s) € b,
7 O s for a numeric item and » = s or s = null
for a categorical item. s = null means that
any value is not admitted at s, and hence it is
the most restrictive. Let a transaction ¢ be a
set of items and a data set D a collection of
transactions ts. ¢ of (p,q) € ¢ is usually a point
interval representing a unique value while ¢ can
be a finite interval in general. Let L be a set
of families of sets where some pairs of sets a,b
in some pairs of families of sets A, B have the
inclusion relations a C bs. Given “support” of
a as sup(a) = |Dq| = |{t|t € D,a C t}|, a prop-
erty P of L is that P(a) is sup(a) > minsup.
Then P is a downward closure property of L
according to Eq.(1). Moreover, let ¢ — ¢ be a

QAR where a, Nc, = ¢. Then “confidence” of
a — cis given by conf(a — ¢) = sup(b)/sup(a)
where b = {(p, ¢)|(p,q) € a or (p,q) € c}.

We further introduce a novel class of mining
measures on the hyperspace formed by multi-
ple numeric attributes. Give itemsets a,b and
¢ where ¢ C b and a property P of L where
P(a) and P(b) are ¢ C ¢ and b C ¢ respec-
tively. Because the aforementioned definition of
a C band b C ¢ which is V(p, s) € b,3(p, u) € ¢,
s D u for a numeric item and s = w or u = null
for a categorical item, Y(p,r) € a,3(p,u) € ¢,
7 O u for a numeric item and r = w or u = null
for a categorical item. Hence, ¢ C ¢. Then P
i1s a downward closure property of L according
to Eq.(1). A mining measure to define inter-
vals on numeric attributes having this property
from data D is called a “Monotonic INTerval
(MINT)” measure. An advantage of MINT is
that the optimum intervals for numeric items
can be derived in low time complexity by the
monotonicity.

An example of a MINT measure is the fol-
lowing “denseness”. Given two numeric items
(p,q:) €ti and (p,q;) € t; where t;,t; € D, let
A, be a “permissible range” of p. Then ¢; and
t; are “close” on p if

inf(q;) — sup(g;) <A, and
inf(q;) — sup(gi) < A, (3)
Here, sup(q) and inf(q) are the upper bound
and the lower bound of ¢q. Given a projection
mapping m, of ¢ € D, to the space formed
by all numeric attributes in @, and a mono-
tone hyper rectangular region R, formed by in-
tervals ¢s on all numeric attributes in ap, let
Dpr, = {t|t € Dq4,my(t) € Rys}. When every
t € Dg, has another ¢’ € Dpg, which is close
on all numeric attributes in a,, and all of such
close pairs are mutually connected through the
other close pairs in Dg_, R, is called a “dense
region”’ of a. If any monotone hyper rectangu-
lar region R, (D R,) is not dense, R, is called a
“mazximal dense region (mdr)” under given data
D. Define a “mazimal dense interval (mdi)” qq
of each numeric attribute p in @, as the projec-
tion of the mdr R, onto p. Consider another
itemset b where a, C b, and for all categori-
cal items (p,r) € a, I(p,s) € b,(p,7) = (p,s).
When a, = by, the mdi g, of each numeric at-
tribute in b, is identical with the mdi ¢, of the
numeric attribute in a,, since Dy = D,;. When
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Fig.1 Derivation of R, by join.

b, has some attributes which is not in ay,, let
the projection of the mdr R, onto the space
formed by all numeric attributes in a, be 4.
Then Ry, C Ry, since Dy C Dy. Accordingly,
¢ C qq for each numeric attribute in a,, and
thus @ C b. This concludes that the denseness
measure that the interval of each numeric item
is defined by its mdi is a MINT measure. The
time complexity to derive mdis of numeric at-
tributes is O(N?) in the worst case because the
pair wise evaluation of Eq.(3) is needed, while
its practical complexity is O(N log N) as shown
later.

Next, we define “join” operation of two fami-
lies of sets A, Bin L. Given a(€ A) and b(€ B),
a join F' = f(a,b) is defined as follows. Let ¢
be an itemset where ¢, = a, U by.

(1) Given (p,r) € a, (p, s) € bfor all categorical
P E ap Nby, let (p,r) € ¢if r = s otherwise
(p, null) € c.

(2) Given (p,r) € a for all categorical p € ¢,
and p ¢ by, let (p,7) € c.

(3) Given (p,s) € b for all categorical p € ¢,
and p ¢ ap, let (p,s) € c.

(4) Given an mdiof ¢, g., for all numeric p € ¢,
let (p,qc) € c.

Given (p,r) € a,(p,s) €b and (p,u) €Ec, r =u

or u = null for each categorical p € a, and s =

u or u = null for each categorical p € b, from

(1) to (3). From (4) and the denseness being a

MINT measure, r O u for each numeric p € a,

and s D u for each numeric p € b,. Accordingly,

a C cand b C ¢, and the join F = f(a,b) gives

the upper bounds of a,b. ¢ may not be unique,

since multiple mdr R.s can be derived. Also ¢

may not exist, since (p, null) can be obtained

in (1), or the mdr R, can not exist, i.e., ¢. =

null in (4). Figure 1 depicts these cases. In

(a), R of the combined itemset ¢ is multiple
due to the lack of uniformity of ¢ € D.., even if
R, and R, of the original itemsets are unique
respectively. In (b), R, does not exist due to
the low denseness of ¢ € D.. Accordingly, F
derived via f(a,b) is a family of sets in general.
Then we obtain the join operation ¢' = AU B
by Eq.(2). From the above discussion, Ya €
A,Je € C,a C ¢, and thus A C C'. Similarly,
B C C. This indicates that the join AU DB gives
the upper bound of A, B. Let C' € L, then L 1s
an upper semilattice.

Based on this definition of join operation on
families of sets with denseness and the defini-
tions of support and confidence, the most of
the standard algorithms of the Basket Analy-
sis whose complexity is O(N) can be applied to
derive generic QARs from data.

3.3 Implementation

To assess the basic features of QARMINT,
we used the standard Apriori-TID algorithm?),
since it 1s principally an algorithm running on
memory, and its computational features are
well known. Instead of hash tables, the trie
data structure as depicted in Fig. 2 was used.
To avoid redundant joins, the items are lexico-
graphically ordered by their attributes ps and
values ¢s, and only two itemsets a,b sharing
identical attributes except for the last items
are joined. The lines among itemsets represent
the parent-child relations; and the indexing in
the trie i1s made only along the solid lines for
younger parents. If any subsets of the joined
set ¢ € F' = f(a,b) are not frequent according
to a given minsup, c is pruned before its mdr
R is computed. Moreover, after computing the
mdr R¢s, ¢ is pruned if ¢ is not frequent, z.e.,
sup(c) = |De| = [{t|t € D,c C t}| < minsup.
The pruning by these checks are indicated by
the slashed itemsets in Fig. 2. A difference from
the original Apriori-TID algorithm is that the
join of two itemsets a, b within a family depicted
by a solid box 1s not allowed, and the itemsets
cs obtained from a pair of families A, B belong
to an identical family C'. Another difference is
that a join of @, b can generate multiple itemsets
cs as depicted in a dashed box.

The most expensive process in QARMINT
is to derive the mdr R.s of joined itemset
c¢. We introduce an iterative approach to re-
duce the required computation time. Let ¢ =
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{(p1,41), -, (i, qi) }. First, for an attribute p;
in ¢, all transactions in D are sorted according
to the values ¢; of p;. This sort list is generated
for every attribute p; in ¢. This is O(N log N).
Then, the mdis on the number line of p; are
computed from the transactions without tak-
ing into account the other attributes. When
multiple mdis are obtained, one of them is fo-
cused, and the transactions in the mdi is re-
tained. Next, the identical process is applied to
p2 within the retained transactions, and this re-
cursively continues in depth first search (DFS).
After the mdis on p; is computed, the process
continues again from p; until the mdi of every
pi(i = 1,..., k) converges. The mdis always con-
verge to these of the mdr R. because the dense-
ness is a MINT measure. After the convergence,
the search is backtracked to the next mdr R..
The computation of mdis in each step requires
O(N) time at most. In the worst case, only one
transaction is dropped in each step, and N steps
required until the mdis converge. Thus, O(N?).
However, this does not likely occur. Practically,
only a portion of the transactions are retained
in each step. Let 0 < a < 1 be an expected
rate of transactions retained in each step, m
the required steps for convergence. The process
to search an mdr R, stops at the latest when
the number of retained transactions a”™N be-
comes less than minsup. By solving the equa-
tion minsup ~ o™ N with m, m is O(log N).
Accordingly, the expected time complexity of
this most expensive process is O(N log N).

4. Performance Evaluation

The performance of QARMINT has been
evaluated through both artificial data and real
bench mark data. Sets of artificial data have
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Fig.3 Time complexity.

been generated under various combinations of
number of transactions, average transaction
size, number of item types and number of fre-
quent patterns. Then QARMINT tested these
data sets under various values of minsups and
Aps. The characteristics of the computation
time is simlilar to the conventional Basket Anal-
ysis except for A, and the number of transac-
tions N. Similarly to the conventional Basket
Analysis, the computation time increases expo-
nentially when minsup are decreased, and av-
erage transaction size is increased. It does not
change significantly for the variations of num-
ber of item types and number of frequent pat-
terns. The time moderately increases when Aps
of all attributes are increased. This is because
wider permissible ranges increases the number
of mdrs. Figure 3 shows the dependency of the
computation time on the number of transac-
tion N. The curve almost follows the relation
O(N log N).

The real bench mark data “Labor relations
Database” in UCI Machine Learning Reposi-
tory'?) was analyzed by QARMINT. It contains
57 instances, 8 numeric attributes and 8 cate-
gorical attributes and many missing values. We
ignored the attributes of missing values in each
instance, and transformed the data into trans-
actions. Though the size of this data is quite
small, we found many interesting QARs associ-
ated with the labor conditions under minsup =
0.1 and A, = 0.1 which is 10% of the maximum
and minimum values of each p in the data. The
following two are examples.
sup = 35%, conf = 65%,
class : good, duration — years :
working — hours : [33 — 40],
wage —increase—second—year(%) : [4.0-5.8],

[2,2] =

01210


研究会temp
テキストボックス
－121－


sup = 35%, conf = 65%,

class : good, duration — years : [3,3] =
working — hours : [35 — 40],

wage —increase—second—year(%) : [3.5—5.0].
These rules indicate that the workers having
longer duration contracts and evaluating their
labor condition as good admit longer working
times and less wage increase. These evaluations
indicate the sufficient tractability and the prac-
tical applicability of QARMINT.

5. Conclusion

The mathematical characterization and the
extension of the Basket Analysis presented in
this paper are expected to provide variety of
new approaches of data mining. Their potential
has demonstrated by a novel approach called
QARMINT for complete mining of generic
QARs within a low time complexity. We are
implementing QARMINT in a more efficient al-
gorithm and evaluating its performance in near
future.
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