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Cl-GBI: A Novel Strategy to Extract Typical Patterns from Graph Data

Phu Chien Nguyen, Kouzou Ohara, Hiroshi Motoda

and Takashi Washio
†

A machine learning technique called Graph-Based Induction (GBI) extracts typical patterns
from graph data by stepwise pair expansion (pair-wise chunking). Because of its greedy search
strategy, it is very efficient but suffers from incompleteness of search. Also, it cannot give
the correct number of occurrences as well as the positions of patterns in each transaction
of the graph data. Improvement is made on its search capability by using a new search
strategy, where frequent pairs are never chunked but used as pseud-nodes in the subsequent
steps, thus allowing extraction of overlapping subgraphs. This new algorithm, called Cl-
GBI (Chunkingless Graph-Based Induction), was tested against two datasets, the promoter
dataset from UCI repository and the hepatitis dataset provided by Chiba University, and
shown successful in extracting more typical substructures.

1. Introduction

In recent years, discovering frequent patterns
of graph data, i.e., frequent subgraph mining
or simply graph mining, has attracted much re-
search interest because of its broad application
areas such as bioinformatics6), cheminformat-
ics7),13), etc. Moreover, since these patterns
can be used as input to other data mining tasks
(e.g., clustering and classification5)), the graph
mining algorithms play an important role in
further expanding the use of data mining tech-
niques to graph-based datasets.

AGM7) and a number of other methods
(AcGM8), gSpan13), FFSM6), etc.) have been
developed for the purpose of enumerating all
frequent subgraphs of a graph database. How-
ever, the computation time increases exponen-
tially with input graph size and minimum sup-
port. This is because the kernel of frequent sub-
graph mining is subgraph isomorphism, which
is known to be NP-complete4).

On the other hand, existing heuristic algo-
rithms, which are not guaranteed to find the
complete set of subgraphs, such as SUBDUE3)

and GBI (Graph-Based Induction)14), tend to
find an extremely small number of patterns.
Both the two methods use greedy search to
avoid high complexity of the subgraph isomor-
phism problem. GBI extracts typical patterns
from graph data by recursively chunking two

† Institute of Scientific and Industrial Research, Os-
aka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-
0047, Japan.

adjoining nodes. Later an improved version
called B-GBI (Beam-wise Graph-Based Induc-
tion)10) adopting the beam search was pro-
posed to increase the search space, thus extract-
ing more discriminative patterns while keeping
the computational complexity within a tolerant
level.

Since the search in GBI is greedy and no back-
tracking is made, which patterns are extracted
by GBI depend on which pairs are selected for
chunking. There can be many patterns which
are not extracted by GBI. B-GBI can help al-
leviate this problem, but cannot solve it com-
pletely because the chunking process is still in-
volved.

In this paper we propose a novel algorithm
for extracting typical patterns from graph data,
which does not employ the pair-wise chunking
strategy. Instead, the most b (beam width)
frequent pairs are regarded as new nodes and
given new node labels in the subsequent steps
but none of them is chunked. In other words,
they are used as pseud-nodes. This algorithm,
now called Chunkingless Graph-Based Induc-
tion (or Cl-GBI for short), was evaluated on two
datasets, the promoter dataset from UCI repos-
itory and the hepatitis dataset provided by
Chiba University, and shown successful in ex-
tracting more typical substructures compared
to the B-GBI algorithm.

2. Graph-Based Induction Revisited

2.1 Principle of GBI
GBI employs the idea of extracting typical
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Fig. 1 Principle of GBI.

patterns by stepwise pair expansion as shown
in Fig. 1. In the original GBI an assumption is
made that typical patterns represent some con-
cepts/substructure and “typicality” is charac-
terized by the pattern’s frequency or the value
of some evaluation function of its frequency.
We can use statistical indices as an evaluation
function, such as frequency itself, Information
Gain11), Gain Ratio12) and Gini Index2), all of
which are based on frequency. In Fig. 1 the
shaded pattern consisting of nodes 1, 2, and 3 is
thought typical because it occurs three times in
the graph. GBI first finds the 1→3 pairs based
on its frequency, chunks them into a new node
10, then in the next iteration finds the 2→10
pairs, chunks them into a new node 11. The
resulting node represents the shaded pattern.

It is possible to extract typical patterns of
various sizes by repeating the above three steps.
Note that the search is greedy. No backtrack-
ing is made. This means that in enumerat-
ing pairs no pattern which has been chunked
into one node is restored to the original pat-
tern. Because of this, all the ”typical patterns”
that exist in the input graph are not necessar-
ily extracted. The problem of extracting all
the isomorphic subgraphs is known to be NP-
complete. Thus, GBI aims at extracting only
meaningful typical patterns of a certain size. Its
objective is not finding all the typical patterns
nor finding all the frequent patterns.

As described earlier, GBI can use any crite-
rion that is based on the frequency of paired
nodes. However, for finding a pattern that is of
interest any of its subpatterns must be of inter-
est because of the nature of repeated chunking.
In Fig. 1 the pattern 1→3 must be typical for
the pattern 2→10 to be typical. Said differ-
ently, unless pattern 1→3 is chunked, there is
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Fig. 2 Missing patterns due to chunking order.

no way of finding the pattern 2→10. Frequency
measure satisfies this monotonicity. However, if
the criterion chosen does not satisfy this mono-
tonicity, repeated chunking may not find good
patterns even though the best pair based on the
criterion is selected at each iteration. To resolve
this issue GBI was improved to use two criteria,
one for frequency measure for chunking and the
other for finding discriminative patterns after
chunking. The latter criterion does not neces-
sarily hold monotonicity property. Any func-
tion that is discriminative can be used, such
as Information Gain11), Gain Ratio12) and Gini
Index2), and some others.

2.2 Beam-wise Graph-Based Induc-
tion (B-GBI)

Since the search in GBI is greedy and no back-
tracking is made, which patterns are extracted
by GBI depends on which pair is selected for
chunking. There can be many patterns which
are not extracted by GBI. In Fig. 2, if B–C is
selected for chunking beforehand, there is no
way to extract the structure A–B–D even if it
is a typical pattern.

A beam search is incorporated to GBI, B-
GBI10), within the framework of greedy search
in order to relax this problem, increase the
search space, and extract more discriminative
patterns while still keeping the computational
complexity within a tolerant level. A certain
fixed number of pairs ranked from the top are
selected to be chunked individually in parallel.
To prevent each branch growing exponentially,
the total number of pairs to chunk (the beam
width) is fixed at every time of chunking. Thus,
at any iteration step, there is always a fixed
number of chunking performed in parallel.

Figure 3 shows how search is conducted in
B-GBI when beam width is set to five. First,
five frequent pairs are selected from the graphs
at the starting state in search (cs in Fig. 3).
Graphs in cs are then copied into the five states
(c11 ∼ c15), and each of five pairs is chunked
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Fig. 3 Beam search in B-GBI (beam width = 5).

in the copied graphs at the respective state. At
the second cycle in search, pairs in graphs are
enumerated in each state and five frequent pairs
are selected from all the sates. In this example,
two pairs are selected from c11, one pair from
c13, and two pairs from c14.

At the third cycle in search, graphs in c11
are copied into c21 and c22, graphs in c13 are
copied into c23, and graphs in c24 are copied
into c24 and c25. As in the second cycle, the
selected pairs are chunked in the copied graphs.
The states without the selected pairs (in this
example c12 and c15) are discarded.

Another improvement made in conjunction
with B-GBI is canonical labeling. GBI assigns a
new label for each newly chunked pair. Because
it recursively chunks pairs, it happens that the
new pairs that have different labels happen to
be the same pattern (subgraph). A simple ex-
ample is shown in Fig. 4. They represent the
same pattern but the way they are constructed
is different. To identify if the two pairs repre-
sent the same pattern, each pair is represented
by canonical label4) and they are regarded iden-
tical only when the label is the same.

A

B

C A

B

C

Fig. 4 Two different pairs representing identical
patterns.

3. Problem of Overlapping Subgraphs

As described in Section 2.2, the GBI algo-
rithm cannot overcome the problem of overlap-
ping subgraphs. B-GBI can help alleviate this
problem, but cannot solve it completely because

the chunking process is still involved.
Any subgraph that GBI (and also B-GBI) can

find is along way in the chunking process. Thus,
it happens that a pattern found in one input
graph is unable to be found in the other input
graph even if it does exist in the graphs. An ex-
ample is shown in Fig. 5, where even if the pair
A – B is selected for chunking and the structure
D – A – B – C exists in the input graphs, we
may not find that structure because an unex-
pected pair A – B is chunked (see Fig. 5(b)).
This causes a serious problem in counting the
frequency of a pattern.

D

A B

C D

A B

C

B

(a) (b)

Fig. 5 A pattern is found in one input graph but not
in the other.

The complete graph mining algorithms (such
as AGM7), AcGM8), gSpan13), etc.) do not
face the problem of overlapping subgraphs since
they can find all frequent patterns in the graph
data. These methods can help answer the query
“how many transactions of the graph data con-
tain this pattern?” They, however, are not able
to provide us with information about the num-
ber of occurrences of a pattern in any transac-
tion of the graph data. They also cannot give us
the positions of the pattern in any graph trans-
action which is required by non-expert users. In
addition, these algorithms are not designed for
the purpose of enumerating frequent patterns
in a single large graph.

On the other hand, SUBDUE3), GBI14) and
GREW9) are designed for the purpose of enu-
merating typical patterns in a single large graph
only. Specially, B-GBI10) can find (not all) typ-
ical patterns in either a large single graph or
a set of graphs but it cannot detect the po-
sitions of patterns. In Section 4, we will in-
troduce a novel algorithm that can overcome
the problem of overlapping subgraphs imposed
on GBI and B-GBI. The proposed algorithm,
called Cl-GBI (Chunkingless Graph-Based In-
duction), employs a “chunkingless” strategy,
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where frequent pairs are never chunked but
used as pseud-nodes in the subsequent steps,
thus allowing extraction of overlapping sub-
graphs. It can also give the positions of pat-
terns present in each graph transaction as well
as be applied to find frequent patterns in either
a single large graph or graph datasets.

4. Chunkingless Graph-Based Induc-
tion (Cl-GBI)

4.1 Approach
The basic ideas of Cl-GBI are described as

follows. Those pairs that connect two adjoining
nodes in the graphs are counted and the most
b (beam width) frequent pairs are selected. In
B-GBI, each of the selected pairs is registered
as one node and this node is assigned a new
label. Then, the graphs in the respective state
are rewritten by replacing all the occurrences
of the selected pair with a node with the newly
assigned label (pair-wise chunking).

In Cl-GBI, we also register the b selected
pairs as new nodes and assign b new labels to
them. But those pairs are never chunked and
the graphs are not “compressed”. Thus, there
is no need to copy the graphs into b states as
in B-GBI. In the presence of the pseud-nodes
(i.e., newly assigned-label nodes), we count the
frequencies of pairs consisting of at least one
pseud-node. The other can be either one of
pseud-nodes including those already created in
the previous levels or an original one. In other
words, the other is one of the existing nodes.
Among the remaining pairs (after selecting the
most b frequent pairs) and the new pairs which
have just been counted, we select the most b
frequent pairs again and so on.

These steps are repeated Ne times, each of
which is referred to as a level. Those pairs that
satisfy a typicality criterion (e.g., pairs whose
Information Gain exceeds a given threshold)
among all the extracted pairs are the output
of the algorithm.

A frequency threshold is used to reduce the
number of pairs being considered to be typical
patterns. Another possible method to reduce
the number of pairs is to eliminate those pairs
whose typicality measure is below its thresh-
old even if their frequency count is above the
threshold. The two parameters b and Ne con-
trol the search space. Frequency threshold is

another important parameter. With these pa-
rameters, there are two options to control the
search.

Option 1: Find the subgraphs above the fre-
quency threshold within the search space de-
fined by the parameters b and Ne.

Option 2: Find all the subgraphs above the
frequency threshold. In this case, the thresh-
old value is assumed to be large enough so that
the search space is manageable with appropri-
ate values of b and Ne.

As in B-GBI, the Cl-GBI approach can han-
dle both directed and undirected graphs. It also
can handle both general subgraphs and induced
subgraphs.

4.2 Algorithm of Cl-GBI

Input A graph database, two natural numbers
b (beam width) and Ne (number of levels),
and a frequency threshold θ.

Step 1 Extract all the pairs consisting of con-
nected two nodes in the graphs, register
their positions using node id (identifier)
lists, and count their frequencies. Since the
2nd level, extract all the pairs consisting of
connected two nodes with at least one of
which is a newly assigned-label node, the
other can be either a newly assigned-label
node including those already created in the
previous levels or an original one (i.e., the
other is one of the existing nodes).

Step 2 Select the most b frequent pairs from
among the pairs extracted at Step 1 (since
the 2nd level, from among the unselected
pairs in the previous levels and the newly
extracted pairs). Each of the b selected pairs
is registered as a new node. If either or
both nodes of the selected pair are not in
the set of original nodes of the graphs (i.e.,
they are newly assigned-label nodes), they
are restored to the original patterns before
registration.

Step 3 Assign a new label to each pair selected
at Step 2 but do not rewrite the graphs. Go
back to Step 1.

These steps are repeated Ne times (Ne lev-
els). All the pairs extracted at Step 1 in all the
levels (i.e. level 1 to level Ne) including those
that are not newly labeled are ranked based on
a typicality criterion (e.g., Information Gain).
It is worth noting that those pairs that have fre-
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Fig. 6 An example of frequency counting.

quency count below a frequency threshold θ are
eliminated, which means that there are three
parameters b, Ne, θ to control the search.

To count the number of occurrences of a pat-
tern in a graph transaction, the canonical la-
beling employed in 10) is adopted. However,
only canonical label cannot solve the prob-
lem completely as shown in Fig. 6. Suppose
that the pair A → B is registered as a pseud-
node N in Fig. 6(a). How many times the pair
N → B should be counted? If only canon-
ical label is considered, the answer is 2 as
shown in Fig. 6(b). However, N → B should be
counted once. Our solution is to incorporate the
canonical label with the node id set. This solu-
tion cannot be applied to count the frequency
of pattern A – A – A in Fig. 7(a) as illustrated
in Figs. 7 (b), (c), and (d). However, in the case
of enumerating frequent induced subgraphs, it
causes no problem.

The output of Cl-GBI algorithm is a set of
ranked typical patterns, each of which comes
together with the positions of any occurrence
in every transaction of the graph data (given
by node id lists) as well as the number of oc-
currences in each graph transaction.

5. Experiments

To assess the performance of the Cl-GBI ap-
proach, we conducted two experiments on both
synthetic and real-world graph datasets. The
proposed Cl-GBI algorithm was implemented in
C++. Since the current implementation is very

A A

A

A A

A

A A

A

A A

A

(a) (b)

(c) (d)

Fig. 7 Three occurrences but counted once.

naive, we do not evaluate the computation time.
It should be noted that all graphs/subgraphs
reported here are connected ones.

In the first experiment, we show that Cl-GBI
is capable of finding all frequent patterns in a
single large graph. An example of a single graph
is shown in Fig. 8(a). The problem here is to
find frequent induced subgraphs that occur at
least 3 times in the graph. Figure 8(c) shows
an example of frequent induced subgraph which
has the support of 3.

The current algorithms that are designed for
extracting frequent patterns in a single large
graph (such as GBI14), B-GBI10), SUBDUE3),
or GREW9), etc.) cannot discover the pattern
shown in Fig. 8(c) because three occurrences of
this pattern are not disjoint, but overlapping.
Meanwhile, the complete graph mining algo-
rithms (like AcGM8), gSpan13), etc.), in case
that they are adapted to find frequent patterns
in a single graph, also cannot find that pat-
tern because of the monotonic nature. Since
the pattern shown in Fig. 8(b) occurs only once
in the graph and thus cannot be extracted, the
pattern shown in Fig. 8(c) which is one of its
super-graph is also unable to be found.

The proposed Cl-GBI, on the other hand, can
find 35 frequent induced subgraphs, including
the one shown in Fig. 8(c), with b = 3, Ne = 5.

B B

B

A AB B

B

(b) (c)

B B

B

A A

A

A

A

A

(a)

Fig. 8 An example of finding frequent patterns in a
single graph.

In the second experiment, we evaluate the
performance of Cl-GBI on the promoter dataset
from UCI repository1) (promoter sequences
only) and the hepatitis dataset provided by
Chiba University (response to interferon ther-
apy only). These promoter and hepatitis
datasets were converted to undirected and di-
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rected graphs, respectively. The former con-
tains of 53 undirected graphs having the same
size of 57 (note: for this experiment only), while
the latter has 56 directed graphs having the av-
erage size of 75.4. We compare the number of
frequent induced subgraphs discovered by Cl-
GBI with B-GBI10) and AcGM8) given the min-
imum support threshold of 50%. B-GBI is an
improved version of GBI, while AcGM can ex-
tract all frequent induced subgraphs.

Table 1 Number of frequent induced subgraphs
obtained from the promoter dataset.

Algorithm #discovered patterns Parameters
Cl-GBI 2164 b =5, Ne = 5
Cl-GBI 4638 b =6, Ne = 10
B-GBI 580 b = 5
AcGM 4638 N/A

Table 1 shows some experimental results ob-
tained from the promoter dataset. It is shown
that Cl-GBI can find more frequent patterns
than B-GBI given the same beam width. Also,
Cl-GBI can find all the frequent patterns in
graph data by selecting suitable parameters.

For the hepatitis dataset, Cl-GBI extracts
4488 frequent patterns with b = 5, Ne = 10 and
B-GBI finds 870 frequent patterns with b = 5.
Meanwhile, since AcGM has not been imple-
mented to handle directed graphs, we cannot
use it to find frequent patterns in this graph
dataset. However, suppose that the graphs in
this dataset are undirected, AcGM cannot give
the results due to the large graph size.

6. Conclusion

A novel algorithm, Cl-GBI, was introduced
for the purpose of discovering typical pat-
terns in either a single large graph or graph
databases. The proposed method employs a
“chunkingless” strategy which helps overcome
the problem of overlapping subgraphs. Also,
Cl-GBI can give the number of occurrences as
well as the positions of patterns in each transac-
tion of the graph data. Experiments conducted
on both synthetic and real-world graph data
confirm its effectiveness.
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