
1

Preprocessing Planning for Data Mining

Atsushi Shiro,† Masayuki Numao†† and Cholwich Nattee††

Due to accumulating data in computer networks, data mining is recently in the spotlight
as an effective data processing technology. However, AI technology is hardly used except for
the data analysis. The automation of preprocessing using AI research is expected. Planning
system has three inputs: descriptions of the world , the agent’s goal and the possible actions.
The planner’s output is a sequence of actions which achieve the goal. We define the pre-
processing process using metadata where the characteristics of the data are extracted, and
propose how to carry out automatic preprocessing by using planning system and metadata
which is used for a description of the world and the goal.

1. Introduction

Recent development of computer and net-
work helped decrease the cost of data gathering
and enabled automatic access to huge amount
of new data. However the data are collected
rather incidentally than intentionally for spe-
cific purposes and not necessarily in a form suit-
able for analysis algorithm, which makes anal-
ysis difficult as it is. There rises a need for
preprocessing such as data cleaning, re-editing,
and data preparation. This preprocessing has a
critical influence on data analysis results and is
considered as one of the most important steps,
occupying 60% of the whole processing time.
Despite many active researches on data anal-
ysis, not many have been made comprehen-
sively on preprocessing except minor researches
on individual data cleaning steps such as data-
merging and missing value filling.

We developed TransX system utilizing XML
in order to automatize preprocessing by AI
methods. In this system, having XML as in-
put, users can preprocess by filtering as they
watch simplified XML tree structures called
“unit tree”. We find out what kind of process-
ing was performed for similar data structure in
the past by reviewing the history and specify a
possible filter to be applied next. But in real-
ity, history was presented only when they had
the same data structure, failing to function ef-
fectively.

So we first formulated preprocessing and ap-

† Department of Computer Science, Tokyo Institute
of Technology

†† The Institute of Scientific and Industrial Research,
Osaka University

plied the formula to extract data characteris-
tics. Then we formulated preprocessing utiliz-
ing the extracted metadata. Planning system
automatically generates action called “plan”
when given initial state, goal state and oper-
ator set. Taking advantage of this nature, we
propose a method for automatic preprocessing
using metadata where we define metadata of
existing dataset as “initial state”, metadata of
the aimed data as “goal state” and operation for
metadata as “operator set”. We implemented
this method as actual system with suggestions
for solving problems expected to arise. Then
we applied this method to real-world data as
case study to verify the effectiveness.

2. Preprocessing Formulation

We formulate preprocessing using metadata
with the idea: “preprocessing is a combination
of many small data processing operation”. First
we define processing for file or a set of file

Definition 2.1 (Command)
Processing for file f or set of file F is called
command, described as c. When command c is
applied to F and the obtained result is F ′, it is
shown as

F ′ = c(F)

One command c is a unit of operation no mat-
ter how big it is; it can be a single query by SQL
or a comparatively large processing using spe-
cial tools. Using this command, the following
command sequence can be defined.

Definition 2.2 (Command sequence)
When commands are executed in sequence for
set of file F and F ′ is generated, it is shown as

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2004／12／4

研究会temp
テキストボックス
2004－ICS－138　(15)

研究会temp
テキストボックス
－85－

2

F ′ = cn(cn−1(cn−2(...c1(F)...))) =
n⊙

k=1

ck(F)

where
⊙n

k=1 ck is called command sequence.

All above leads us to define preprocessing as
follows:

Definition 2.3 (Preprocessing)
Preprocessing is to find and implement com-
mand sequence

⊙n
k=1 ck that satisfies

F ′ =
n⊙

k=1

ck(F)

where desired preprocessed file is ft ∈ F ′.

3. Preprocessing Using Metadata

Here is how we perform preprocessing using
metadata. Data mining handles enormous and
complex data, which makes comprehensive un-
derstanding very difficult. This naturally leads
to processing using metadata. For example, we
simply perform data sampling, define process-
ing sequence for the sample data, and apply the
obtained sequence to actual data. This can be
considered as preprocess planning using sample
data as metadata. What separates this from
simple data visualization is to process metadata
instead of actual data and then to process ac-
tual data only after processing sequence is ob-
tained.

3.1 Formulation of Preprocessing Us-
ing Metadata

We define terms and formulate preprocessing
using definition described in section 2.

Definition 3.1 (Metadata)
Data describing files are called metadata and
shown as d ∈ D while function to extract meta-
data from files is d = meta(f) and the one for
a set of file is D = meta(F).

Definition 3.2 (Operator)
Operation for metadata is called operator and
shown as o.

Accordingly operation to obtain D′ using
metadata set D can be described as

D′ = o(D)

Then we have to consider relation between
operation for metadata o and operation for ac-
tual data c. To reflect operation o on operation
c, o has to be convertible to c.

The entity for transformation is defined as fol-
lows:

Definition 3.3 (Entity)
When D = meta(F), D′ = meta(F ′), D′ =
o(D), entity is a function to generate c that
satisfies

F ′ = c(F)

and c = entity(o)

All these conclude as follows☆:

Theorem 3.4
When D = meta(F), Dn = meta(Fn) and both

Dn = on(on−1(...(o1(D))...)) =
n⊙

k=1

ok(D)

and
∀ici = entity(oi)

are satisfied. Then,

Fn = cn(cn−1(...(c1(F))...)) =
n⊙

k=1

ck(F)

is also satisfied.

The theory 3.4 shows that when the existing
dataset is F , the metadata is D = meta(F),
the desired data is ft ∈ Ft and the metadata is
dt ∈ Dt, by finding

⊙n
k=1 ok that satisfies

Dt =
n⊙

k=1

ok(D)

We can find
⊙n

k=1 ck that satisfies

F ′
t =

n⊙

k=1

ck(F) ∧ meta(F ′
t) = Dt

We used F ′
t to distinguish from desired Ft be-

cause when metadata processing is the same
o and o′, same metadata may sometimes be
generated from different actual data. However
when metadata extracted from data features
are the same, the actual data are likely to be
identical, which assures high possibility to gen-
erate command sequence for desired data by
☆ We omit proving steps but it can be explained with

mathematical induction for n.

研究会temp
テキストボックス
－86－

3

F c1 cn

D o1 on

')...)))((...((' 121 FfFccccF tnnn ∈∧= −−

')...)))((...((' 121 DdDooooD tnnn ∈∧= −−

・・・

・・・

c = entity(o)D = meta(F)

D’

Processing actual data requires
much time.

Processing metadata is simple

F
F’

D' = meta(F')

Fig. 1 Preprocessing Using Metadata

manipulating
⊙n

k=1 ck

4. Preprocessing Planning

4.1 Planning System
Planning system, one of the fields researched

from the start of AI, automatically generates
plan to transform initial state to goal state us-
ing the following three as input and output:
• Initial state : existing environmental model
• Goal state : aimed environmental model
• Operator : rule to convert environmental

model
Algorithms developed and improved to gener-

ate various plans called “planner” have been ac-
tively done and many tools were released. The
input language consisting of very simple struc-
tures with limited expression was not consid-
ered feasible for actual application. But devel-
opment of expressive language using data type
and quantifier recently opened the door for new
application attempts.

4.2 Idea for Automatization
We try to realize automatic preprocessing by

implementing planning system when metadata
D is initial state, D′ is goal state and o ∈ O
is operator set. If functioned as expected, plan-
ning system enables users to perform automatic
planning by giving D and D′, and to obtain⊙n

k=1 ok as a plan and
⊙n

k=1 ck as a suggestion
for actual data processing according to theorem
3.4.

However, this is just an idea with arising
problems in implementation. We will explain
how we tried to solve them.

4.3 Realization
4.3.1 Metadata
We investigate problems to solve in design-

ing metadata. Planning system requires de-
scription of goal state. Accordingly metadata
should include simple and obvious information
as goal even before preprocessing. One of neces-
sary information is header describing attribute
values. Header can show necessary attributes
or the candidates for analysis and possibly de-
scribe goal state.

Then we see how much data change can be
observed using header. If we change attribute
names whenever attribute values change, we
can comprehend the state according to header
change. But preparing metadata to observe
record-related operation requires analysis in
great detail. Metadata candidates are average
and distribution for numerical attribute, or po-
tential attribute value and the ratio for other at-
tributes. The latter can be described somehow
but it is impossible to describe numerical data
before they are prepared, needless to say the
description of goal state. So we leave record-
related operation to operator and use informa-
tion as metadata by which attribute is sorted.

4.3.2 Operator
If we can prepare all necessary operators ap-

plicable for all operations, simply describing ini-
tial state and goal state can generate plans,
which is not possible nor realistic with count-
less operations used for preprocessing. Opera-
tor preparation is a bottleneck in realizing not
only preprocessing but also planning system.
Moreover, preprocessing may have to reflect
users’ intension. For example, system can not
tell which existing attribute to use for new at-
tribute. Or oversize operator set enlarges search
space taking up too much time for planning and
fails to prepare plan in the worst case. So we
try to solve these problems as follows:

Dividing Operator Set
First operator set for automatically process-

ing is prepared as Obasic. This operator set with
user-defined operator set Ouser are used as op-
erator set for planning system as:

Oplanner = Obasic ∪ Ouser

Details for Obasic and Ouser is as follow:
Obasic includes processing like: simply join

attributes from other file using main key,
delete attribute and sort record. Operator
schema can realize these operators. Prepa-
ration of these operators in advance enables
system to automatically join or delete at-

研究会temp
テキストボックス
－87－

4

tributes even when input file has extra at-
tributes or when files are divided, and user’s
load can be reduced.

Ouser is operator that users describe. The fol-
lowing metaop is prepared and users de-
scribe actual command, from which neces-
sary information for operator is extracted.

Definition 4.1 (metaop)
Function metaop to extract operator o for
actual data from command c is defined as
follows:

(o) = metaop(c)

With this, actual command can be obtained
as follows:

metaop−1(o) = entity(o) = c
Additional Information for Operator
Simple metadata like the one we use this time

may generate many problems. To avoid these
problems, we add the following information to
operator.
Ignore When some operators have the same

operation for metadata, they all satisfy aim.
So system may choose the wrong operator
for planning. In such case, we can add Ig-
nore information to the operator for system
to re-plan.

ToDo System ignores operator like record se-
lection, which does not change metadata.
Each operator adds literal (done opera-
torID) to goal state and notify the system
that processing must be performed.

Precondition When users want system to
perform record selection first and then tab-
ulation after that while system can not dis-
tinguish the priority as they have the same
results regardless of order. By assigning
record selection operator ID in tabulation
operator precondition, system is forced to
perform record selection first.

5. Case Study

Having no system at hand for comparison, we
applied the proposed method to real-world data
in order to confirm the effectiveness or short-
coming.

5.1 Implementation
Based on GraphPlan as a planner, we used

IPP5) for type information and quantifier and
MUSASHI4) as command for final output, nat-

1.7TTT198102191

65HGPT198102191

55HGOT198102191

testresulttestnametestdateMID

1.6TTT198103201

64HGPT198103201

57HGOT198103201

1.7TTT198102191

65HGPT198102191

55HGOT198102191

testresulttestnametestdateMID

1.6TTT198103201

64HGPT198103201

57HGOT198103201

Dividing file

57H198103201

55H198102191

GOTtestdateMID

57H198103201

55H198102191

GOTtestdateMID

64H198103201

65H198102191

GPTtestdateMID

64H198103201

65H198102191

GPTtestdateMID

1.6198103201

1.7198102191

TTTtestdateMID

1.6198103201

1.7198102191

TTTtestdateMID

Fig. 2 Dividing file

urally describing MUSASHI command for in-
put.

5.2 Used Data
We used medical data (common data) for

hepatitis after transforming the Japanese at-
tribute name into English for implementation
convenience. Cross tabulation, which is likely
to be employed, requires shell script as well
as MUSASHI command but can not be per-
formed with the system☆. So we first divide
file as shown in Fig. 2 and kept base-data file
with MID, testdate and number of test in labo-
base.xt.

5.3 Case 1
We join test results : GOT, GPT, TTT, ZTT

in base file labo-base.xt for data-cleaning First
operator set Ocleaning for cleaning was prepared
as in Table 1.
xtsed is a command that eliminates unneces-

sary letters at the end of attribute values. Then
other operator set Ostep1 necessary for data was
prepared as in Table 2
xtagg tabulates attributes assigned by -f

using attribute assigned by -k as key, and
xtdelnul deletes all the lines whose attribute
is Null. We put yes to ToDo and delnul1 to
Precondition so that xtagg will be performed
after xtdelnul.

We performed planning using conditions as in
Table 3, with results as in Fig. 3.

This sequence can be used in the most cases.
Even if reference file does not have data, com-

☆ possible if we prepare macro command as one oper-
ator but we do not this time

研究会temp
テキストボックス
－88－

5

Table 1 Operator Set for Cleaning

ID Command Precondition ToDo
sed1 xtsed -f GPT:GPTclean -c ’H#$|H$’ -v ’’

sed2 xtsed -f GOT:GOTclean -c ’H#$|H$’ -v ’’

sed3 xtsed -f TTT:TTTclean -c ’H$’ -v ’’

sed4 xtsed -f ZTT:ZTTclean -c ’H$|L$’ -v ’’

Table 2 Operator Set of Case 1

ID Command Precondition ToDo
delnul1 xtdelnul -f GOTclean,GPTclean,TTTclean,ZTTclean yes
agg1 xtagg -k MID,testdate,testnumber delnul1 yes

-f GOTclean,GPTclean,TTTclean,ZTTclean -c sum

Table 3 Input for Case 1

Input file labo-base.xt
Related file GOT.xt,GPT.xt,TTT.xt,

ZTT.xt
Output file case1.xt
Output attribute MID,testdate,GOTclean,

GPTclean,TTTclean,ZTTclean
Operator set Ouser = Ocleaning ∪ Ostep1

xtjoin -k MID,testdate,testnumber
-f TTT -m ./attribute/TTT.xt
-i labo-base.xt |

xtjoin -k MID,testdate,testnumber
-f ZTT -m ./attribute/ZTT.xt |

xtjoin -k MID,testdate,testnumber
-f GPT -m ./attribute/GPT.xt |

xtjoin -k MID,testdate,testnumber
-f GOT -m ./attribute/GOT.xt |

xtsed -f GOT:GOTclean -c ’H#$|H$’ -v ’’ |
xtsed -f GPT:GPTclean -c ’H#$|H$’ -v ’’ |
xtsed -f ZTT:ZTTclean -c ’H$|L$’ -v ’’ |
xtsed -f TTT:TTTclean -c ’H$’ -v ’’ |
xtdelnul -f GOTclean,GPTclean,ZTTclean,\

TTTclean -F |
xtagg -k MID,testdate,testnumber

-f GOTclean,GPTclean,TTTclean,\
ZTTclean -c sum |

xtcut -r -f testnumber -o case1.xt

Fig. 3 Output Command Sequence (Case 1)

mand sequence will be completed when we man-
ually add -n option which does not delete base
file record. This is because system can not
judge options since xtjoin was automatically
generated by system.

5.4 Case 2
Suppose data crossed.xt was given whose at-

tributes were already joined using other in-
put data. Crossed.xt includes unnecessary at-
tributes like ALP, I-BIL, UA. Then we per-
formed another planning with different input
and reference file as in Table 4 to see how sys-
tem performs planning according to structure
change with results as in Fig. 4.

Table 4 Input for Case 2

Input file crossed.xt
Related file none
Output file case2.xt
Output attribute MID,testdate,GOTclean,

GPTclean,TTTclean,ZTTclean
Operator set Ouser = Ocleaning ∪ Ostep1

xtsed -f GOT:GOTclean -c ’H#$|H$’
-v ’’ -i clossed.xt |

xtsed -f GPT:GPTclean -c ’H#$|H$’ -v ’’ |
xtsed -f ZTT:ZTTclean -c ’H$|L$’ -v ’’ |
xtsed -f TTT:TTTclean -c ’H$’ -v ’’ |
xtcut -r -f UA |
xtcut -r -f I-BIL |
xtcut -r -f ALP |
xtdelnul -f GOTclean,GPTclean,ZTTclean,\

TTTclean -F |
xtagg -k MID,testdate,testnumber

-f GOTclean,GPTclean,ZTTclean,\
TTTclean -c sum |

xtcut -r -f testnumber -o case2.xt

Fig. 4 Output Command Sequence (Case 2)

The results show that the system was auto-
matically adjusted with the input data change
by excluding unnecessary xtjoin command
and instead including xtcut -f command that
deletes unnecessary attribute.

5.5 Case 3
When we prepare operator set Ocleaning used

for cleaning or operator set to discretize data,
both data and medical knowledge are required
beforehand. So when these data are prepared
by users with the background and others can
easily reuse the data, this means the knowledge
can be reused. We considered the following case
to see data reusability.

We prepared data having MID, testdate and
GPTclean as attributes to observe GPT change
by making a graph, which requires GPT clean-
ing and tabulation.
Ogptagg = {xtagg -k MID,testdate,testnumber

研究会temp
テキストボックス
－89－

6

-f GPTclean -c sum, ToDo=yes}

We have not done tabulation up to now so we
use the following for input as in Table 5 with
output command as in Fig. 5

Table 5 Input for Case 3

Input file GPT.xt
Related file None
Output file case3.xt
Output attribute MID,testdate,GPTcode
Operator set Ouser = Ocleaning ∪ Ogptagg

xtsed -f GPT:GPTclean -c ’H#$|H$’ -v ’’
-i GPT.xt |

xtagg -k MID,testdate,testnumber
-f GPTclean -c sum |

xtcut -r -f testnumber -o case3.xt

Fig. 5 Output Command Sequence (Case 3)

The results show that only the necessary data
were selected and applied in adequate order
even though Ocleaning had some unnecessary
operators, which proved this system’s capabil-
ity to generate plans. Yet in case some opera-
tors for similar operation are included, it some-
times generate wrong plan. We can then per-
form replanning by adding Ignore information
to wrong operators.

For more effective reuse of these operators, we
need some schemes like dividing operator sets
according to function, or realizing automatic
preparation of operator set from history.

6. Conclusion

We explained an idea to automatize prepro-
cessing using planning system techniques. Then
we made research and experiment to realize
the idea. Command sequence was generated
semiautomatically with some room for improve-
ment. The results confirmed the system’s ca-
pability for effective adjustment to input data
change and for knowledge reuse.

Acknowledgments

The authors thank Mayumi Miki for review-
ing the manuscript for English. This research
was supported by the Active Mining Project
(Grant-in-Aid for Scientific Research on Prior-
ity Areas, No.759).

References

1) Peter Cabena and Pablo Hadjinian. “Discov-
ering Data Mining”, Prentice Hall PTR,1998.

2) Kempei Igarashi, Yoshihiro Ohta, Shigeki
Yokoyama and Masayuki Numao. “Struc-
tural Data Transformation in Datamining us-
ing XML (in Japanese)”, The 15th Annual
Conference of Japanese Society for Artificial
Intelligence, 2001.

3) Yukichi Yamada, Ryutaro Ichise, Masayuki
Numao. “An Effective Pre-processing Model
Using Layered Structure”, JSAI Technical
Report, SIG-A2-KBS60/FAI52-J, pp. 75–80,
2003.

4) MUSASHI project. “MUSASHI:Mining Utili-
ties and System Architecture for Scalable pro-
cessing of HIstorical data”,
http://musashi.sourceforge.jp/

5) Michael Brenner, Jana Koehler and Joerg
Hoffmann. “IPP”, http://www.informatik.uni-
freiburg.de/˜koehler/ipp.html

研究会temp
テキストボックス
－90－

