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Abstract: Many methods of knowledge discovery in databases are distance-based, such as instance-based learning or

clustering where similarity measures between objects plays an essential role. Besides, it is known that most our real-word data

not only contain numeric, symbolic, and ordinal attributes individually but also carry all of them in mixed way. Therefore, a

Mixed Similarity Measure (MSM) for numeric and symbolic attributes is not enough for various data process. Moreover, the

high cost of O (n’logn®) and O (n?) for time and complexities of the existing algorithms do not allow the MSM to be applied to

large datasets in KDD. As a result, we have proposed a fast algorithm to compute the Goodall's MSM for numeric and

symbolic attributes in a linear complexity. In this paper, as an extension of the MSM, we consider an MSM* for numeric,

symbolic and ordinal attributes and describe a fast algorithm for MSM* with a linear complexity as well. The experimental

results show that the proposed MSM* is also better than MSM and C4.5/See5.0 for the classification problem.

1. Introduction

Recently, some authors have proposed mixed
similarity measures (MSMs) [1] for treating mixed
symbolic and numeric data, for example those of C. Li
and Biswas in [2]. These measures calculate the
similarity between objects without discretizing numeric
data and they seem promising as reported.

Particularly, the authors in [2] introduced a computing
method for an MSM proposed by Goodall [1] for
biological taxonomy. This MSM has been shown to be
contributed greatly to clustering or classification as
reported by Li and Biswas [2]. Their computation
method has also been shown to be more efficient than
the original computing method (with direct
implementation of the MSM), but there are still some
considerable limitations when applying it to KDD,
where databases are always large or very large. Their
method is with high costs of computation with the time
complexity of O(n’logn®) and the space of O(n’), where
n is the maximum number of unique values meet in the
database for any numeric attributes. As it will be shown

in our experiments, such an MSM is not applicable even

for moderately sized datasets.

In this paper, we propose a new method for
calculating the same mixed similarity measure of
Goodall but with lower cost of the O(n) time and O(n)
space. Importantly, we show a fast algorithm to compute
data with not only symbolic and numeric attribute but
also ordinal attribute. The rest of the paper is organized
as follows: Section 2 summaries Goodall's MSM:;
Section 3 describes our proposed computing methods
with new and fast algorithms; Section 4 gives some
experimental results to show the efficiency of the
proposed algorithms and the comparison our solution
with See5.0 in classification problem; and Section 5
summaries our work and gives some directions of

applying our method to KDD.

2. MSM

The mixed similarity measure by Goodall in [1] is
based on considering first the similarity in respect of
single attributes, then combining the similarities in
respect of different attributes. The problem is how to

measure the similarity or dissimilarity between two -



instances in the context of the given databases. We here
describe Goodall's MSM for both numeric and symbolic
attributes.

2.1. Symbolic attributes

The first type of attributes to be considered is
symbolic, as purely qualitative, where the different
values are notcapable of being measured. Here, pairs of
differing values are all regarded as equally dissimilar,
but pairs of values which agree are ordered according to
the rule: agreement between two instances in possessing
an uncommon value of the attribute is considered as
indicating closer similarity than agreement in possessing
a commoner value. The possible pairs of values having
been ordered in this way, their probabilities are then
calculated, and the measure of similarity for any pair is
then the complement of the sum of the probabilities for

all pairs of values equal or greater in similarity.

2.2. Numeric attributes

The numeric values as metric data: they have the
order and the difference between any two values. Pairs
with identical values are more similar than those which
differ, those with a small difference are more similar
than those with a larger difference. As between pairs of
values differing by the same amount, however, it
appears desirable to take into account the size of the
groups encompassed by the two values. Again, once
these ordering relations have been established, the
degree of similarity is expressed by the complement of

the probability of the observed pair or any more similar.

2.3. Mixed attributes

In fact that, objects consist both symbolic and
numeric attributes. So, to compute the similarity
measure (the distance), firstly we have to compute the
similarity measure (the distance) for each attribute, then

average (by weight) these measures, as follow:
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Where, s(x, y) is similarity measure between two

objects x, y at the attribute jth and wis the weight.

2.4. Combination of similarities in respect of
different attributes
Goodall, Li and Biswas have also described a method
to combine similarities in respect of different attributes
by using Fisher’s transformation and Lancaster’s
transformation as follow:

Denote Og and O, are two objects that is needed to

k

compute the similarity. ~ ¢ is the probability of a

random pair of value at the attribute k will be as similar

as, or more similar than, the pair (V:’V’f). Then, to
reduce the number of the operations we can approximate
the similarity S through Fisher’s (for symbolic
attributes) and Lancaster’s (for numeric attributes)
transformations as follow:

Fisher’s transformation:
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3. New computations — Fast algorithms
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3.1. New computation for numeric attributes

To compute the similarity for a symbolic attributes,
we have to consider to the probability of this attribute.
Then, the computational complexity in this case is e("),

with n is the number of attribute’s values.



On the other hand, in case of numeric attributes, if we
compute directly by MSM of C. Li and G.. Biswas [2],
the computational complexity in the worst case is o(r’)
complexity. In fact that, we have proposed another

indirect solution which has the same results but is more
simple with 0(n) complexity as mentioned in [3, 4, 5].

The main idea is that we do not compute the measure
by this formula:
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In the contrast way, we compute indirectly through
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#=1=Px formula. We are only interested in the case

of / * k , because when we have j = k then
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Then compute Pjk with a linear complexity.

Easily to see that,
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We can also rewrite L in the simpler form
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where / is the minimum value that satisfies
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T° is empty or has only one element.
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We can transform the formula of Sy as follow
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where

The following figure (Figure 1) is the algorithm with the

linear complexity.

Some notations in algorithm

Sij: the similarity of the pair of value (Vi, Vj). sumij: sum of frequency from i to j.
dij:absolute value of Vi and Vj. beforek: sum of frequency from 1 tok — 1.
sumt: sum of frequency from 1 to t. f[k]: frequency of k™ value.
n: number of attribute value.
Algorithm (in case of [ # J )
t = 1; beforek = 0.0; sumt = 0.0; sij = 0.0;

sumij = 0.0;

dij = abs(v[j] - v[i]):

for k = i to j do
sumij = sumij + f£(k];
for k = 1 to n do {

if (v[k] + dij <= v([n]) {

if (k > 1)
beforek = beforek + f(k-1];

while (t <= n and abs(v[t] - v[k] <= dij)) {
sumt = sumt + f[t];
£t =t + 1;

}

sij = sij + 2 * f£(k] * (1 - sumt);

if (abs(v[t - 1] - v[k]) = dij and sumt - beforek <= dij)
sij = sij + 2 * fk * f[t - 1];

Figure 1: Fast algorithm for a numeric attribute.



3.2. New computation for ordinal attributes
We applied similarly the way of numeric way for ordinal
attributes with linear complexity.
Firstly, we rewrite the expression computing Pij as
follows:
n n=l
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where 7 multiplies 4.

t = 1; beforek = 0.0; sumt = 0.0;
sumij = 0.0; pij = 0.0;

for k = i to j do
sumij = sumij + f([k];

for k = 1 ton do {
if (k > 1)
beforek = beforek + f[k - 1];

BOOL stop = FALSE;
while (t <= n and not stop) {
if (sumt - beforek <= sumij and
sumt + f£[t] - beforek > sumij)
stop = TRUE;
else {
sumt = sumt + f£[t];
t =t + 1;

}

pij = pij + flk] * (2 * (sumt - beforek)
- f£[k]);
}

Figure 2: The fast algorithm for an ordinal attribute.

Using the notations shown in Figure 1, the fast algorithm
for the ordinal attributes is described in Figure 2. For
combining the mixed measure, the ordinal attributes are

treated by the Lancaster’s transformation.

4. Experiment and results

This section will present the experimental results by
MSM measures (for numeric and symbolic attributes),
MSM* (for numeric, ordinal and symbolic attributes)
applied in classification problem using Nearest Neighbor
Rules, k-NNR. The results are compared with decision tree
technique through C4.5, See5.0 software of J.R. Quinlan in
[6, 7]. This software is considered as a good software to
classify. The datasets which are tried in experiments are
standard data from UCI-KDD repository described detail in
[8]. Each dataset is divided (equally and randomly) to 10
subsets of data and the experimental results are averages of
results archiving from this subsets.

A dataset consists of 3 files with .names, .data and .test
extensions. The file with .names extension is the structural
file involved information of class name, attribute name with
its type (symbolic, and/or numeric, and/or ordinal), and
attribute value (discrete and/or ordinal). See 5.0 is free for
training and education purpose with number of limit
training records in .data file or test records in .fest file - no
more 200 records. Therefore, with each of dataset we only
use 200 records after eliminating records with missing
values to ensure the equality of the experimental condition.

There are 28 following datasets used in experiment with
NAME (number of record; number of records; number of
numeric attributes; number of symbolic attributes; number
of ordinal attributes): ATT(681; 2; 1; 4; 4), BAN(251; 2;
19; 11; 0), BCW(614; 2; 9; 0; 0), BIO(174; 2; 5; 0; 0),
BLD(260; 2; 6; 0; 0), BOS(369; 3; 10; 6; 0), BPR(260: 2; 6;
0; 0), CMC(1127; 3; 2; 4; 3), CRX(587; 2; 6; 9; 0),



DER(322; 6; 1; 32; 1), ECH(97; 2; S, 1; 0), HAB(219; 2,
3; 0; 0), HCO(35; 2; 5; 14, 0); HEA(267; 2; 5; 7; 1),
HEP(72; 2; 6, 13; 0), HIN(535; 3; 0; 1; 5), HUR(168; 2; 6,
0; 0), HYP(1800; 2; 6; 9; 0), IMP(177; §5; 13; 9; 0),
INF(191; 6; 0; 16; 2), LBW(182;2; 2; 6; 0), PID(353; 2; §;

0; 0), SEG(200; 7; 11; 0; 0), SMO(2088; 3; 8; 0; 8),
TAE(125; 3; 1; 4; 0), USN(141; 3; 26; 1; 0), VEH(621; 4;
18; 0; 0), VOT(200; 2; 0; 16; 0). Among these sets, there
are 6 bolded sets because of having ordinal attributes. The

detail is described in [8].
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Figure 3: The accuracy (%) when classifying records by MSM, MSM* and See 5.0.

5. Conclusion and Future work

This paper presented a mixed similarity measure. The
early measures often work at only one attribute. This
problem leads the requirement of developing a new
measure which is suitable with both symbolic and numeric
attributes, especially ordinal attributes. The experimental
results express that the MSM based on the early model of
D.W.Goodall, work well with mixed database (included
symbolic, numeric, ordinal attribute).

The main content of this paper is presenting the fast
algorithm for computing the similarity of numeric and
ordinal attributes. The fast algorithm for numeric attributes

is discussed in [4]. The key idea is the indirect

computation of the similarity measure, contrary to the
direct formula. We also use the same way of [4] for ordinal
and symbolic attributes in this paper.

The implementation of the MSM is carried out in MS
Visual C++. The experiments on the datasets by MSM
provide better result than by See 5.0. These results are also
more potential in case that we consider the order of the
symbolic attributes. As a result, MSM va MSM* are
suitable for real-word data with hetegenenous attributes.

However, experimental data used in this paper are still
small; it means that the run time is nearly immediate.
Some other experiments with large database were also

tried in [4], but did not include ordinal attributes. Studying



the MSM and implementing it with large database with all
type of attributes: symbolic, numeric, ordinal is some of
our future works. We also expect apply MSM* to distance-
based algorithms. Another challenge is how we update
incremental value of MSM, MSM* when there are
changes of value in a huge database to save computing

time and memory.
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