HRXSEBLE 70-6
(1989. 1. 20)

BT Y07 5 LGENLE RT3 "IL—JL- A R
.
Ty k E ~a j/j/‘/
BA&1BM & 5 BRI KA
LT L= L - ik v by - AR o$iTde 3 MR hapi2% v LZDER
M«Sﬂr}u LT LIETSN R ELN 7077 WGenie miﬁﬁ LEEAR Ty w LIEN S,
- PRE Ry LT BLENA) G BER IRER 271 ILEa R
AT f, LEE I LOLIST. Genie A ERLL L Tt 1) MR LA
2‘.‘7\\1\\’; 2) 1) ‘/Y-Hfz,ﬁm 28T B R L fdits twid, 3)"7
79 - - pm Sy GAMBEF R ORBEAM Y L7 03 ,u»\m LWL E o
k

T ER L BEa R -, T

[»

29U - L HUC
W,

RULE GOVERNMENT IN THE GENIE ENGLISH GENERATOR

David E. Johnson
IBM Tokyo Research Laboratory
5-19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan

This paper discusses the approach taken in Genie, the English generator for the JETS
Japanese/English machine translation system, to problems broadly characterizable as rule govern-
ment. Rule government refers to cases in which the generation of some construction is controlled
by lexical, syntactic or stylistic factors. Some of the distinctive aspects of Genie are that it is based
on the theory of relational grammar, has a two stage plan-and-execute design, and is based on the
principle of category-driven processing. Together, these factors permit the solution to a number
of generation problems involving rule government.

(1)

1.0 Introduction

This paper discusses the approach taken in Genie, the English generator for the JETS
Japanese/English machine translation system, to problems broadly characterizable as rule govern-
ment. Rule government, as used here, basically refers to cases in which the generation of some
construction is controlled by lexical, syntactlc or stylistic factors. Simple cases involve absolute
lexical requirements, e.g., want does not passivize, explain does not dativize. Other cases involve
complex iteractions of lex1cal requirements and properties of clause structure. The techniques used
in Genie to address a variety of problems in rule government are presented along with examples.

1.1 Plan-and-Execute Design

Genie is based on relational grammar (RG), which means, among other things, that sentences are
represented in terms of explicitly marked relations/functions like subject, direct object, indirect ob-
ject and that grammatical rules directly manipulate such relations (cf. Johnson 1974, Johnson and
Postal 1980, Perlmutter and Postal 1974). Generation has two phases: planning and execution.
The key idea is that restrictions/requirements on generation are determined during planning (e.g.,
passivization is required/prohibited), followed by the creation of the required constructions by a
simple relational grammar (i.e., execution rules have very few conditions on applicability). The
syntax planner, Gramplan, controls the execution grammar through a set of so-called rule
switches, set in accordance with lexical, syntactic and stylistic requirements. Rule switches are
simply features that name rules in the execution grammar. Each rule switch may be set either to
Yes or to No, determining.whether the named rule is to be tested for application.

Many rule-switch settings come from lexical entries (and so are called lexical rule switches). For
example, the lexical entires for resemble and want will have the switch (Passive = No), preventing
the generation of *He was resembled by her, *Toys are wanted by the children, etc. The verbs ex-
plain, confess, whisper, etc. will have the switch (Dative = No) to prevent the generation of sen-
tences like *He explained/whispered/confessed her something. Verbs like try, want, etc. will have
the switch (O-Equi = Yes), where O-Equi names the rule that deletes subjects of subordinate
clauses that are coreferential to objects in the higher clause. This will insure that sentences such
as *I want/will try for me to go will not be generated. Note that I want for her to go can be gen-
erated because (O-Equi = Yes) only triggers the testing of a rule, it does not mean that the rule
will apply (succeed). In contrast, verbs like believe will be marked (O-Equi = No) to prevent O-
Equi from being tested and wrongly generating *I believe to go (cf. Lakoff (1970). There are many
variant structures that are conveniently controlled through lexical switches (see Johnson 1988a,c for
other examples).

Many switch settings are determined by syntax planning rules. For example, as discussed in
Johnson (1988a), the verb seem has a disjunctive requirement: either a sentence of the form It
seem(s) that S (the so-called It-Extra construction) or of the form NP seems to VP (the so-called
A-Raising construction) must be generated (e.g., It scems that they went to Tokyo, They scem to
have gone to Tokyo but not *That they went to Tokyo seems). The best choice depends on a va-
riety of factors, e.g., the presence of modals in the subordinate clause. If there is a modal, then only
the It-Extra construction is grammatical (It seems that they can swim, *They seem to can swim).
On the other hand, certain predicates, e.g., apt, tend, etc. require the A-Raising construction. In
this case, since modals are always finite, some action must be taken to express the modality without
a modal. In the case of can, for instance, the syntax planner realizes the modal as the phrase be
able to. So He is apt to be able to swim fast would be generated and not *1t is apt that he can swim
fast or *He is apt to can swim fast.

Looking at another example, Gramplan also has a planning rule that inspects clauses with direct
objects to determine whether the direct object is clausal and hence must be assigned some other
relation to produce grammatical or stylistically preferred output (cf. *He taught how to ride a bike
to her, He taught her how to ride a bike, He taught math to her, He taught her math and *He
explained how to ride a bike to her, *He explained her how to ride a bike, He explained to her how
to ride a bike, *He explained her that). With verbs like teach and tell, which permit Dative, the
planning rule simply sets (Dative = Yes). On the other hand, verbs such as explain, whisper,
mention, say prohibit Dative even with clausal direct objects (*He
explained/whispered/mentioned/said her that he would leave early). In such cases, the planning rule

(25

for direct objects takes another action -- it sets the switch (Null-Extra = Yes), causing the exe-
cution grammar to generate, e.g., He said to her that he would leave by tomorrow (cf. *He said that
he would leave by tomorrow to her). (Note in passing that Null-Extra is inappropriate for teach:
*He taught to her how to ride a bike.) The common result of these two distinct, relation-changing
actions (Dative versus Null-Extra) is that the demoted clause is placed at the nght -end of the clause
by the linearization process. Although the argument that bears the canonical indirect object re-
lation winds up with the same relative position in the clause (Verb Argument Clause), its superficial
form will, as a result of the distinction in superficial relations (direct object versus indirect object),
be different (noun phrase versus prepositional phrase). See Figure 1 on page 3.

A key point here is that lexically determined requirements (here, whether or not Dative is lexically
permitted) can interact through rule switches with syntactically or stylistically determined conditions
(here, clausal direct-object-hood) to determine an appropriate superficial form. Further, separating
generation into a syntactic planning-phase and a subsequent execution-phase enables one to intro-
duce context-dependent, sometimes heurstic, rules to deal with less well-understood
gramumatical/stylistic issues without losing the benefit of employing a simple execution-grammar.

1.2 Relational Execution Grammar

The relation changing rules of the execution grammar are ‘classified as either unmarked or marked.
With respect to a given node of the appropriate category, an unmarked rule R is tested for appli-
cation unless the switch (R = No) has been set and a marked rule R is tested for application only
if the switch (R = Yes) has been set. Examples of marked rules are Passive, Dative, A-Raising,
B-Raising and C-Raising. - Unmarked rules include those generating Yes/No auxiliary inversion,
‘Wh-questions and relative clauses.

Following the earlier derivational models proposed in Postal and Perlmutter (1974) and Johnson
(1974), the relational execution grammar is processed bottom-up with cyclic processing of rules like
Passive, Dative, Subject-to-Subject Raising and Subject-to-Object Raising and post-cyclic proc-
essing of relational rules that generate Wh-Questions, Relative Clauses, etc. Note that with the
exception of linearization, all rules are relation-changing; since the relational structures are unor-
dered, there is no notion of a word order (linear precedence) altering rule. Application of the re-
lation changing rules results in an unordered, surface relational structure.

Linearization is accomplished by a top-down, recursive pass over the superficial relational-structure.
As an example, the linearization rule for verbs states that, given a verb head, V, output the sentence
in the order: - Complement-Preposition, Complementizer, Subject, Verb, Sub-Direct-Object, Parti-
cle, Direct-Obiject, Indirect-Object, Direct-Object-Chomeur, Subject-Chomeur Locative, Temporal,
Other-PP-Modifiers, Clausal-Complements.

1.3 Category-Driven Generation and Rule Aliases

Genie has been implemented in General, an object-oriented shell for relational grammar-based lin-
guistic processing developed to meet Genie’s requirements by Peter Schindler (Schindler 1988).
Besides being based on relational grammar (including a special language for writing relational-
grammar rules), it is based on category-driven processing, makes available a facility for establishing
a part-of-speech category hierarchy with inheritance, and provides mechanisms for rule replacement
and rule addition, Schindler’s novel notion of category-driven processing means that the only rules
tested for apphcatlon are those appropriate to the categories actually present in the input structure.
That 1s, at generation time, for each node in the input structure, the grammar invoked for that node
is constructed from the input relational structure, the dictionary entry for that node and the category
hierarchy. For example, in the Genie category hierarchy, there is a rule of Passive attached to the
transitive-verb node. As a result, all and only those input clauses with transitive verbs will result
in Passive being tested for application.

Rule replacement has been used in Genie for cases where specific lexical items require special con-
ditions or actions to be associated with a particular kind of relation-changing process. That is, a
rule name is often used as an alias for any number of distinct rules that are in complementary dis-
tribution. For instance, consider passivization. Certain verbs, e.g., look at, depend on and rely

<3

1. Canonical Staucture

:EEM\«%

> 'DO\

LW

he
(he

V: '{'_e;c_ch explain Dictionacy
Dol =) | (Dodwe=NoY | Information :
lexical
v Wer Swrtches,
w fevike o bike) A

DD Planniag Pule

“1€ 90 s o Amse

Crelse L. W

/

‘hen o Dihive ok

V:{each
(Dodrive = Yes)

V:explain
(.NV\“" Extra= YQ.S\ CDD(\' ive. = No

KU
/ Do Tc

e lamse™y her he {lawsey Wer
Cprep=ts] Lprep = '*o.]
. Execudion
Dehve vule. V: . / !
Io; \;; feadh Y : explam Null-Exctra tule
DO —> Cho PO— e
U
VA= &@L o
he Lo Wer e L Clomse> hev
EPQP:‘\‘J}
T Lineanzahion
SW Verb ... D6 TO0 Cho
he Anug hex how 4o ride o bike

he explained

Holer | Wow 4o vide o bike

Figure 1. Planning/Execution Example

N\

<47

on, mark what I take to be a canonical direct object with a preposition. This flagging of the direct
object is accomplished simply by adding to the verb’s lexical entry the property of the form (DOP
. Prep), where prep is the required preposition. Based on this property, a planning rule will, e.g.,
flag the direct object of depend with (PREP = on), resulting in, e.g., They dcpend on him. But now
passivization is a problem. The regular/default Passive rule attached to the transitive verb node in
the part-of-speech hierarchy would generate, e.g., *On him can be depended. Rather than either
complicating the regular Passive rule or putting two (crucially ordered) rules of Passive in the
grammar, one can simply specify in the lexical entry for a verb like depend that another rule (Copy
Passive) replace Passive, i.e, be executed under the alias Passive. Copy-Passive leaves a lexically
unspecified direct object noun behind to carry the preposition and deletes the preposition on the
noun advanced to subjecthood, resulting in He can be depended on. Realization of the preposition
and linearization are completely general.

Other cases involving rule replacement include linearization of adjectives and indefinite nouns like
someone. Compare someone tall and *tall someone. The atypical linearization information (noun
adj) resides with the small set of nouns that require this exceptional ordering. The rule replacement
and inheritance mechanisms insure that these infrequent phrases will be treated properly without
complicating the normal linearization routine. Two other, similar cases are: how big a box versus
*a how big box; too big a box (to use) versus *a too big box to use. Rather than attempt to build
one monolithic grammar with rules riddled with exceptional conditions, we have modularized the
process in two distinct ways by (1) introducing a syntax planner, (2) using category driven gener-
ation.

1.4 Lexical Entries

Lexical entries in Genie consist of a key and six attributes:
1. Form of Lexical Entries

Genie lexical entries consist of a key and six attributes:
Key

a. Input Part-of-Speech (IPOS)

b. Lexeme Feature Value (LEXFY)

c. Alternative Part-of-Speech (APOS)
d. List of Properties

e. List of Rule Bundles

f. List of Word-Specific Rules

Lexical look up is done on the basis of both the Key and the IPOS information (so that homonyms
can be distinguished). The attribute LEXFV was introduced to permit sense-to-word mapping
(discussed below), and the APOS attribute was established to enable conversion from one part of
speech to another. The latter might be used to map from an abstract category of some semantic
representation to the English system. Information present in a lexical entry is added to the infor-
mation residing on the input node with generation information taking precedence over information
in the input structure. This means that in the context of MT, the generation dictionary need only
contain “exceptional” information and that the absence of information will not generally result in
termination of the generation process. The fourth attribute is a list of arbitrary property/value pairs
containing standard grammatical information such as case, number, gender, mass/count, as well as
the lexically determined rule-switch information discussed above {e.g., (Dative . No), (B-Raise .
Yes)), etc.

Skipping the fifth attribute for the moment, consider the the sixth, which contains a list of word-
specific rules. The general notion word specific rule has some precedent in the literature and is a
key feature of, e.g., the Mu machine translation system. However, the concept used in Genie is
from Schindler (1988) and is closely tied to the notion of category-driven parsing. Genie word
specific rules are relational rules that (i) can be either planning rules or execution rules and (ii) can

<5

either be added to the grammar or replace a more general grammar rule, and are unique to a single
predicate. Generation of idioms like pull the wool over ... eyes from the semantic predicate DE-
CEIVE use a word-specific rule (see below).

The fifth attribute is a list of rule bundles, a concept unique to Genie/General. Each rule bundle
is a named set of rules which typically function together and are required by some relatively small
group of lexical items for proper processing. Rule bundles.are one means for dealing with cross-
classification. By specifying the name of a particular bundle in a lexical entry, at the time of lexical
look up, the named rule bundle is activated and the rules in the bundle are used in processing the
construction headed by the lexical entry. Additionally, rules can be shared by different bundles.
Since there are many groups of words with rather special properties, this mechanism is particularily
useful.

For example, the so-called tough-class of predicates, which are relatively few in number, have spe-
cial properties and consist both of adjectives like easy, tough, difficult and nominals like a snap a
breeze, a bitch, etc.. These predicates permit, in general, three structures - Clause be Predicate, It
be Predicate Clause and NP be Predicate to VP, as in:

(2a) Reading this book is difficult.

(2b) For me to read this book would be difficult.

(2c) It is difficult to read this book.

(2d) This book is difficult to read.

Gramplan must decide which structure is to be generated by the execution grammar. For instance,
the last pattern results from applying the rule of so-called C-Raising (Non-Subject-to Subject
Raising). In general, the clausal subject structure is not preferred and if it contains a nominal re-
quiring extraction, not even grammatical, as discussed by Ross (1967) and codifed in his Sentential
Subject Constraint. Compare:

(3a) For me to read this would be difficult.

(3b) *What would for me to read be difficult? (from For me to read what would be difficult?)

(3c) What would be difficult for me to read?

In Genie there is a rule bundle that evaluates C-Raising predicates and determines which structure
is to be generated. For example, when planning the structure of a C-Raising clause, if there is a
non-subject wh-nominal, then the switch (C-Raising = Yes) is set, causing the execution grammar
to generate (3c).

The same strategy of preferring raised over non-raised structures is employed quite generally. For
example, there is a set of rules that evaluate predicates permitting A-Raising (Subject-to-Subject
Raising) and, provided there is a wh-subject in the sentential subject, the switch (A-Raise = Yes)
is set, rather than the default switch (It-Extra = Yes), determining (4a) rather than (4b):

(4a) Who seems to have gone to Tokyo? (from *That who went to Tokyo seems?)

(4b) *Who does it seem that went to Tokyo?

and (5a) over both (5b) and (5c):

(5a) Who is likely to go to Tokyo? (from For whom to go to Tokyo is likely?)

(5b) *Who is it likely that will go to Tokyo?

(5¢) *Who is that will go to Tokyo likely?

(Note in passing that if the complementizer that is deleted from (4b) and (5b), the results - Who
does it scem went to Tokyo? and Who is it likely will go to Tokyo? -- are grammatical (but still, I
think, awkward relative to (4a) and (5a)). However, this tact requires the formulation of either a
that-Deletion rule or a more complicated that-Realization rule, both of which bring new non-trivial
problems.) Since A-Raising and C-Raising are in complementary distribution, it would be senseless
to (i) attempt to apply both sets of planning rules to both types of clauses and (ii) to attempt to
execute the A-Raising rule in a C-Raising clause and vice versa. If the clause has an adjective like
apt or likely as main predicate, then the C-Raising planning bundle will not be invoked and so the
switch (C-Raise = Yes) will never be set. Since C-Raise is a marked rule, i.e., will only be tested
for application if the switch (C-Raise = Yes) has been set, the C-Raise execution rule will not even
be tested for application (mutatis mutandis, similar remarks hold for C-Raising predicates and A-
Raising.)

Rule bundles have a number of useful properties. They allow one to capture the notion of com-
plementary distribution of rules and to cross-classify categories at any level of detail with respect to
the rules invoked. The lexical entries, however, are kept simple, containing merely the name of the
rule bundle to be activated. Rule bundle cross-classification of traditional parts of speech is in terms
of relational and process-oriented notions like “Clausal Subject”, “Clausal Direct Object”, “C-

(6>

Raising Construction”, “A-Raising Censtruction”, rather than structural notions like NP, S or more
traditional sub-classes like “proper noun”, “count noun”, etc.. Finally, they can contain both
planning rules and execution rules and are invoked only if they are called by specific lexical items.

1.5 Generating Idioms from Semantic Representations

The generator has been set up so that it can accept semantic-case representations as input (this
feature is not used in JETS). Since Genie’s planning and execution rules are formulated in terms
of syntactic GRs, input case-roles must first be mapped onto this recognized set of relations. This
mapping is accomplished by a combination of general (default) rules which determine canonical-
level grammatical relations and prepositional feature assignment. These rules are not unlike those
first suggested by Fillmore, except for the important difference that in Genie the assignment is
basically a relabeling to a set of canonical-level, syntactic relations, while for Fillmore the mapping
is onto superficial representations. The default rules are, informally, along the following lines: (1)
if there is an agent, make it the subject, (2) if there is a theme and an agent, make the theme the
direct object, (3) If there is a recipient, make it the indirect object and flag it with the preposition
to, etc. Lexical rules are also required here. For instance, the recipient role is typically flagged with
to, but in some cases the preposition is on as in That dawned on me and He blamed that on her.
The default rules are sufficient to generate, e.g., the famous triple: The window broke, A rock broke
the window and He broke the window (with a rock).

Genie’s flexibility can be illustrated by looking at the generation of idiomatic expressions. Consider
the problem of generating the idiomatic John pulled the wool over Mary’s eyes from a semantic/case
representation along the lines of (DECEIVE (AGENT JOHN) (THEME MARY)). In the
idiomatic sentence John pulled the wool over Mary’s eyes, John is the subject of pull, over ... eyes
is a locative prepositional phrase, Mary bears the genitive relation to eyes, and wool is the direct
object. This rather extensive restructuring is achievable by associating the sense DECEIVE with a
lexical entry whose part-of-speech is verb, lexical string is pull, and which contains a idiom-specific
rule that (1) creates a direct object wool and (2) takes the theme, Mary, into the genitive of a con-
structed locative noun eyes which has the feature (Prep = over). Since this planning rule is specific
to one idiom, it resides in the lexical entry itself, and hence would be called into play only where
relevant. This example illustrates the use of lexically triggered rule-addition to achieve special
processing.

Once the idiomatic structure is constructed, it is processed like any other structure. Since the
case-to-GR rules are invoked at the beginning of the planning phase, they preceed the other plan-
ning rules, e.g., the one that determines whether certain clauses must be passivized. Since pull in
the idiomatic phrase pull the wool over x’s eyes is a verb syntactically, it will undergo the
passivization planning rule just like any other transitive verb. Thus, The wool was pulled over
Mary’s eyes can also be generated. On the other hand, the characteristic defectiveness of idioms
with respect to syntactic operations is often handled easily with the switch setting mechanism. For
example, generation of the idiomatic phrase kick the bucket (in the sense of DIE) is straightforward.
Roughly, one must associate with the sense DIE a lexical entry that specifies that it is a verb spelled
kick, has the rule switch (Passive = No) and a planning rule whose execution by the planner creates
a direct object the bucket. Since a normal verb/direct object structure would be built, kick would
undergo tense-spelling (kicked not kick the bucketed). However, in contrast to pull the wool over
x’s eyes, since the dictionary entry would also carry the switch (Passive = No), passivization would
be prevented. ‘

1.6 Example: Verb-Particle Constructions

Verb-particle constructions provide another area of English grammar that involves mumerous
idiosyncratic constraints (cf. Fraser 1976). In Genie, creating a verb-particle construction, e.g., look
up, 1s simple: one merely specifies the property (PART . up) in the lexical entry for the sense
“look-up”. A Particle planning rule will (1) create a Particle relation with up as the dependent and
look as the head and (2) set the switch (Dative = No) to prevent generating sentences like *He gave
up her the toy/*he gave her up the toy, and (3) will set the switch (2-to-Sub-2 = Yes) if the direct
object is pronominal. Later, the execution rule 2-to-Sub-2 will demote the direct object (2) to sub-

(7

direct-object (Sub-2) and linearization will place the Sub-2 next to the verb, insuring the order V
NP Particle, e.g., He threw it out rather than *He threw out it. (cf. the statement for linearization
of verb constituents above). Some constructions require that the particle be separated from the
verb, e.g., bring (someone) to but not *bring to someone. This, of course, can be handled with a
simple lexical switch (2-to-Sub-2 = Yes).

However, even this collection of conditions is not sufficient to correctly generate verb-particle
constructions. Consider, e.g., put back, which requires a direct object and optionally takes a
locative phrase (He put it back (on the shelf)). (Note that put requires the locative: *he put it.)
However, if the locative is present, the particle should, if only to avoid ambiguity, be separated from
the verb (??He put back the book on the shelf). However, the separation is not called for if the
locative is absent: He put back the book. Further, if the direct object is clausal, then the non- sep-
arated construction is preferred: He put back whatever it was he took while I was out versus 7?He
put whatever it was he took while I was out back. This means one does not want to simply require
put back to take the separated construction, which could be insured by a simple lexical switch.
Rather, a better solution would be to add to the entry for put back a contextual planning rule that
would examine the clause for a locative phrase and if found, would set the switch (2-to-Sub-2 =
Yes). Such planning rules pose no problems for Genie.

1.7 Final Remarks

The above examples illustrate the techniques used in Genie to handle problems of rule government,
an important area for generation that seems to have been largely overlooked by the computational
linguistics community. Genie’s plan-and-execute design, in conjunction with the use of rule-
switches, rule replacement and rule addition, make it easy to drive the generation process in very
specific ways. On the one hand, exceptional behavior can be controlled by adding rule-switch
specifications and/or exceptional rules to dictionary entries or through the use of more general
planning rules. On the other hand, the execution grammar can be kept quite simple.

1.8 References

Fraser, B. 1976. The Verb-Particle Combination in English Academic Press.

Johnson, D. E. 1974. Toward a Theory of Relationally-Based Grammar. University of Illinois PhD
Thesis. Published by Garland Publishers, Inc., New York, 1979.

Johnson, D. E. 1988a. “The Design of Post-Analysis in the JETS Japanese/English Machine
Translation System”, in_the Proceedings of the International Conference on Fifth Generation
Computer Systems 1988, Tokyo.

Johnson, D. E. 1988b. “A Relational Grammar Approach to Machine Translation,” Proceedings
of the Information Processing Society of Japan, Natural Language Processing, Vol. 88.61.

Johnson, D. E. 1988c. “Genie: A Transportable English Generator”, IBM Tokyo Research Labo-
ratory Report TR87-1023.

Johnson, D. E. and P. M. Postal. 1980. Arc Pair Grammar. Princeton University Press.
Lakoff, G. 1970. Irregularity in Syntax Holt, New York.

Perlmutter, D. M. and P. M. Postal. 1974. Lectures on Relational Grammar. LSA Linguistic In-
stitute, University of Massachusetts, Amherst.

Ross, J. R. 1967. Constraints on Variables in Syntax, MIT doctoral dissertation

Schindler, Peter A. 1988. General: An Object-Oriented System Shell for Relational Grammar-
Based Natural Language Processing M.S. Thesis, Department of Electrical Engineering and
Computer Science, MIT.

(8>

