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Unification-Based Parsing on Increasing Levels of Parallelism

P. Neuhaus O. Furuse H. lida

ATR Interpreting Telephony Research Laboratories
Sampeidani Inuidani, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

As effectively programmable parallel architectures become available their usage in natural language pro-
cessing increases. But an often disregarded problem is the discrepancy between the number of processors
required by so-called massively-parallel algorithms and the number of processors provided by the parallel
machine actually at hand. ) :

A parallel parsing algorithm on the basis of the well known CYK algorithm has been published. We
present an efficient, further parallelized version for JPSG-like unification-based grammars and show the
effectiveness of restricting parallelization with regard to the size of the parallel machine used.



1 Introduction

As effectively programmable parallel architectures become available their usage in natural language pro-
cessing increases. Algorithms for parallel analysis, i.e. parsing and unification, have been published. For
example, [Mat89] presents a parallel parser based on logic programming, [Lan90] shows the utilization of
systolic computations for parallel parsing, [Fuj90] investigates parallel unification, to name only a few.

Some of the suggested algorithms are massively parallel (for instance [Lan90]). But an often disregarded
problem is the discrepancy between the number of processors required by these algorithms and the number
of processors provided by the parallel machine actually at hand. Usually this problem is handled by virtual
processors and for a scheduling scheme. However, this obviously introduces additional overhead, that in the
worst case, negates the benefits of parallelization. So-called massively-parallel parsers are an interesting
research subject, but most available parallel architectures will not allow for massive parallelism.

In this paper a parallel parsing algorithm for a JPSG-style unification-based grammar is presented. It
is based on the CYK (Cocke-Younger-Kasami, for example [You67]) parsing! algorithm. The algorithm is
parallelized on increasing levels in terms of the number of required processors. At the first level, as proposed
by [Bar90], a linear number of processors (in the length of the input string) is used. We show that on further
levels more and more parallelism can be achieved and that this is necessary for an efficient parser for natural
language processing. ‘

In section 3 the original CYK parsing algorithm and its first level parallelization are explained. After a
brief discussion of possible parallelizations in section 4, section 5 presents our further parallelized versions
that will fit medium-sized parallel machines. In section 6 implementational details are explained. Finally,
section 7 gives a discussion of results that show how the choice of an appropriate parallelization scheme is
crucial for efficient run-time results.

2 Unification-based Grammar

A unification-based grammar has two components: a (usually?) context-free grammar backbone and some
feature structure formalism attached to it. For a basic introduction to unification-based grammars the reader
is referred to [Shi86]. We use a grammar following the notion of JPSG as presented in [Gun87].

JPSG uses just one context free rule, Mother — Daughter Head, to account for the structure of Japanese
sentences. This assumption of binary structures in JPSG suggests the use of a CYK type of parser, because
it requires the context-free grammar to be in Chomsky Normal Form?, i.e. it must be binary (cf. section 3).

We do not restrict the grammar used to contain only one context free rule as was suggested in [Gun87].
Actually the grammar should try to restrict the context-free syntax as far as possible because checking
context free rules is less expensive than doing unifications. [Tom91] reports that in certain parsers over 90%
of the time is consumed by unification.

There are two main strategies combining a parser and a unification algorithm. One is to produce all
parse trees of the input string first, and then to do all unifications in a second phase. The other way is to
do the unification after each reduction step of the parser. Since many syntactically possible structures. are
semantically ill-formed, the latter strategy will rule out these structures at an early pointin time. This kind
of parser is called an integrated parser and will be our choice.

3 Parallel Parsing

Before introducing the first level of parallelization we will explain the original sequential CYK algorithm as
presented in [You6T].

1A remark concerning the term “parser”: we will use it both in the sense of parsing a context free grammar and in the sense
of analyzing natural language which itself consists of parsing and unification. Its use should be clear from the context.

2[Mat89] covers non-context-free grammars, too.

3 Actually it is easily possible to allow unary rules which may sometimes be convenient.



3.1 The CYK Parser for Context Free Languages

If a grammar contains only productions of the form A — B Cor A — t for some non-lerminals A, B and
C and some terminal 1, it is said to be in Chomsky normal form. The standard CYK algorithm determines
for all sub-strings of the input string their possible (sub-)tree structures. This is done by building a table,
here M. The first row contains the pre-terminals (the A of “A — 1”) as table entries and is indexed M;;,
where i = 0,...,n — 1 and n is the length of the input string.

The next row’s entries — indexed as M; 41, for i =0,...,n —2 — are computed by combining two adjacent
entries of the previous line, i.e. M;; and M;11,i+1. Combining two entries means, that the non-terminals in
the two sets are joined to pairs and for each pair the grammar is checked (by a table lookup) if it can be
reduced by a production. If this is the case this production’s left side is added to the set M; ;1;. Thus this
new entry describes two tokens of the input string. For example, in figure 1 the verb “ita” (past tense of “to
be”) and the noun “toki” (“time”) form a noun phrase.

For the next rows, each entry describes substrings of the input string. For the computation of entry
M; ; (describing all possible structures of the substring from tokens i to j of the input string), for all
k =1i...(j — 1), entries M;; and My 41,; are combined. For example, figure 1 shows the computation of
M3 4 at the third row. Entries M;2 and M3 4 are combined by joining V and PP, for which no grammar
rule exists. Entries M3 3 and My 4 are combined by joining NP and P, yielding PP. For entries in the next
row three combinations will take place, and so on.

Eventually table entry Mpn_1 will contain the first non-terminals of all possible parses. If it contains
the root symbol, obviously the string has been accepted. Actually at this point no tree is directly available.
How to get the parse tree (in our implementation) will be described in section 6.
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Figure 1: The combination scheme for entries in table M, here entry M; 4

Since each table entry can contain at most all non-terminals of the grammar the combination of two table
entries is of constant complexity in the length of the input string. That, the overall complexity is O(n?).

3.2 A Parallel CYK Parser

As shown by [Bar90] the above described algorithm’s time complexity can be decreased to O(n®) by utilization
of a number of processes linear in the number of input tokens, the time-processor product remaining the
‘same.’ : '

As can be seen from the description of the sequential CYK algorithm the computation of a row entry
depends only on previous rows. For example in figure 1, while M, 4 is computed by one process, other



processes can compute entries Mo 2, My 3, M35, and so on. That means that all entries of a row can be
computed in parallel. We need only ensure that the computation does not start before the required entries
of previous rows are computed.

Let P; for i = 0...n—1 be the processes then P; computes entries M ; ... M; n_1. Synchronize(P;, Piy1)
makes sure that process F; does not proceed to compute entry M; ; until process P, finished its computation
of entry Mi11 ;. We get the following algorithm:

begin P{i}
for j=i to (n-1)
do
synchronize(P{i},P{i+1})
compute-entry(M{i,j})
end P

This algorithm has been proposed in the field of programming language parsing. In [Bar90] it is argued
that — with respect to existing parallel architectures — a parallel parsing algorithm that’s processor usage
is of linear complexity (in the length of the input string) is much more realistic than an algorithm with
quadratic complexity is. Though input strings in natural language analysis are much shorter, a similar
argument applies to natural language parsing as well.

3.3 Theoretical Complexity vs. Actual Usage of Processors

Because of the much shorter strings in natural language analysis the complexity in terms of the O-calculus is
not so important. The O-calculus is only valid for asymtotic considerations. For us the ratio of the number
of processes to the number of (hardware) processors is much more important. If it becomes extremely big
or small then the parsing is far from being efficient.

The parallel CYK algorithm presented above starts out with n processes doing one combination of entries.
With every new row one process terminates but each remaining process has to combine one more pair of
entries, thus the quadratic time complexity. What should concern us is that once there are less processes
than actual processors we waste computational power. The effect of this waste can be seen in the results
presented below.

4 Possible Parallelization of Unification-based Parsers

The basic analysis of the parallelization of unification-based parsers (cf. [Kat90]) shows that there are three
sources of parallelism exploitable by a parsing algorithm:

1. context-free grammar

(a) independent sub-trees
(b) structural ambiguities

2. disjunctions of feature structures
3. recursive unification of complex feature structures

A parse tree usually contains non-overlapping subirees that can be computed in parallel. Moreover, if
there is a structural ambiguity in a sentence, two or more parse trees will be created. The related unifications
can be done simultaneously.

" Disjunction of feaiure siructures means that one terminal or non-terminal has more than one feature
structure. For example, a verb may have two different feature structures, for example because of a transitive
and an intransitive meaning. Thus there are two possibilities to form a verb-phrase by adding an inflection.
The corresponding unifications can be done in parallel.



Two complez feature structures are said to unify if the values (possibly again complex structures) of
corresponding attributes unify. Complex feature structures therefor imply recursion. Its parallelization
would lead to massive parallelism*. We did not exploit this source of parallelism (item 3 above) because it
counteracts achieving a parsing algorithm efficient for medium-sized parallel architectures. For a discussion
of this kind of massive parallelization and its results the reader is referred to [Fuj90].

5 Our Further Parallelized Parsing Algorithms

We are presenting one parsing algorithm on several levels of parallelization. Thus the following subsections
show algorithmic realizations of the discussion above.

5.1 Combining Table Entries is Independent

Let us examine the example of computing a row entry from above. To compute entry M3 4 it is necessary
to combine entries M3 3 with M3 4 and M, 3 with My 4. These two combinations can be done in parallel, let
us say by a worker-process.

This will lead to the usage of O(n?) processors®. The synchronization overhead increases because now
all worker-processes have to be synchronized because an entry is not entirely computed until all related
“workers” are finished. To prevent them from overwriting each other’s results, a lock must be used also
(with-lock acquires the lock, executes the body and releases the lock). Thus we get the following algorithm:

begin P{i,k} \\ worker for k-th combination
for j=i to (n-1)
do
for 1=i to (j-1)
do
synchronize(P{i,k},P{i+1,1})
combine (M{i,k},M{(k+1),j})
with-lock
write(M{i,j})
end P

This approach is somewhat naive because in an actual parse there are often empty entries. A worker com-
bining empty entries just consumes time for synchronization. After looking at another source of parallelism
in the next section we will consider further the combination of table entries.

5.2 Combining Non-Terminals is Independent

For the combination of two entries each non-terminal in the first entry is combined with each non-terminal
in the second entry. While the check of the grammar table is very fast and can be done sequentially the
unification of two items is slow. So the unifications should be done in parallel after the sequential syntax check
has sorted out all impossible combinations with respect to the context free grammar. The synchronization
mechanism used here is that of a fork, i.e. the entry-combination routine spawns unification processes and
waits for them to be terminated.

This further parallelization covers item 2 of section 4. If a non-terminal has disjunctive feature structures
there are multiple copies of it in the table entry, each with a different feature structure. Parallelizing
the combination of all non-terminals of two table entries obviously leads to a parallel unification of the
disjunction of feature structures. The resulting algorithm is shown in the next section after one more level
of parallelization has been added. ‘

4To avoid massive parallelism here a worker/agenda mechanism could be helpful. Though the BEHOLDER package will
supply such a mechanism it has not been implementation yet.
5More exactly the number of processors will be |n/2] * [n/2]



5.3 Reconsider Combination of Entries

The fork mechanism described in section 5.2 can be expanded to the entire computation of an entry. That is
not only the joining of non-terminals but also the combination of table entries is executed in the fork. Thus
it covers not only all unifications of one combination of a pair of entries but all necessary combinations of
previous entries. That yields the following algorithm: '

begin P{i} begin combine(M{i,k},M{1,j})
for j=i to (n-1) for all pairs in M{i,k} X M{1,j}
do do
synchronize(P{i},P{i+1}) if reducible
compute-entxry(M{i,j}) then mark pair
end P for all marked pairs
fork
begin compute-entry(M{i,j}) unify
for k=i to (j-1) end combine
fork

combine (M{i,k},M{(k+1),j})
end compute-entry

6 Implementation

We implemented several parallel versions of a parser along the above described levels of parallelization on
a Sequent Symmetry S81 with 12 tightly-coupled processors. The coding was done in CLiP (cf. [CLiP]), a
parallel LISP based on Allegro CL. To deal with specific problems of CLiP the BEIIOLDER package proved
to be very useful.

Under CLiP only 11 processors are available and another processor has been spent for monitoring, such
that we could test the different parsers with 1 to 10 processors. On these, so called, Light Weight Processes
were scheduled. A sequential reference version also has been implemented.

In our algorithm on a tightly-coupled architecture the parsing table M is held in common memory. In
contrast to the original algorithm presented in section 3.1, we store pointers to the constituents of each non-
terminal. Thus, an entry can contain multiple copies of one non-terminal — each with different constituents®

The stated synchronization condition is implemented by blocking and unblocking processes. Before a
process computes an entry it reads a channel (here a mail-box) from its right neighbour. If it is empty
(indicating that required data is still being computed by its right neighbour) the process blocks until a
message arrives in its mail-box (thereby unblocking the process). If the mail-box is not empty all required
data is available and the process does not have to block. Each process tells its left neighbour through a sync
mail-box that it has completed the computation of the previous entry.

We are using the quasi-destructive graph unification algorithm as presented in [Tom91]. It solves the
efliciency problems in case of unification failures” most elegantly, while it is still easy to be altered to run
concurrently.

7 Evaluation ’ ‘

In the following the implementations of the presented algorithms will be referred to as:

8This has a heavy impact on the time complexity of the first level parallelization. Since now an entry can contain more
non-terminals than there are in the grammar the combination of two entries is not of linear complexity anymore. Theoretically
the complexity became even exponential with respect to ambiguities in the grammar and the input string.

7If a unification algorithm creates copies of feature structures but eventually the uruﬁcauon fails, the copying is a waste of
time and memory resources.



e :sequ - the sequential CYK algorithm (section 3.1)
e :lin - the first level parallelization presented in [Bar90] (section 3.2)
e :sqr - the naive parallelization using O(n?) processors (section 5.1)

e :fork — the further parallelized parsing algorithm (sections 5.2 and 5.3)
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Figure 2: Parsing times for three sentences by :fork

Figure 2 shows the run-time of parsing three sentences by :fork compared to the sequential version of
the algorithm (the dotted lines). The sentences are, A: onamae to gozyuusyo wo onegai shi masu (“Would
you please give me your name and address?” 819 top-level unifications), B: soredewa kochira kara sochira ni
tourokuyoushi wo ookuri itashi masu (“Then, I'll send you a registration form.” 321 top-level unifications)
and C: wakari mashita (“I see.” 34 top-level unifications).

The synchronization overhead is compensated for when at least two or three processors are used. The
speed up was 1:3 for the 10-processor run vs. the l-processor run in all tests. It was at least 1:2 for the
10-processor run vs. the sequential reference version.
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Figure 3: Comparison of all four versions



Figure 3 compares all versions of the presented algorithm for sentence D: wakare nai ten ga gozaimashi
tara watakushidomo ni itsu demo okiki kudasai. (“Please feel free to ask if there’s anything you don’t
understand.” 141 top-level unifications).

The :lin version suffers from its not using all processors. This waste shows especially at its bad scaling:
The run-time for more than four processors was more or less constant in all tests. The reason is, that
:lin actually does not use most of the processors much. Still, this version is easy to implement and maybe
interesting for very small parallel machines. .

Finally, the :s¢r version clearly is not usable at all. The reason is the large amount of sychronization
necessary with this algorithm. Even, its implementation is more complicated than that of the other versions.

The run-time of :fork shows, that this is a better way to do things. Though it required more synchro-
nization than :lin, it was faster with three or more processors. Also, it showed a better scaling. ‘

8 Conclusion

We introduced the CYK parsing algorithm and its parallelization following [Bar90]. On this basis an efficient
paralle] unification-based parser has been presented. It used further parallelism for better utilization of the
parallel machine and incorporated a unification algorithm. The strength of the presented parallel parsing
algorithm lies in the combination of a fast unification algorithm with a parser that is parallelized with respect
to the underlying architecture. The reduced parallelism, in contrast to massively parallel algorithms, resulted
in good run-times on a medium-sized parallel machine. Even with as few as four processors, good speed-ups
could be achieved.
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