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Abstract

In this paper we describe an implemenation and evaluation of our new generalized LR parsing algorithm
called YAGLR. In our implementaion we used tree-sturcture stack to realize YAGLR algorithm, whereas
in its original version we use graph-structure stack. The merge operations of YAGLR proceeds deeper than
top nodes effectively. Through reduce actions YAGLR creates items called drit which are symmetrically
different from Earley’s item. Through our implementaion we show the advantages of creating drits instead
of Earley’s items. We also show through our implementation that, the parsing time of YAGLR is in the
order of n®, where n is the length of an input sentence. Because of our merge algorithm and due to the
nature of shared-strucure of Prolog, even though we use tree-structure stack, we retain the packed nature
" of GSS. This reduces the memory space used by YAGLR to a greater extent.

1YAGLR : Yet Another Generalized LR parser
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1 Introduction

In recent times, ambiguous context-free grammars (CFG)
are used for the syntactic and semantic processing of nat-
ural language. Efficient syntactic and semantic parsing for
context-free languages are generally characterized as com-
plex, specialized, highly formal algorithms. There are two
major parsing algorithms that are used for the efficient
parsing. The first is Earley’s algorithm (Earley, 1970),
which produce the parsing result in the form of a parse list
consisting of set of items. This reduces the computational
dependence on input sentence length from exponential to
cubic cost. An attractive feature of Earley’s algorithm is
that it can easily be modified to parse co-ordinate struc-
tures of unlimited breadth. Such structures exist in the
logical form of natural sentences. Numerous variations
on Earley’s method have developed into a family of chart
parsing algorithms (Winograd, 1983).

The second is Tomita’s algorithm (Tomita, 1986), which
generalizes Kunth’s (Kunth, 1965) and DeRemer’s (DeRe-
mer, 1971) computer language LR parsing techniques.
Tomita’s algorithm constructs parse forests, as the parsing
result, which are nothing but a set of items. Tomita's algo-
rithm uses the data structure called graph-structure stacks
(GSS). Empirical results of Tomita’s and Farley’s algo-
rithm reveal that the Earley/Tomita ratio of parsing time
is larger when the length of an input sentence is shorter or
when an input sentence is less ambiguous (Tomita, 1986).
" Even though in (Tomita, 1986) it was climed that
Tomita’s algorithm produces all the parsing trees during
the parsing process, they are nothing but a set of items
with pointers. A method for disambiguation of trees from
the parse forest is proposed by (Tomita, 1986), in which
the disambiguation is done by asking the user. In (John-
son, 1989) and (Kipps, 1989) it was stated that any al-
gorithm which uses packed forest representation will take
exponential time for certain sets of CFGs. In Earley’s al-
gorithm, parse trees are formed from the parse list created
during parsing. Earley’s algorithm works with the time
complexity, in the order of n® for any CFG (Aho,Ulman
1972). In our new generalized LR parsing algorithm we
stick on to the formation of items as the result of parsing.
But our items are symmetrically different from Earley’s.

In this paper we present an implementation and evalu-
ation of our new generalized LR parsing algorithm called
YAGLR (Tanaka, 1991). In the implementation of this
algorithm we used tree-structure stacks (¢rss). In its orig-
inal version we used graph-structure stacks (GSS). In this
paper we explain all the actions of YAGLR on a set of
trss, which we call as TRSS. Because of our merge al-
gorithm, we find that even using trss, the parsing time
and reduction in memory space are remarkable. Instead
of packed forest as in Tomita’s algorithm, YAGLR. creates
items called dot reverse item {drit). These drits not only
make effective merge operations possible, but also ease the
removal of duplicated items.

In the following sections we state briefly about the drits
and we give the implementation details of our algorithm
along with the experimental results. We also prove ex-
perimentally that, the parsing time of YAGLR is in the
order of n® for a grammar with reasonable size and time
complexity in practical natural language processing. We

conclude this paper with a brief discussion on our future
research directions.

2 A Brief Introduction to Generalized
LR Parsing

The generalized LR parsing algorithm uses stacks and an
LR parsing table generated from given grammar rules. An
English grammar and its LR parsing table are shown in
figure 2-1 (Tomita, 1987).

(1 s - NP VP
2 S — SPP
(3) NP — na

(4) NP — detn
(5) NP — NPPP
(6) PP — p\NP
(7Y VP = wvNP

Figure 2-1 : A simple and ambiguous English grammar

State Action field Goto field
det 1 v P $ INP[PP[VPTS
0 sh3 | shd 2 1
1 sh6 acc 5
2 sh7 sh6 9 8
3 sh10
4 red red red
5 re2 re2
[ sh3 | sh4 11
7 sh3 | sh4 12
8 rel rel
9 red red red
10 red red re4d
11 re6 | reG/shG | reG 9
12 re7/sh6 | re7 9

Figure 2-2 : LR table for the grammar in fig.2-1

The parsing table consists of two fields, a parsing action
field and a goto field. The parsing actions are determined
by state (the row of the table) and a look-ahead preter-
minal (the column of the table), which is the grammatical
category of an input sentence. Here, $ represents end of
the sentence. There are two kinds of stack operations:
shift and reduce. Some entries in the LR table contain
more than two operations and are thus in conflict. In
such cases, a parser must conduct more than two opera-
tions simultaneously.

The ‘shN’ in some entries of the LR table indicates that
the generalized LR parser has to push a look-ahead preter-
minal on to the LR stack and shift to ‘state N’. The sym-
bol ‘reN’ indicates that the parser has to pop the number
of elements, corresponding to right hand side of the rule
numbered ‘N’, from the top of the stack and then goto
the new state determined by goto field. The symbol ‘acc’
means that the parser has successfully completed parsing.
If an entry contains no operation, the parser will detect
an error.

The LR table in figure 2-2 has conflicts in state 11 and
12 for column ‘p’. Each of the two conflicts contain both
a shift and a reduce actions, which is called a shift/reduce
conflict. When our parser encounters the conflict, all re-
duce actions should be carried out before the shift action.
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No. | Stack Input Actions
(1) [1] T saw a girl with the tel§ | shift to 4
(2) Ond saw a girl with the tel$ reduce by
NP—n
3) ONP2 saw a girl with the tel$ shift to 7
(4) ONP2v7 a girl with the tel$ shift to 3
(5) ONP2v7det3 girl with the tel$ shift to 10
(6) O NP 2v 7det 3n 10 | with the tel$ reduce by
NP—det,n
(7 ONP2v7NP12 with the tel$ shift to 6/
reduce by
VP—+v,NP
(8) | ONP 2E 7 NP 12 with the tel§ *ghift to 6
VP 8 reduce by
S—NP,VP
(9) OINP 2v 7NP 12 with the tel$ *shift to 6
s 1 shift to 6
(10) | O[NP 2v 7 NP 12 p 6 | the tel$
S 1pé6

Figure 2-3. An Example of Generalized LR Parsing

On input “I saw a girl with the telescope”, the sequence of
stack and input contents is shown in fig.2-3. For example,
at line (1) the parser is in state 0 with “I” the first input
symbol. As the action field of fig.2-2 in row 0 and column
‘n’ (the preterminal of “I”) contains ‘sh4’, it pushes ‘n’ and
cover the stack with state 4. That is what was happened
in line (2).

Then, “saw” becomes the current input symbol. As the
action of state 4 on ‘v’ (the preterminal of “saw”) is ‘re3’,
it carries out a reduce action by using the rule NP — n.
One state symbol and one grammar symbol are popped
from the stack and 0 again becomes the top of the stack.
Since the goto field of state 0 on NP is 2, NP and 2 are
pushed onto the stack. We now have the configuration
in line (3). Each of the remaining moves are determined
similarly until the shift of “girl”.

In line (7), we get a conflict with ‘sh6/re7’, where we
carry out ‘re7’ at first and ‘sh6’ is waited until all the
other remaining stacks experiences shift actions. At line
(10) both the stacks with shift action ‘sh,6’ are shifted to
state 6. The remaining parsing proceeds in this way.

3 Dot Reverse Item

During reduce actions, YAGLR creates drits which are
symmetrically different from Earley’s items. Since a state
always accompanied with position number, we call the pair
as a node in the rest of this paper (see section 4). From
the trss we can create either Earley’s items or drits.

One of the important factor in creating drits is that,
it enable us to do deep merge on TRSS and makes the
structure of TRSS much simpler. In other case, if we cre-
ate Earley’s items, the deep merge is not possible and we
have to restrict only to the merge of top nodes, and if we
do deep merge then it leads to the creation of unwanted
items. The reason why the creation of proper drits is pos-
sible comes from the fact that LR parsing is based on
right-most derivation. Another important factor in using
drits is the localization of duplication checks. The posi-
tion number j inside Earley’s item I; > [A—=B-C,j
will change within the processing of a single input word
w. On the other hand, the position number j inside drits
will remain the same throughout the processing of the in-
put word wy, (wr = w;) and thus it enables us to limit
the duplication check within the processing of a single in-
put word. Therefore we can localize the range of duplica-

tion check of drits. The drits are elaborately discussed in
(Tanaka, 1991).

The following is a formal definition of a drit.

Let G = (N, T, P, S) be a CFG and let w = w; ws ....
w, € T* be an input sentence in T* which is a set of a
sequence of terminal symbols. For a CFG rule A — X;
Xm and 0 S ] S n, [A - X1 Xg Xk . Xk+l Xm,
j] is called a drit for w. The dot between X and X4 is
a metasymbol not in N and T. The position number ‘0’
represents the left hand side position of w;.

1, a set of drit is defined as follows. For i and j (0<
i<ji<n),[A—-a-BjeLif SSyAsBS
Wit Wita . .- Wj, and & = Wjp1 Wit - . - W, Where the dot
position is a suffix 7 of an item set I;.

The difference of a drit with an Earley’s item lies in the
interpretation of 5. It is evident from the above definition
that, in the drit, the analysis has been completed for #
which is on the right hand side of the dot symbol. On the
contrary, in case of Earley’s item, the analysis has been
completed for a which is on the left hand side of the dot
symbol.

4 Realization of tree-structure stack

In YAGLR method, we do not use grammatical categories
along with a state number as in generalized LR parsing
algorithm shown in fig.2-3. In Tomita’s method, packed
forest representation is used instead of grammatical sym-
bols. On the other hand, we use position numbers along
with a state number. The position number indicates the
position upto which the shift of an input sentence has been
completed. Note that a sequence of state numbers in the
stack completely determines the basic parsing process. In
other words, whether or not we use grammatical symbols
or packed forests or position numbers along with a state
in the stack, they do not affect our basic parsing process.

Each node of a irss used in YAGLR has the following
structure :
[ < a set of position numbers >, < state > |.
The set of position numbers are used to create drits during
reduce actions. In general, there will be several top nodes
in TRSS, but after merging, the remaining top nodes will
be at most no more than the number of distinct states.
Even though we use irss in our implementation, because
of our merge operations and due to the shared-structure of
Prolog, we retain the packed nature of GSS. An example
of trss is given in (a) and its list structure in (b). In the
trssin (a), [{5},6] is the top node and other nodes below
top nodes such as [{4},12], [{3}, 8], [{2},7), [{1}, 2] and
[{0},0] are all called parent nodes of the top node.

(a) [{0}, o—{1}, 2F—{{2}, 7—{{4}, 12
({0}, OF———{a},2—{3}, &

(b)  [[{0}.0, {1},2, {2},7, {4},12],
[{0}7 0, {1}’ 2, {3}’ 8]) {5}’ 6] Top

({5}, 6]
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5 An Implementation of YAGLR Algo-
rithm

In this section we will first describe about the merge op-
eration of YAGLR algorithm followed by the shift and the
reduce actions on TRSS. Finally we give the merge algo-
rithm and the procedure of YAGLR. In our implementa-
tion, each entry in a LR parsing table is regarded as a
process which will handle shift, reduce, accept and error
actions.

5.1 Merge Operation

In our merge operation, the nodes which have the same
states can only be merged. Our merge operation begins
from the top nodes with the same state and then proceeds
one level down towards the parent nodes. To merge two
nodes with the same state, we apply the following opera-
tions (M1) and (M2).

(M1) The two top nodes [{i}, s} and [{i}, s] are merged
into one node as [{i}, s] which inherits all the parent nodes
of the two top nodes before merge.

For example, by applying (M1) to the TRSS as shown
in (a), we get the TRSS as shown in (b).

o

—... . .
—{2.3), 8} - (2,45}, o}

(a) —_— Top
= = =238} {3.5).9} Top
- — .. ‘

by =~ ﬂ(z.aa.ar—kp .
= = ={[2.34), s——F f>ﬂsx. 1l P

(M2) For the two parent nodes [M, s] and [N, s} of X

(X is a merged node), apply either (M21) or (M22).

(M21) If M is neither a subset nor a superset of N, a
new merged node [M U N, s| is formed as a new parent
node of X and all the parent nodes of [M, s] and [N, s] will
become the parent nodes of the new merged node [M U
N, s].

For example, in case of (b), X is [{6}, 1] and its parent
nodes to be merged are [{2,4,5}, 9] and [{3,5}, 9]. The
resultant TRSS after applying (M21) to (b) is shown in

(c).
- = ... ’
() (prct: >(2.3.4.a.91 —{{s). 1] Top

(IM22) If M is a subset of N, then simply take [N, s] as a
merged node and no more merge is necessary beyond this
level. The parent nodes of X from [M, s| are removed. If
M is a superset of N, then take [M, s] as a merged node
and parent nodes of X from [N, s] are removed. No more
merge is necessary beyond this level.

For example, in case of (c), X is [{2,3,4,5}, 9] and the
parent nodes to be merged are [{2,3}, 8] and [{2,3,4}, 8].
We now apply (M22) to the above TRSS (c) and get the
TRSS as shown in (d).

- = ...
(d) {2.3,4,5), 9F———{{6}, 1] Top
= = =H{234},8

I
I

5.2 Shift Action

Let us consider a shift action ‘sh,u’ of the word w; to'a
trss as shown in (e). It shifts (pushes) a new node onto
top of the trss getting (f) and creates a dritin I; as shown
in (g). The position number of the shifted node in (f) is
increased by one.

(6) - - ~{M}, s—{i},t]  Top (sh,u)

() - - -{{M}, sk——{{i}, t—[{(+1)}, ] Top

(8) L3X->- wis,t+1]

In our implementation, when a process handling shift ac-
tion is called by a trss, in TRSS, the shifted node is pushed
into the trss,. The parsing will continue with the rest of
trss in TRSS. Once all the irss in TRSS completes shift
action, all the shifted nodes (which are now top nodes)
with similar states will be merged using (M1). With the
result of (M1), the parser will continue its action for the
next input word wjy;.

5.3 Reduce action

Let us consider a reduce action for a trss using a CFG rule
A — X;1Xs5 . . .. X, having m nonterminal symbols on
its RHS. Applying this rule for the reduce action on (h),
the stack (i) is obtained along with the creation of a set
of drits as shown in (j).

(h) .. Py, stF—{Prs1ssertl " APrsm, Stym] Top
) Py, sb——{P’ksm, t]  Top
where PL. = {a., b,. . .}, Pk+1 = {C ,d,. f .}, ey Pk+m—1
= {e, T - g}, Psm = {i}> Plirm = {i}.
The state ‘t” in (i) is a new state determined from the goto
field of s; and A. Note that a set of position numbers,
namely Pj.p.. at the top node of (h) is {i} which includes
only one position number of the last input word shifted so
far. A set of position numbers P’;.,, remains the same as
{i} after the reduce action.

(j) Creation of drits :

L 3 [A—= XiXp. Xm i
Ib 3> [A - X1X2 Xm ,'L]
L 3 [A-X; X X
Ia ] [A — X1 Xo ... Xin ,i]
L 3 [A—> XXz X
If 2 [A — X1X2 . X.m ,1]

The position number ¢ inside a drit is a position number
of the top node in the stack and is remained unchanged
until the next shift action occurs. Note that the drit such
as [A — Xy, ... , Xm -, (€L;) is not created because they
do not contribute to the formation of trees.

In our implementation, let us consider a process han-
dling the reduce action 71/r2/.../7, (where p is the total
number of productions), is called by a trss, in TRSS. All
the reduce actions for the trss, will be carried out to give
trss,,, trss.,, . . . trss,, which are the resultant trsses
after reduce and goto actions. These resultant trsses will
be merged with the rest of irssin TRSS using (M1) and
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(M2). Finally, with the resultant TRSS after merge, the
parser will continue its next action.

5.4 Merge Algorithm of TRSS

Since we defined the merge operations considering two
nodes, we now give the merge algorithm of TRSS as fol-
lows. Our merge is performed in depth-first method by
considering two frss at a time.

procedure merge (TRSS);
begin
Initialize TmpStk to [ ];
while TRSS # empty do
repeat
pickup and retract a trss (call target.trss) from TRSS;
if at least one trss with target_trss’s same top node
exits in TRSS
then
begin
repeat
pickup and retract a trss (call s_trss) from
TRSS having same top node that of target_trss;
apply (M1) to the top node of target_trss and
s.trss to get a merged top node;
for the parent nodes of merged top node
apply (M2);
name the result of the merges (M1) and (M2)
of target_trss and s_trss as m_trss;
target_trss := m_trss;
until no more irss with samme top nodes as
target_trss in TRSS exist;
end
put the target.trss into the TmpStk;
until TRSS becomes empty;
TRSS := TwmpStk;
end
In applying (M2), if (M21) is applied then our merge
proceeds one level down towards the parent nodes by call-
ing (M2) recursively. However in case of applying (M22),
we do not need to proceed our merge further.

5.5 YAGLR Algorithm
Let us give a complete algorithm of YAGLR.

1. Set the initial state of a set of irsses (TRSS) as :
(Bottom) ({0}, 0] (Top)

2. Initialize the TempStack to [ ]

3. If TRSS is cmpty then goto 5;
Pick up and retract one trss from TRSS (TRSS := TRSS - trss);
for this trss
Assign the actions determined by LR table;
case actions of

‘accept’: end with ‘success’ for the #rss and goto 3;

‘error’ : end with ‘failure’ for the trss and goto 3;

‘shift’ : push the trss into TempStack and goto 3;

‘reduce’: goto 4;

‘shift/reduce”: push the trss with the shift action
into TempStack and goto 4 carrying
the trss with the reduce action(s)

end;

4. do the reduce action(s) and push the newly formed trss(es)’
into TRSS and merge the TRSS;
goto 3.

5. If TempStack := [ ] then return;
Perform shift action for every trss in TempStack and push the
resultant into TRSS ;
merge the TRSS;
goto 2.

6 Evaluation of YAGLR

In this section we describe the evaluation of YAGLR based
on the preliminary experimental results comparing with
SAX (Matsumoto, 1988) and SGLR (Numazaki, 1991).
SAX is based on the bottom up version of Chart algo-
rithm and SGLR is based on Tomita’s algorithm using
tree-structured stacks.

6.1 Experimental Environment

The experiments were done on Sun 3/260 machine and
using Quintus Prolog. We used different sets of gram-
mars in our experiment ranging from the grammars with
3 rules to 550 rules to study the parsing efficiency of our
algorithm. In this paper we concentrate on three differ-
ent type of grammars. Gram-1 is a grammar in (Johnson
1989) which is a highly densely ambiguous grammar. This
grammar and its input pattern are given in the appendix.
Gram-2 is a grammar with 44 rules, and gram-3 with 400
rules. Gram-2 and Gram-3 are taken from (Tomita, 1986).
However, original version of Gram-3 is from our lab in
Tokyo Institute of Technology. Gram-3 becomes highly
ambiguous and could therefore be considered as one of the
toughest natural language grammars in practice. In this
paper we center all our experimental results mainly around
gram-3. The evaluation of other types of grammars along
with gram-1 are give in (Tanaka, 1991), (Suresh, 1991).

The input for the grammars 2 and 3 is made more sys-
tematically. The n-th sentence in the set is obtained by the
schema, noun verb det noun (prep det noun)*~! (Tomita,
1986). The example sentence with this structure is: [
saw a girl on the bed in the apartment with a telescope
...... The ambiguity of this type of sentences grows enor-
mously. This type of sentences are necessary to find the
parsing efficiency against sentence ambiguity.

All our program are written in Prolog and are com-
plied using Quintus Prolog. Since we are interested in
the ratio of parsing time, it will be the same either in-
terpreted or compiled. The parsing time is determined by
CPU time minus the time consumed for garbage collection
(gc). We find that the gc consumed during the execution
of our algorithm is very less (even though we use trss). If
we include the gc time, then the ratio between YAGLR
and other parsers will vary a large extent - in a positive
way to YAGLR. The parsing time in our implementations
are without forming trees for SAX, SGLR parsing while
YAGLR parsing creates drits.

6.2 Experimental Evaluation of YAGLR
Here, we give our preliminary results on the implemen-

tation of YAGLR. The figure 6-2(a) and 6-2(b) shows
the parsing time of YAGLR for gram-3 against length of
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the input sentence and against sentence ambiguity respec-
tively. .,
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We find that YAGLR parses the sentence more faster, as
the ambiguity of the sentence increases. In other words,
as the ambiguity increases, the parsing time of YAGLR
decreases rapidly regardless to the size of the grammar or
length of the input sentence.
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The figure 6-2(c) shows the number of drits created by
YAGLR against the ambiguity. Here, the total drits pro-
duced during parsing is indicated by a dashed curve, which
includes duplicated drits. After the shift of an input word
w;, our parser makes duplication check to the drits pro-
duced in between w;_; and w; and removes all the dupli-
cated items. The other curve shows the number of non-
duplicated items created among duplicated items. The
parsing time shown in fig.6-2(a) and (b) includes the time
consumed for removing the duplicated items. If the sen-
tence is ambiguous, the creation of duplicated drits are
unavoidable. It should be noted that, if we do not do the
duplication check, YAGLR parser will run much faster.

6.3 Comparison of YAGLR

In this subsection, we would like to compare the perfor-
mance of YAGLR with other parsers. In figure 6-3(a) and
6-3(b), we give the ratio of parsing time of SGLR/YAGLR
and SAX/YAGLR against sentence length and senténce

‘ambiguity respectively, for gram-2. The ratio will be the

same by taking it either against sentence length or ambigu-
ity. The high, the ratio of parsing time of SGLR/YAGLR
or SAX/YAGLR, the low, the parsing time of YAGLR.
Here, we see that, SGLR/YAGLR ratio and SAX/YAGLR
ratio is high for a sentence with considerable length, as the
ambiguity increases.
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The figure 6-3(c) shows a comparison of Earley’s items
created using Earley’s algorithm and drits created by
YAGLR for gram-3. All the duplicated items are removed
during parsing and the graph in fig.6-3(c) shows that of
non-duplicated items. From the fig.6-3(c) we can realize
the advantages of creating drits over Earley’s items.

10

Number of items in thosands

drits

Tk TOO TOUOOU——TOOC
Sentence ambiguiry
Figure 6-3(c)

0
]
g

(6)



There are some grammars, for which the number of non-
duplicate Earley’s items created using YAGLR algorithm
are less than that of drits. But, the total number of items
created including duplicated items are far less in case of
drits. The parsing time includes the creation of total num-
ber of items which includes duplicated items. The more
the duplicated items, the more the time consumed for cre-
ating and removing. Also, as we disussed briefly in section
2, on creating Earley’s items using our algorithm, leads to
the creation of unwanted items. Hence it is safe to con-
clude that drits are better than Earley’s items.

1/p TIME 1n msec. Trees
SAX [ SGLR | YAGLR
5 34 50 67 20
6 67 83 117 70
7 233 250 183 256
8 800 833 367 969
9 2867 3117 517 3762
10 | 10750 | 12650 866 14894
11 | 41616 | 49716 1383 59904
12 | 262250 | 222235 | 2017 | 244088
Figure 6-3(d)
n TIME in msec. Trees
SAX [ SGLR | YAGLR

1 50 17 67 1

2 117 84 167 2

3 267 150 400 5

4 967 350 600 14

5 3067 1000 934 42

6 9700 3200 1417 132

7 | 32217 | 10683 1917 429

8 | 113135 | 37800 2700 1430

9 | 398832137000 | 3667 4862
10 - 498731 | 4750 16796

Figure 6-3(e)

Some raw empirical datas got from the experimental re-
sults using gram-1 and gram-2 are given in the table in fig.
6-3(d) and 6-3(e) respectively. In the table, I/P denotes
length of the input sentence, n denotes sentence number
according to the schema described in 6.1 and Trees denotes
the number of ambiguities. These datas entierly depends
on the machine system and the programming language
used. But we hope that, the ratio of parsing time will be
the same for any system under a particular programming

environment.
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The figure 6-3(f) and 6-3(g) shows results of memory
space consumed by YAGLR for the parsing of gram-2 and
gram-3 respectively. YAGLR consumes very less memory
space due to its effective merge operations. Note that in
YAGLR we produce drits, whereas in our experiments,
SAX and SGLR are not producing any form of partially
parsed informations. It is the reason why YAGLR needs
more space up to the sentence of length 18. The amount of
memory space needed depends on the size and ambiguity
of the grammar and the input we use. However, when
the length of input sentence gets long, the reduction in
memory space is remarkable regardless to the size and
ambiguity of the grammar.

6.4 Experimentai Computational Complexity of
YAGLR

For gram-1 we proved theoretically, the complexity of
YAGLR as in the order of n® (Tanaka, 1991 [in Japanese]).
But we are yet to prove in case of general CFG. In this sub-
section we give our experimental proof for the complexity
of YAGLR. The figure 6-4 shows the order of parsing time

of YAGLR for gram-1 and gram-3.
3 /

Passing Time inlog 10

t
Length of sentence in log_10
Figure. 6-4

On taking log scale for both X and Y axis we find that for
the parsing time to be in the order of n?, the slope of the
time curve must be < 3. Thus the line passing through
X and Y axis in fig. 6-4 shows the sample line with slope
3. In the fig.6-4 we find the time curve of gram-3 is in
parallel with the sample line and so we can conclude that,
the time complexity of gram-3 is in the order of n®. In
case of the time curve of gram-1, we find that it is not in
parallel with the sample line and it is nearly in the order of

7)



n*. However, we proved theoretically that the complexity
of YAGLR for gram-1 is in the order of n®.

7 Conclusion

We have shown the basic idea of YAGLR parsing algo-
rithm and its implementation with evaluation. It should
be noted that after completing parse, the syntactic trees
are formed from drits obtained during the parsing process.
Even though we used TRSS in our implementation, we
find that the parsing speed of YAGLR increases and the
memory space consumed by YAGLR is very less. There
are certain grammars for which if we use TRSS the copy-
ing of stacks creates inefficiency. For this reason we would
like to implement our algorithm in GSS as in our origi-
nal version. Through our implementation, we practically
proved that for a CFG with reasonable size and complex-
ity, YAGLR's parsing time is in the order of n®. Our future
works includes showing the time complexity of YAGLR
for any CFG, developing a parallel algorithm for YAGLR
method and also for the tree generation from drits.
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Appendix

The CFG given in (Johnson, 1989) is shown below.
1)y S - a
2) S — SS§

3) § — gmt2
The input pattern for this type of grammar is a2,
where n > m.
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