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Learning Dependencies between Case Frame Slots
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We address the problem of automatically acquiring case frame patterns {selectional pat-
terns) from large corpus data. In particular, we propose a method of learning dependencies
between case frame slots. We view the problem of learning case frame patterns as that of
learning multi-dimensional discrete joint distributions, where random variables represent
case slots. We then formalize the dependencies between case slots as the probabilistic
dependencies between these random variables. Since the number of parameters in a multi-
dimensional joint distribution is exponential, it is infeasible to accurately estimate them
in practice. To overcome this difficulty, we settle with approximating the target joint
distribution by the product of low order compounent distributions, based on corpus data.
In particular we propose to employ an efficient learning algorithm based on the MDL
principle to realize this task. Our experimental results indicate that for certain classes
of verbs, the accuracy achieved in a disambiguation experiment is improved by using the
acquired knowledge of dependencies.
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1 Introduction

We address the problem of automatically acquir-
ing case frame patterns (selectional patterns) from
large corpus data. The acquisition of case frame
patterns normally involves the following three
subproblems: 1) extracting case frames from cor-
pus data, 2) generalizing case frame slots within
the case frames, 3) learning dependencies that ex-
ist between the (generalized) case frame slots.

In this paper, we propose a method of learn-
ing dependencies between case frame slots. By
‘dependency’ is meant the relation that exists be-
tween case frame slots which constrains the pos-
sible values assumed by each of those slots. As
illustrative examples, consider the following sen-
tences.

The girl will fly a jet. (1)

This airline company flies many jets.  (2)
The gir]l will fly Japan Airlines. (3)

*The airline company will fly Japan Airlines(. )
4

We see that an ‘airline company’ can be the sub-
ject of verb fly’ (the value of case slot ‘argl’),
when the direct object (the value of case slot
‘arg2’) is an ‘airplane’ but not when it is an ‘air-
line company.” These examples indicate that the
possible values of case slots depend in general on
those of the other case slots: that is, there exist
‘dependencies’ between different case slots.

The knowledge of such dependencies is useful in
various tasks in natural language processing, es-
pecially in analysis of sentences involving multiple
prepositional phrases, such as

The girl will fly a jet from Tokyo to Beijing.

| (5)
Note in the above example that the case slot of
‘from’ and that of ‘to’ should be considered depen-
dent and the attachment site of one of the prepo-
sitional phrases (case slots) can be determined by
that of the other with high accuracy and confi-
dence.
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There has been no method proposed to date,
however, that learns dependencies between case
frame slots in the natural language processing lit-
erature. In the past research, the distributional
pattern of each case slot is learned independently,
and methods of resolving ambiguity are also based
on the assumption that case slots are indepen-
dent (Hindle and Rooth, 1991), or at most two
case slots are dependent (Brill and Resnik, 1994).
Thus, provision of an effective method of learn-
ing dependencies between case slots, as well as
investigation of the usefulness of the acquired de-
pendencies in disambiguation and other natural
language processing tasks would be an important
contribution to the field.

In this paper, we view the problem of learn-
ing case frame patterns as that of learning multi-
dimensional discrete joint distributions, where
random variables represent case slots. We then
formalize the dependencies between case slots as
the probabilistic dependencies between these ran-
dom variables. Since the number of dependencies
that exist in a multi-dimensional joint distribution
is exponential if we allow n-ary dependencies, it 1s
infeasible to accurately estimate them with a data
size available in practice. It is also clear that rel-
atively few of these random variables (case slots)
are actually dependent on each other with any sig-
nificance. Thus it is likely that the target joint
distribution can be approximated reasonably well
by the product of component distributions of low
order, drastically reducing the number of param-
eters that need to be considered. This is indeed
the approach we take in this paper.

Now the problem is how to approximate a joint
distribution by the product of low order com-
ponent distributions. Recently, (Suzuki, 1993)
proposed an algorithm to approximately learn a
multi-dimensional discrete joint distribution ex-
pressible as a ‘dendroid distribution,” which is
both efficient and theoretically sound. We employ
Suzuki’s algorithm to learn case frame patterns
as dendroid distributions. We conducted some
experiments to automatically acquire case frame



patterns from the Penn Tree Bank bracketed cor-
pus. Our experimental results indicate that for
some class of verbs the accuracy achieved in a dis-
ambiguation experiment can be improved by using
the acquired knowledge of dependencies between
case slots.

2 Probability Models for Case
Frame Patterns

Suppose that we have data given by case frame
instances of a verb automatically extracted from
a corpus, using conventional techniques. As ex-
plained in Introduction, the problem of learning
case frame patterns can be viewed as that of esti-
mating the underlying multi-dimensional discrete
Jjoint distributions which give rise to such data. In
this research, we assume that case frame instances
with the same head are generated by a joint dis-
tribution of type,

P]'(leXQ)--’vXﬂ)y (6)

where index Y stands for the head, and each of the
random variables X;,i = 1,2,...,n, represents a
case slot. In this paper, we use ‘case slots’ to mean
surface case slots, and we uniformly treat obliga-
tory cases and optional cases. Thus the number
n of the random variables is roughly equal to the
number of prepositions in English (and less than
100).

These models can be further classified into
three types of probability models according to the
type of values each random variable X; assumes.!
When X; assumes a word or a special symbol ‘0’
as its value, we refer to the corresponding model
Py(X1,...,X,) as a ‘word-based model.” Here ‘0’
indicates the absence of the case slot in question.
When X; assumes a word-class or ‘0" as its value,
the corresponding model is called a ‘class-based
model.” When X; takes on 1 or 0 as its value,
we call the model a ‘slot-based model.” Here the
value of ‘1’ indicates the presence of the case slot
in question, and ‘0’ absence. Suppose for sim-
plicity that there are only 4 possible case slots
(random variables) corresponding respectively to
the subject, direct object, ‘from’ phrase, and ‘to’
phrase. Then,

Pf’y()(ﬂfyl = girl,Xarg'z :jet‘yX,from =0,X: = 0)

(7
is given a specific probability value by a word-
based model. In contrast,

Priy(Xarg1 = {person), Xerg2 = (airplane),

(8)

Afrom = U, Ay =

'A representation of a probability distribution is
usually called a probability model, or simply a model.

is given a specific probability value by a class-
based model, where (person) and (airplane) de-
note word classes. Finally,

Pfiy(Xargl = 11Xav‘g2 = 1;Xfrom =0,Xs = ?))

9

is assigned a specific probability value by a slot-

based model. We then formulate the dependencies

between case slots as the probabilistic dependen-

cies between the random variables in each of these
three models.

In the absence of any constraints, however, the
number of parameters in each of the above three
models is exponential (even the slot-hased model
has O(2") parameters ), and thus it is infeasible to
accurately estimate them in practice. An assump-
tion that is often made to deal with this difficulty
is that random variables (case slots) are mutually
independent.

Suppose for example that in the analysis of the
sentence

The girl will fly a jet from Tokyo, (10)

two interpretations are obtained. We wish to se-
lect the more appropriate of the two interpreta-
tions. A heuristic word-based method for disam-
biguation, in which the slots are assumed to be
dependent, is to calculate the following values of
word-based likelihood and to select the interpre-
tation with the higher likelihood value.

Priy(Xarg1 = girl, Xarga = jet, Xfrom = Tok%'ﬂ)
Priy(Xarg1 = girl, Xorga = jet) (12)
X Pje1(Xgrom = Tokyo) :
If on the other hand we assume that the random
variables are independent, we only need to calcu-
late and compare

Pﬂy (Xjrom = Tokyo) (13)
and

P;ot(Xsrom = Tokyo) (14)
(c.f.(Li and Abe, 1995)). The independence as-
sumption can also be made in the case of a class-

based model or a slot-based model. For slot-based
models, with the independence assumption,

Priy(Xsrom = 1) (15)
and

Pjei(/‘{from = 1) (16)
are to be compared (c.f.(Hindle and Rooth,
1991)).

Assuming that random variables (case slots)
are mutually independent would drastically re-
duce the number of parameters. (Note that un-
der the independence assumption the number of
parameters in a slot-based model becomes O(n).)
As illustrated in Section 1, this assumption is not

3 necessarily valid in practice. What seems to be



true in practice is that some case slots are in fact
dependent but overwhelming majority of them are
independent, due partly to the fact that usually
only a few slots are obligatory and most others
are optional.? Thus the target joint distribution
is likely to be approximable by the product of
several component distributions of low order, and
thus have in fact a reasonably small number of
parameters. We are thus lead to the approach
of approximating the target joint distribution by
such a simplified model, based on corpus data.

3 Approximation by Dendroid
Distribution

Without loss of generality, any n-dimensional joint
distribution can be written as

”
P(X1,X2,.., Xn) = [ P(Xm | Xy Xomiy)
=1
(17)
for some permutation (my,ms,..m,) of 1,2,..,n,
here we let P(Xm,|Xm,) denote P(Xom,).

A plausible assumption on the dependencies be-
tween random variables is intuitively that each
variable directly depends on at most one other
variable. (Note that this assumption is the sim-
plest among those that relax the independence as-
sumption.) For example, if a joint distribution
P(X1,X2,X3) over 3random variables X1, X2, X3
can be written (approximated) as follows, it (ap-
proximately) satisfies such an assumption.

P(X},Xg,Xg) = (z)P(Xx)P(‘Yzlxl)P(,’(alﬁrég

Such distributions are referred to as ‘dendroid dis-
tributions’ in the literature. A dendroid distribu-
tion can be represented by a dependency forest
(i.e. a set of dependency trees), whose nodes rep-
resent the random variables, and whose directed
arcs represent the dependencies that exist between
these random variables, each labeled with a num-
ber of parameters specifying the probabilistic de-
pendency. (A dendroid distribution is a restricted
form of the Bayesian Network (Pearl, 1988).) It
is not difficult to see that there are 7 and only
7 such representations for the joint distribution
P(X1,X2,X3) disregarding the actual numerical
values of the probability parameters.

Now we turn to the problem of how to select the
best dendroid distribution from among all possi-
ble ones to approximate a target joint distribution
based on input data generated by it. This prob-
lem has been investigated in the area of machine
learning and related fields. A classical method is
Chow & Liu’s algorithm for estimating a multi-
dimensional joint distribution as a dependency

20ptional slots are not necessarily independent,
but if two optional slots are randomly selected, it is
likely that they are independent of one another.

tree, in a way which is both efficient and theo-
retically sound (Chow and Liu, 1968). More re-
cently (Suzuki, 1993) extended their algorithm so
that it estimates the target joint distribution as
a dependency forest or ‘dendroid distribution,’ al-
lowing for the possibility of learning one group
of random variables to be completely independent
of another. Since many of the random variables
(case slots) in a case frame pattern are essentially
independent, this feature is crucial in our context,
and we thus employ Suzuki’s algorithm for learn-
ing our case frame patterns. Figure 1 shows the
detail of this algorithm, where k; denotes the num-
ber of possible values assumed by node (random
variable) X;, N the input data size, and ‘log’ de-
notes the logarithm to the base 2. It is easy to

Let T := 0; Calculate the mutual information
I{Xi, X;) for all node pairs (X;, X;); Sort the
node pairs in descending order of I, and store
them into queue @; Let V be the set of {X;},
i=1,2,..,m;
while The maximum value of I in @ satisfies
I(X:, X5) > f(: ,‘,Xj) = (k; — 1)(kj - l)l%g}{;\i
do begin
Remove the node pair (X;, X;) having the
maximum value of I from Q;
If X; and X; belong to different sets W1,
"_7, in V;
Then Replace W; and W, in V with
"y UW,, and add edge (X;, X;) to T,
end
Output T as the set of edges of the estimated
model.

Figure 1: The learning algorithm

see that the number of parameters in a dendroid
distribution is of the order O(nk?), where k is the
maximum of all k;, and n is the number of random
variables. The time complexity of the algorithm
is of the order O(n*(k? + logn)).

Suzuki’s algorithm is derived from the Mini-
mum Description Length (MDL) principle (Rissa-
nen, 1989) which is a principle for data compres-
sion and estimation from information theory and
statistics. It is known that as a method of estima-
tion, MDL is guaranteed to be near optimal.? In
applying MDL, we usually assume that the given
data are generated by a probability model that
belongs to a certain class of models and selects
a model within the class which best explains the
data. It tends to be the case usually that a sim-
pler model has a poorer fit to the data, and a
more complex model has a better fit to the data.
Thus there is a trade-off between the simplicity of

*We refer the interested reader to (Li and Abe,
1995) for an introduction to MDL.



a model and the goodness of fit to data. MDL re-
solves this trade-off in a disciplined way: It selects
a model which is reasonably simple and fits the
data satisfactorily as well. In our current prob-
lem, a simple model means a model with less de-
pendencies, and thus MDL provides a theoreti-
cally sound way to learn only those dependencies
that are statistically significant in the given data.
An especially interesting feature of MDL is that
it incorporates the input data size in its model se-
lection criterion. This is reflected, in our case, in
the derivation of the threshold 8. Note that when
we do not have enough data (i.e. for small N),
the thresholds will be large and few nodes tend
to be linked, resulting in a simple model in which
most of the case frame slots are judged indepen-
dent. This is reasonable since with a small data
size most case slots cannot be determined to be
dependent with any significance.

4 Experimental Results

We conducted some preliminary experiments to
test the performance of the proposed method as a
method of acquiring case frame patterns. In par-
ticular, we tested to see how effective the patterns
acquired by our method are in structural disam-
biguation. We will describe the results of this ex-
perimentation in this section.

4.1 Experiment 1: Slot-based Model

In our first experiment, we tried to acquire case
frame patterns as slot-based models. We ex-
tracted 181,250 case frames from the Wall Street
Journal (WSJ) bracketed corpus of the Penn Tree
Bank as training data. There were 357 verbs for
which more than 50 case frame examples appeared
in the training data.

First we acquired the case frame patterns as
slot-based models for all of the 357 verbs. We then
conducted a ten-fold cross validation to evaluate
the ‘test data perplexities’ of the acquired case
frame patterns, that is, we used nine tenth of the
case frames for each verb as training data (sav-
ing what remains as test data), to acquire case
frame pattern for the verb, and then calculated
perplexity using the test data. We repeated this
process ten times and calculated the average per-
plexity. Table 1 shows the average perplexities
obtained for some randomly selected verbs. We
also calculated the average perplexities of the ‘in-
dependent slot models’ acquired based on the as-
sumption that each slot is independent. Our ex-
perimental results shown in Table 1 indicate that
the use of the dendroid models can achieve up to
20% perplexity reduction as compared to the use
of the independent slot models. It seems safe to
say therefore that the dendroid model is more suit-
able for representing the true model of case frames
than the independent slot model.

Table 1: Verbs and their perplexities

Verb Independent Dendroid
add 5.82 5.36
buy 5.04 4.98
find 2.07 1.92
open 20.56 16.53
protect 3.39 3.13
provide 4.46 4.13
represent 1.26 1.26
send 3.20 3.29
succeed 2.97 2.57
tell 1.36 1.36

We also used the acquired dependency knowl-
edge in a pp-attachment disambiguation experi-
ment. We used the case frames of all 357 verbs
as our training data. We used the entire brack-
eted corpus as training data in part because we
wanted to utilize as many training data as possi-
ble. We extracted (verb,noun;,prep,noun;) and
(verb,prep;,nouny,prepa,nouny) patterns from
the WSJ tagged corpus as test data, using pat-
tern matching techniques. We took care to ensure
that only the part of the tagged (non-bracketed)
corpus which does not overlap with the bracketed
corpus is used as test data. (The bracketed corpus
does overlap with part of the tagged corpus.)

We acquired case frame patterns using the
training data. We found that there were 266
verbs, whose ‘arg2’ slot is dependent on some of
the other preposition slots. There were 37 (See
examples in Table 2) verbs whose dependency be-
tween arg2 and other slots is positive and exceeds
a certain threshold, 1.e. P(arg2 = 1,prep =1) >
0.25. The dependencies found by our method
seem to agree with human intuition in most cases.

Table 2: Verbs and their dependent slots

Verb Dependent slots
add arg2 to
blame arg2 for
buy arg?2 for
climb arg2 from
compare | arg2 with
convert | arg2 to
defend arg2 against
explain | arg2 to

file arg2 against
focus arg2 on

There were 93 examples in the test data
(verb,noun;,prep,nouns pattern) in which the two
slots ‘arg2’ and prep of verb are determined to be

5 positively dependent and their dependencies are



Table 3: Disambiguation results 1

Accuracy(%)
Dendroid 90/93(96.8)
Independent | 79/93(84.9)

stronger than the threshold of 0.25. We forcibly
attached prep nouny to verb for these 93 exam-
ples. For comparison, we also tested the disam-
biguation method based on the independence as-
sumption proposed by (Li and Abe, 1995) on these
examples. Table 3 shows the results of these ex-
periments, where ‘Dendroid’ stands for the for-
mer method and ‘Independent’ the latter. We
see that using the information on dependency we
can significantly improve the disambiguation ac-
curacy on this part of the data . Since we can use
existing methods to perform disambiguation for
the rest of the data, we can improve the disam-
biguation accuracy for the entire test data using
this knowledge. Furthermore, we found that there
were 140 verbs having inter-dependent preposition
slots. There were 22 (See examples in Table 4 ) out
of these 140 verbs such that their case slots have
positive dependency that exceeds a certain thresh-
old, i.e. P(prep; = 1,preps = 1) > 0.25. Again
the dependencies found by our method seem to
agree with human intuition.

Table 4: Verbs and their dependent slots

Head Dependent slots
acquire | from for
apply for to
boost from to
climb from to
fall from to
grow from to
improve | from to
raise from to
sell to for
think of as

In the test data (verd,prep;,noun; ,preps,nouns
pattern), there were 21 examples that involve one
of the above 22 verbs whose preposition slots show
dependency exceeding 0.25. We forcibly attached
both prep; noun; and preps noun, to verbd on
these 21 examples, since the two slots prep; and
preps are judged to be dependent. Table 5 shows
the results of this experimentation, where ‘Den-
droid’ and ‘Independent’ respectively represent
the method of using and not using the knowl-
edge of dependencies. Again, we found that for
the part of the test data in which dependency is
present, the use of the dependency knowledge can
be used to improve the accuracy of a disambigua-

tion method, although our experimental results
are inconclusive at this stage.

Table 5: Disambiguation results 2

Accuracy(%) |
Dendroid 21/21(100)
Independent | 20/21(95.2)

4.2 Experiment 2: Class-based Model

We also used the 357 verbs and their case frames
used in Experiment 1 to acquire case frame pat-
terns as class-based models using the proposed
method. We randomly selected 100 verbs among
these 357 verbs and attempted to acquire their
case frame patterns. We generalized the case slots
within each of these case frames using the method
proposed by (Li and Abe, 1995) to obtain class-
based case slots, and then replaced the word-based
case slots in the data with the obtained class-
based case slots. What resulted are class-based
case frame examples. We used these data as in-
put to the learning algorithm and acquired a case
frame pattern for each of the 100 verbs. We found
that no two case slots are determined as depen-
dent in any of the case frame patterns. This is be-
cause the number of parameters in a class based
model is very large compared to the size of the
data we had available.

Our experimental result verifies the validity in
practice of the assumption widely made in statis-
tical natural language processing that class-based
case slots (and also word-based case slots) are mu-
tually independent, at least when the data size
available is that provided by the current version
of the Penn Tree Bank. This is an empirical find-
ing that is worth noting, since up to now the inde-
pendence assumption was based solely on human
intuition, to the best of our knowledge.

To test how large a data size is required to
estimate a class-based model, we conducted the
following experiment. We defined an artificial
class-based model and generated some data ac-
cording to its distribution. We then used the data
to estimate a class-based model (dendroid distri-
bution), and evaluated the estimated model by
measuring the number of dependencies (depen-
dency arcs) it has and the KL distance between
the estimated model and the true model. We re-
peatedly generated data and observed the learn-
ing ‘curve,” namely the relationship between the
number of dependencies in the estimated model
and the data size used in estimation, and the re-
lationship between the KL distance between the
estimated and true models and the data size. We
defined two other models and conducted the same
experiments. Figure 2 shows the results of these
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Figure 2: (a) Number of dependencies versus data size and (b) KL distance versus data size

experiments for these three artificial models aver-
aged over 10 trials. (The number of parameters in
Modell, Model2, and Model3 are 18, 30, and 44
respectively, while the number of dependencies are
1, 3, and 5 respectively.) We see that to accurately
estimate a model the data size required is as large
as 100 times the number of parameters. Since
a class-based model tends to have more than 100
parameters usually, the current data size available
in the Penn Tree Bank is not enough for accurate
estimation of the dependencies within case frames
of most verbs.

5 Conclusions

We conclude this paper with the following re-
marks.

1. The primary contribution of research re-
ported in this paper is that we have proposed
a method of learning dependencies between
case frame slots, which is theoretically sound
and efficient, thus providing an effective tool
for acquiring case dependency information.

2. For the slot-based model, sometimes case
slots are found to be dependent. Experimen-
tal results demonstrate that using the depen-
dency information, when dependency does
exist, structural disambiguation results can
be improved.

3. For the word-based or class-based models,
case slots are judged independent, with the
data size currently available in the Penn Tree
Bank. This empirical finding verifies the in-
dependence assumption widely made in prac-
tice in statistical natural language processing.

We proposed to use dependency forests to repre-
sent case frame patterns. It is possible that more
complicated probabilistic dependency graphs like
Bayesian networks would be more appropriate for
representing case frame patterns. This would re-
quire even more data and thus the problem of
how to collect sufficient data would be a crucial
issue, in addition to the methodology of learning
case frame patterns as probabilistic dependency
graphs. Finally the problem of how to determine

obligatory/optional cases based on dependencies
(acquired from data) should also be addressed.
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