B R E F L B 116-13
(1996. 11. 19)

R 22— R RZHA LI UEE R FIE

TATwXay - FF7y 7 B F
e-mail:{ping,oku }@jaist.ac.jp
JpE B FER RS HRREHAR

(HEE]

ARSI & a— 20 b XRE R EE BB ET 28 BB L L TREITUREREZRAL, a—2-
AROEME T NV—E 7T EFEERET S, FEIMIE a— 2 2RA L XEBERORMATIE, FEFAZE
D= S ANOEFFICIHRIBR S TAVERET D Z LICAYT 5. 2— " ZARORELTWa iz v—E
Y7L, BoNEETAN—T OFEMICE CHEBRES 7NV EDTHZ EILL->TRETES. KRXTIE, £
B 2 SOELOELMEDOREE L LT T43ARAT (distributional analysis)] BX O THEXA 727724 )
7 (hierarchical Bayesian clustering] AW, ¥/, =rhr—tWiEREROBSICESE, HYR
I N—T7 DEOREFELRRT . BRI, AFEZAVTELNEHEBRRRESOSN—T 2 8REPLHRL
hf@EEg L gL, AFEoFREERT.

[F—7—8] SUERME, STRT, BB T I RZ )T, RETXIRTE#

Learning a Grammar from a Bractketed Corpus
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Abstract

In this paper, we propose a method to group brackets in a bracketed corpus (with lexical tags), according to
their local contextual information, as a first step towards the automatic acquisition of a context-free grammar.
Using a bracketed corpus, the learning task is reduced to the problem of how to determine the nonterminal
label of each bracket in the corpus. In a grouping process, a single nonterminal label is assigned to each group
of brackets which are similar. Two techniques, distributional analysis and hierarchical Bayesian clustering, are
applied to exploit local contextual information for computing similarity between two brackets. We also show a
technique developed for determining the appropriate number of bracket groups based on the concept of entropy
analysis. Finally, we present a set of experimental results and evaluate the obtained results with a model
solution given by humans.
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1 Introduction

In natural language processing, a grammar is very
useful information for recoginizing and generating a
language. So far several attempts have been made to
construct a good grammar for processing a language.
However, designing and refining a natural language
grammar by hand is a difficult and time-consuming
task and usually it requires a large amount of skilled
effort. Automatic acquisition of grammars is a so-
lution to this problem. Recently, there have been
numerous attempts to automatically acquire a CFG
grammar through the application of enormous exist-
ing corpora. As a most interesting approach, Lari
and Young[5] proposed so-called inside-outside algo-
rithm, which constructs a grammar from an unbrack-
eted corpus based on Maximum Likelihood approach.
This method requires a grammar to be in Chomsky
normal form and takes a large amount of computa-
tion. Kiyono[4] combined symbolic and statistical
approaches to refine an orginal grammar by adding
some rules extracted from a partially bracketed cor-
pus. As a recent work of grammar acquistion from
an unbracketed grammar, Mori[6] proposed a statis-
tical method which applied the entropy of the prob-
ability distributions of the Part-of-Speech(POS) be-
fore and after a POS sequence, to extract potential
constituent-like POS sequences. Then a context free
grammar is constructed by the utilization of these
constituent-like POS sequences and their probability
distributions. However, to obtain a suitable gram-
mar from an unbracketed corpus is difficult, costly
and hard to evaluate results of these approaches.
As the increase of the construction of bracketed cor-
pora., an attempt to use a bracketed (tagged) corpus
for grammar inference was made by Shirai[7]. Shi-
rai constructed a Japanese grammar based on some
simple rules to give a name (a label) to each bracket
in the corpus. To reduce the grammar size and am-
biguity, some hand-encoded knowledge is applied in
this approach.

In our work, like Shirai’s approach, we make use
of a bracketed corpus with lexical tags, but instead
of using a set of human-encoded predefined rules to
give a name (a label) to each bracket, we introduce
some statistical techniques to acquire such label au-
tomatically. Using a bracketed corpus, the grammar
learning task is reduced to the problem of how to
determine the nonterminal label of each bracket in
the corpus. We propose a method to group brack-
ets in a bracketed corpus (with lexical tags) and as-

sign each group with a single nonterminal label, as
a first step towards the automatic acquisition of a
context-free grammar. In grouping process, we apply
and compare two types of techniques. We also pro-
pose a method to determine the appropriate number
of bracket groups based on the concept of entropy
analysis. Finally, we present a set of experimental
results and evaluate our methods with a model solu-
tion given by humans.

2 Grammar Acquisition with
a Bracketed Corpus

In this section, we give a brief explanation of
grammar acquisition using a bracketed corpus. In
this work, the grammar acquisition utilizes a lexical-
tagged corpus with bracketings. An example of the
parse structures of two sentences in the corpus is
shown graphically in Figure 1.

Sentence (1) : A big man slipped on the ice.

Parse Tree (1) : (((ART,”a”)((ADJ,”big”)(NOUN,”man")))
((VI,”slipped”)((PREP,”on” )((ART,”the")
(NOUN,”ice”)))))

Sentence (2) : The boy dropped his wallet somewhere.

Parse Tree (2) : (((ART,’the”)(NOUN,”boy”))
(((VT,”dropped”)((PRON,”his")
(NOUN,”wallet”)))(ADV,”somewhere”)))

ART NOUN VT PRON NOUN ADV
The boy dropped his wallet somewhere

ART ADJ NOUN VI PREP ART NOUN
A big man alipped on  the ice

Figure 1: The graphical representation of the parse
structures of a big man slipped on the ice and the boy
dropped his wallet somewhere

In the parse structures, each terminal category (a
leaf node) is given a name (tag) while there is no
label for each nonterminal category (an intermedi-
ate node). With this corpus, the grammar learning
task corresponds to a process to determine the non-
terminal label of each bracket in the corpus. More
precisely, this task is concerned with the way to clas-
sify the brackets into some certain groups and give



each group a label. For instance, in Figure 1, it
is reasonable to classify the brackets! (c2),(c4) and
(c5) into a same group and give them a same la-
bel (e.g., NP(noun phrase)). As the result, we ob-
tain three grammar rules: NP — (ART)(NOUN),
NP — (PRON)(NOUN) and NP — (ART)(cl).
To perform this task, our grammar acquisition al-
gorithm operates in five stages as follows.

1. Assign a unique label to each node of which
lower nodes are assigned labels. At the initial
step, such node is one whose lower nodes are
lexical categories?. This process is performed

throughout all parse trees in the corpus.

2. Calculate the similarity of every pair of the de-
rived labels.

3. Merge the most similar pair to a single new la-
bel(i.e., a label group) and recalculate the simi-
larity of this new label with other labels.

4. Repeat (3) until a termination condition is de-
tected. As the result of this step, a certain set
of label groups is derived.

5. Replace labels in each label group with a
new label in the corpus. For example, if
(ART)(NOUN) and (PRON)(NOUN) are in the
same label group, we replace them with a new
label (such as NP) in the whole corpus.

6. Repeat (1)-(5) until all brackets(nodes) in the
corpus are assigned labels.

In this paper, we focus on step (1)-(4), that is how
to group nodes of which lower nodes are lexical cate-
gories. Figure 2 depicts an example of the group-
ing process. To compute the similarity of a pair

G3

(ADJ)NOUN) 7 '
1 (np without an article)
(NOGUR)NOUN) C7 j_'_ g

(ART}(NOUN) ¢2
(PRON)(NOUN)  ¢5 —
{INDEF)(NOUN) ¢

92 (np with an article)

Figure 2:. An example of the bracket grouping pro-
_cess

LA bracket corresponds to a node in Figure 1.

2In Figure 1, there are three unique labels de-
rived: ¢; = (ADJ)NOUN), c; — (ART)(NOUN) and
¢s — (PRON)(NOUN).

of labels(in step 2), we propose two types of tech-
niques called distributional analysis and hierarchical
Bayesian clustering as shown in section 3. In section
4, we introduce the concept of differential entropy for
the termination condition used in step (4).

3 Local Contextual Informa-
tion as Similarity Measure

In this section, we describe two techniques which
utilize “local context information” to calculate sim-
ilarity between two labels. The term “local contex-
tual information” considered here is represented by
a pair of words immediately before and after a label.
In the rest of this section, we first describe distribu-
tional analysis in subsection 3.1. Next, we give the
concept of Bayesian clustering in subsection 3.2.

3.1 Distributional Analysis

Distributional analysis is a statistical method orig-
inally proposed by Harris[2] to uncover regularities
in the distributional relations among the features of
speech. Applications of this technique are varied[1].
We apply this technique to group similar brackets in
a bracketed corpus. The detail of this technique is
illustrated below.

Let P, and P, be two probability distributions over
environments. The relative entropy between P; and
P, is:

D(P1jP2) = >
e€ Environments
Relative entropy D(P1{|P2) is a measure of the
amount of extra information beyond P2 needed to
describe P1. The divergence between P; and P, is
defined as D(P1||P2)+ D(P2||P1), and is a measure
of how difficult it is to distinguish between the two

P;(e) x log };:E:;

distributions. The environment is a pair of words im-
mediately before and after a label(bracket). A pair
of labels is considered to be identical when they are
distributionally similar, i.e., the divergence of their
probability distributions over environments is low.
The probability distribution can be simply cal-
culated by counting the occurrence of (c¢;) and
(wordy ¢; wordy).
1, the numbers of appearances of (c1), (c2), (cs),
(ART ¢; VI),(PREP c; NULL) and (VT ¢s ADV)
are collected from the whole corpus. NULL stands
for a blank tag representing the beginning or ending

For the example in Figure

mark of a sentence.



Sparse Data Considerations

Utilizing divergence, there is a serious problem
caused by the sparseness of existing data or the char-
acteristic of language itself. In the formula of rela-
tive entropy, there is a possibility that Ps(e) becomes
zero. In this condition, we cannot calculate the diver-
gence of two probability distributions. To cope with
this problem, we extend the ariginal probability to
one shown in the following formula.

Naeb) o 1

Placd) = A N +( —A)W

where, N{a) is the occurrence frequency of a, Ntags
is the number of terminal categories and A is a inter-
polation coefficient. The first term in the right part
of the formula is the original estimated probability.
The second term is generally called a uniform dis-
tribution, where the probability of an unseen event
is estimated to a uniform fixed number. A is a bal-
ancing weight between the observed distribution and
the uniform distribution. Intuitively, when the size
of data is large, the small number of A should be
used. In the experimental results in this paper, we
assigned A with a value of 0.6 .

3.2 Hierarchical Bayesian Clustering
Method

As a probabilistic method for automatically classi-
fying some given texts, hierarchical Bayesian cluster-
ing was proposed by Iwayama[3]. It was applied to
improve the efficiency and the effectiveness of text re-
trieval/categorization. Referring to this method, we
try to make use of Bayesian posterior probability as
another similarity measure for grouping the similar
brackets. We conclude the concept of this measure
as follows.

Let’s denote a posterior probability with P(G|C),
where C is a collection of data (i.e., in Figure 2, C
= {e1,¢2, -, cn}) and G is a set of groups(clusters)
(i.e., G = {g1, 92, ...}). Each group(cluster) g; is a set
of data and the groups are mutually exclusive. In the
initial stage, each group is a singleton set; g; = {c;}
for all 2. The method tries to select and merge the
group pair that brings about the maximum value of
the posterior probability? P(G|C). That is, in each
step of merging, this method searches for the most
plausible situation that the data in C are partitioned
in the certain groups G. For instance, at a merge

3Maximizing P(G|C) is a generalization of Mezimum Like-
lihood estimation.

step k+1 (0 £ k < N —1), a data collection C
has been partitioned into a set of groups Gi. That
is each datum c belongs to a group g € Gi. The
posterior probability at the merging step k 4+ 2 can
be calculated using the posterior probability at the
merging step k + 1 as shown below (for more detail,
see[3]).

PC(Grt1) SC(gz Ugy)
PC(Gk) SC(g:)5C(gy)

P(Gy41|C) P(Gk|C)

Here PC(G}) corresponds to the prior probability
that N random data are classified in to a set of
groups Gi. As for the factor of E—gé%—:g, a well
known estimate is applied and it is reduced to a con-
stant value A~! regardless of the merged pair. For a
certain merging step, P(G|C) is identical indepen-
dently of which groups are merged together. There-
fore we can use the following measure to select the
best group pair to merge. The similarity between two
bracket groups(labels), g, and gy, can be defined by
SIM(g.,g,). Here, the larger SIM(g;,gy) is, the
more similar two brackets are.

_ S5C(g. U gy)
SIM(5:%) = 56,)50(s,)
scg) = I[Py
ceg
P(clg) = > P(clg,e)Pelg)

e€ Environments

> P(cle)Pelg)

— P(C)Z P_(‘il}c;)(L;)(_‘M

Q

where SC(g) expresses the probability that all the la-
bels in a group g are produced from the group, an ele-
mental probability P(c|g) means the probability that
a group g produces its member ¢ and P(e|c) denotes
a relative frequency of an environment e of a label c,
P(e|g) means a relative frequency of an environment
e of a group g and P(e) is a relative frequency of an
environment e of the entire label set. In the calcula-
tion of STM(g.,gy), we can ignore the value of P(c)
because it occurs |g; U gy| times in both denomina-
tor and numerator. Normally, SIM(g., gy) is ranged
between 0 and 1 due to the fact that P(c|g. Ugy) <
P(c|g.) when ¢ € ga.



4 Differential Entropy as Ter-
mination Condition

During iteratively merging the most similar labels,
all labels will finally be gathered to a single group.
Due to this, it is necessary to provide a criterion
for determining whether this merging process should
be continued or terminated. In this section, we de-
scribe a criterion named differential entropy which is
a measure of entropy (perplexity) fluctuation before
and after merging a pair of labels. Let ¢; and ca be
the most similar pair of labels based on divergence
or Bayesian posterior probability. Also let c3 be the
result label. P, (e), P.,(e) and P, (e) are probabil-
ity distributions over environment e of ¢;, ¢; and c3,
respectively. P.,, P., and P, are estimated proba-
bilities of 1, c; and c3, respectively. The differential
entropy (AE) is defined as follows.

AE

= = Py x Y P(e)logP(e)
+ Py x Y P, (e)log P, (e)

+ Pe, x Y Pe,(e)log P, (e)

where Y, P.,(e)log P, (e) is the total entropy over
various environments of label c;. The larger AE is,
the larger the information fluctuation before and af-
ter merging becomes. Generally, we prefer a small
fluctuation to a larger one. When AF is large, the
current merging process introduces a large amount
of information fluctuation and its reliability should
be low. From this viewpoint, we apply this measure
as a criterion for determining the termination of the
merging process.

5 Preliminary Experimental
Results

In this section, we show some results of our pre-
liminary experiments to confirm effectiveness of the
proposed techniques. The corpus we used is con-
structed by EDR and includes nearly 48,000 brack-
eted, tagged sentences. As mentioned in the previ-
ous sections, we focus on only the rules with lexical
categories as their right hand side?. "For instance,
¢y — (ADJ)(NOUN), c; — (ART)(NOUN) and

4Other types of rules can be acquired in almost the same
way and are left now as our further work.

__89_

Consequence Entropy — Previous Entropy

¢s — (PRON)(NOUN) in Figure 1. To evaluate
our method, we use the rule tokens which appear
more than 500 times in the corpus. Consequently,
the number of rules is 35.

From these rules, we calculate the similarity be-
tween any two rules (i.e., any two labels) based on di-
vergence and Bayesian posterior probability (BPP).
For the divergence measure, the smaller the value is,
the more similar the rule pair is. On the other hand,
for BPP, the larger the value is, the more similar the
pair looks. After calculating all pairs’ similarities,
we merge the most similar pair (the minimum di-
vergence or the maximum BPP) to a new label and
recalculate the similarity of the new label with other
remaining labels. The merging process is carried out
in an iterative way.

In each iterative step of the merging process, we
calculate differential entropy for both cases. The dif-
ferential entropy of each step equals to the entropy
difference between the entropy of two rules before
merging and the entropy of a new rule after merging
as described in the previous section.

Two graphs in Figure 3 indicate the results of
differential entropy (AF calculated by the formula
in section 4) when the merging process advanced
with divergence and BPP as its similarity measures.
There are some sharp peaks indicating the rapid fluc-
tuation of entropy in the graphs. In this work, we
use these peaks as a clue to find the timing we should
terminate the merging process. As the result, we halt
up the process at the 22nd step and the 27th step for
the cases of divergence and BPP, respectively. That
is, there are 13 groups for divergence and 8 groups for
Bayesian posterior probability. The obtain groups
are shown in the appendix.

The Evaluator’s Answer
Yes No
The system says Yes a b
The system says No c d

Table 1: The number of entry pairs for evaluating
accuracy

We also made an experiment to evaluate these re-
sults with the solution given by three human evalua-
tors (later called A, B and C) who are non-native but
high-educated with more than 20 years of English ed-
ucation. The evaluators were told to construct 7-15
groups from the 35 initial rules, based on the gram-
matical similarity as they thought. As the result, the



05 .

04

e

0.3

i

0.2

orb 1 /\]\
S

0 5 10 15 20 25 30 35
Merge Step

Differential Entropy

0.2 T T T T

0.15 +

Differential Entropy
o
T

0.05

o 5 10 15 20 25 30 35
Merge Step

Figure 3: Differential entropy during the merging
processes using divergence (upper) and BPP (lower)

evaluators A, B and C classified the rules into 14, 13
and 14 groups, respectively.

To evaluate the system with the model solutions,
we applied a contingency table model as one shown
in Table 1. This table model is widely used in infor-
mation retrieval and psychology areas. In the table,
a is the number of the label pairs which an evaluator
assigned in the same group and so did the system, b
is the number of the pairs which an evaluator did not
assign in the same group but the system did, c is the
number of the pairs which an evaluator assigned but
the system did not, and d is the number of the pairs
which both an evaluator and the system did not as-
sign in the same group. We define seven measures, as
shown below, for evaluating performance of the pro-
posed methods. This evaluation technique was also
applied partly for computing ”closeness” between a
system’s answer and an evaluator’s answer in several
systems, such as in [3].

s Positive Recall (PR) : +

atc

¢ Positive Precision (PP) : ;%

» Negative Recall (NR) : b-+d

* Negative Precision (NP) : c_%

» Averaged Recall (AR) : 2ELNE

» Averaged Precision (AP) : £24NP

e F-measure (FM) : %

The F-measure is used as a combined measure of
recall and precision, where g is the weight of recall
relative to precision. Here, we use § = 1.0, which
corresponds to equal weighting of the two measures.
The results of divergence and BPP shown in the ap-
pendix are compared with three evaluators’ solution
models and two combined solution models: (1) the
answers which all evaluators content, (2) the answers
which two of three evaluators content. The detail of
the numbers of answers of all cases and the compar-
ison result are given in Table 2 and Table 3, respec-
tively.

Answer A B C [2of3] all | DIV

BPP

YES 56 66 54 53 27 73

76

NO 539 | 529 | 541 | 542 | 499 | 522 | 519

Table 2: The detail of the number of answers

Sim Measures
PR PP NR NP AR AP FM
Evall X DIV 0.91 0.70 0.96 | 0.00 | 0.093 0.84 0.70
BPP 0.63 0.48 0.92 0.98 1 0.77 [ D.71 0.53
Eval. B DIV 0.73 | 0.66 | 0.95 0.97 1T 0.54 0.81 | 0.69 |
BPP U.68 0.59 0.94 U.95 | 0.81 0.78 0.63
Eval. C | DIV [ 0.BY [0.86 | 0.95 | 0.90 { 0.92 ( 0.837 [ 0.76
BPP T.80 0.57 0.94 0.98 0.87 0.77 0.66 |
Avg. DIV 0.84 | 0.67 ] 0.95 0.98 | 0.90 | 0.82 | 0.15
BPP 0.70 0.54 0.93 0.97 0.82 0.75 0.61
All DIV 0.93 1.00 | 1.00 1.60 | 0.97 1.00 [ 0.96
BPP 0.70 0.5¢ 0.97 0.98 0.8% 0.76 0.61
20f3 DIV [ 0.92 [ 0.67 | 0.96 | 0.99 | 0.94 { 0.83 | 0.78
BPP 0.83 0.58 0.94 0.98 | 0.89 0.78 D.68 |

Table 3: Evaluation results using three human eval-
uators’ solutions

From these results, we observe some features as
follows. The divergence gives a better solution than
Bayesian posterior probability does. Normally, the
positive measures (PR and PP) have smaller values
than the negative ones (NR and NP) do. This means
that it is difficult to judge two labels to be in a same
group rather than to judge them to be in a separate
group. Using divergence as a similarity measure, we
get, on average, 84 % positive recall and 67 %.posi-
tive precision and up to 90 % and 82 % when consid-
ering both positive and negative measures. ‘Even for
the worst result(Evaluator B), we can get up t0 84 %
and 81 % for averaged recall and precision. For the
comparison with ‘all consent’, divergence can acheive
up to 93% positive recall and 100 % precision. For
the case of 2 of 3’, it acheives 92 % and 67 %, re-
spectively. ‘




In order to confirm the performance of the sys-
tem, the evaluators’ results are compared with each
other. This comparison is useful for investigating
the difficulty of the grouping problem. The compar-
ison result is shown in Table 4. At this point, we
can observe that the label grouping process is a hard
problem that may make an evaluator’s solution in-
consistent with the others’ solutions. However, our
proposed method seem to give a reconciliation solu-
tion between those solutions. Especially, the method
which applies divergence as the similarity measure,
has a good performance in grouping brackets in the
bracketed corpus.

I | Measures
mmm

[AXB [ 047 055 ] 0.
B+ & [ 085 [ 047
0. 0.68
-+ N 0.8 08 .96
Tt A 555 [ 0.57 [ 0.96 [ 0.95 [ 0.7 [ 016 [ 0.56
F

[Averaeed [ 08T [ 06T [ 096 [ 096 [ 0.8 [0.78 [ 060

Table 4: Comparing the grouping results obtained
by the evaluators(A,B,C)

We also make an experiment to evaluate whether
divergence is really a better measure than BPP, and
whether the application of differential entropy to cut
This ex-
amination can be held by plotting values of recall,

off the merging process is appropriate.

precision and F-measure during each step of merg-
ing process. Figure 4 shows the fluctuation of posi-
tive recall(PR), positive precision(AP), averaged re-
call(AR), averaged precision and F-measure (FM) in
the ‘averaged’ case. Due to the limit of space, we
omit the result of the ‘all consent’ and ‘2 of 3’ cases
but they have the same tendency as the ‘averaged’
case. .

From the graphs, we found out that the maximum
value of F-measure is 0.75 in the case of divergence
while it is only 0.65 in the case of BPP. That is, di-
vergence provides a better solution than BPP. More-
over, the 22nd an 25th merge steps were the most
suitable points to terminate the merging process for
divergence and BPP, respectively. This result is con-
sistent with the grouping result of our system (13
groups) in the case of divergence. Although differen-
tial entropy leads us to terminate the merging pro-
cess at the 27th merge step in the case of BPP, we
observe that there is just a little difference between
the F-measure value of the 25th merge step and that

of the 27th merge step. From this result, we conclude
that differential entropy can be used a good measure
to predict the cut-off timing of the merging process.
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Figure 4: The transition of PR, PP, AR, AP, FM
during the merging process using divergence(upper)
and BPP(lower) as the similarity measures

6 Conclusion

There has been an increase of the construction
of many types of corpora, including bracketed cor-
pora. In this work, we attempt to use a bracketed
(tagged) corpus for grammér inference. Towards the
automatic acquisition of a context-free grammar, we
proposed some statistical techniques to group brack-
ets in a bracketed corpus (with lexical tags), accord-
ing to their local contextual information. Two mea-
sures, divergence and Bayesian posterior probability,
were introduced to express the similarity between
two brackets. Merging the most similar bracket pair
iteratively, a set of label groups was constructed. To
terminate a merging process at appropriate timing,



we proposed differential entropy as a measure to rep-
resent the entropy difference before and after merg-
ing two brackets and stopped the merging process at
a large fluctuation. From the experimental results
compared with the model solutions given by three
human evaluators, we observed that divergence gave
a better solution than Bayesian posterior probabil-
ity. For divergence, we obtained 84 % recall and 67
% precision, and up to 90 % and 82 % when con-
sidering both positive and negative measures. We
also investigated the fitness of using differential en-
tropy for terminating the merging process by way of
experiment and confirmed it.

In this paper, we focus on only rules with lexi-
cal categories as their right hand side. As a further
work, we are on the way to introduce the techniques
introduced here to acquire the other rules(rules with
nonterminal categories as their right hand side). At
that time, it is also necessary for us to develop some
suitable evaluation techniques for assessing the ob-
tained grammar.

References

1

—_—

Eric Brill. Automatically acquiring phrase struc-
ture using distributional analysis. In Proc. of
Speech and Natural Language Workshop, pp.
155-159, 1992.

[2] Zellig Harris. Structural Linguistics. Chicago:
University of Chicago Press, 1951.
[3] M. Iwayama and T. Tokunaga. Hierarchical

bayesian clustering for automatic text classifica-
tion. In IJCAI, pp. 1322-1327, 1995.

=
o2

Masaki Kiyono and Jun’ichi Tsujii. Combination
of symbolic and statistical approaches for gram-
matical knowledge acquisition. In Proc. of 4th
Conference on Applied Natural Language Pro-
cessing(ANLP’34), pp. 72-77, 1994.

[5] K. Lari and S.J. Young.
of stochastic context-free grammars using the

“the estimation

inside-outside algorithm”. Computer speech and

languages, Vol. 4, pp. 35-56, 1990.

[6] Shinsuke Mori and Makoto Nagao. Parsing with-
out grammar. In Proc. of the 4th International
Workshop on Parsing Technologies, pp. 174-185,
1995.

[7] K. Shirai, T. Tokunaga, and H. Tanaka. Au-
tomatic extraction of japanese grammar from
a bracketed corpus. In Natural Language Pro-
cessing Pacific Rim Symposium(NLPRS’95), pp.
211-216, 1995.

Appendix

Group Members (Divergence)

1 INDEF)(NOUN), (ART)(NOUN), |
%PRON)(NOUN), (DEMO)(NOUN),
NUM)(NOUN), (NUM)(UNIT),
NOUN)(NUM)

2 ADT){NOUN), (NOUN)(NOUNYJ,
NOUN)(CONJ)(NOUN)
(ATX)(VT)

PREP)(NOUN), ;
EPREP)(PRON), (ADV)(ADV),
(PTCL)(VI)

5 (PTCLVT)

VTYNOUN), (VI)(ADV),
VT)PRON), (AUX)(VI),

EBE) VI), (BE)(VT),

BE)(ADJ), (ADV)(VD),
(VI)(PTCL)

7 (ADV)(ADI)

(AUX)(ADV)

3 (ADVY(VT), (VT)(PTCL),
(VI)(PREP)

0 AUX)(BE
11 BE)(ADV
2 ADVY(BE
13 PRON)(V

| el

&

Group Members (BPP)

1 {INDEF)(NOUNY, (ART)(NOUN), |

(PRON)(NOUN), (DEMO)(NOUN),

(NOUN)(CONJ)(NOUN)

(ADT)(NOUN), (NOUN)(NOUN)

(AUX)(VT), (AUX)(BE),

(BE)(ADV),

(PTCL)(VT), (AUX)(ADV)

3 {PREP)(NOUN), (ADV)(ADV),
PREP)(PRON), (PTCL)(VI),

PREP)(NUM)

3 (VT;ENOUN), (VI(ADVY,

wf o

(VT)(PRON), (AUX)(VI),
BE)(VI), (BE)(ADJ),
BE)(VT), (ADV)(VI),
VI)(PTCL)

3 {ADV)(ADJ}, (NOM)Y(NOUN),

(NUM)(UNIT)

7 ADV)(VT), (VT)(PICL),

EVI)(PREP)

3 {NOUN)(NUM), (ADV)(BE),

(PRON)(VT)

labels some instances

(ADIT) | ‘specific’ ‘commercial’ ‘adequate’ ‘structural’ ‘old’

((.211)‘¥ ::};J:p'lilci,t]‘y’ “enormoualy' ‘quite’ ‘not’
e’ ‘a’ ‘an
(AUX ‘may’ ‘should’ ‘did’ ‘could’ ‘will’ ‘have’
(BE) | ‘be’‘is’ ‘are’

(CONJ ‘and’ ‘when’ ‘or’

‘this’ ‘that’ ‘these’ ‘such’
(INDEF ‘few’ ‘one’ ‘any’ ‘some’

‘member’ ‘Japan’ ‘merchant’ ‘tour’ ‘area’

(NUM) | ‘2’ ‘0.5’ ‘60 billion’
(PREP ‘with® ‘in’ ‘to’ ‘of’

9’ ‘my’ ‘me’ ‘your’ ‘us’
(PTCL) | ‘up’ ‘to (to V)’ ‘down’ ‘out’
(UNIT) | ‘centimeter’ ‘percent’ ‘%’ ‘mm’ ‘dollar’

(VI) | ‘grow’ ‘delay’ ‘feed’ ‘go’ ‘went’ ‘gone’

(VT) | ‘give’ ‘gave’ ‘given’
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