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概要：本研究では、機械学習に基づく決定性の中国語依存構造解析器を実装する。依存構

造解析アルゴリズムとして山田モデルと Nivre モデルを用いて実装し、構造を判別する機

械学習器として最大エントロピー法と SVM 法を用いた。本稿では、CKIP treebank を用い

て各モデルの有効性について比較検証する。実験結果によると、Nivre モデルは山田モデル

で残されている曖昧性を解決できる。その他、中国語に存在する多様な複合名詞問題に対

して、chunker を用いた複合名詞抽出による精度向上についても検討する。 
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Abstract: In this paper, we present a deterministic dependency structure analyzer for Chinese. This 
analyzer implements two algorithms – Yamada and Nivre model – and two sorts of classifier – SVMs 
and MaxEnt. We compare the performance of two algorithms (by Yamada and by Nivre). We evalu-
ate the method on a dependency tagged corpus derived from the CKIP Treebank corpus. The result 
shows that Nivre’s algorithm can resolve some problems in Yamada’s algorithm. Then we try to add 
NP-chunker in our analyzer. Although the result of NP-chunker experiment doesn’t show signifi-
cantly better performance, we discuss that using NP-chunker is necessary for Chinese dependency 
analyzing.  

 

1 Introduction  

Many syntactic analyzers for English have been 
implemented and have demonstrated good per-
formance (Charniak, 2000; Collins, 1997; Ratna-
parkhi, 1999). However, implementation of 
Chinese syntactic structure analyzers is still lim-
ited, since the structure of the Chinese language 
is quite different from other languages. We are 
currently developing a Chinese syntactic struc-
ture analyzer. In this paper, we present our ma-
chine learning-based syntactic structure analyzer 
for Chinese. 
   Our analyzer produces word dependency struc-
ture rather than phrase structures. The reason is 
that dependency structures are simpler and more 
comprehensible than phrase structures. Moreover, 
construction of a word dependency annotated 

corpus is easier than construction of a phrase 
structure annotated corpus for use as the training 
data. Consistency among annotators can also be 
more easily achieved using the simpler depend-
ency structure. 

We utilize a deterministic method for depend-
ency relation construction. One approach is a 
generative dependency structure analysis consist-
ing of two steps: First, a dependency relation ma-
trix is constructed, in which each element 
corresponds to a pair of tokens. The dependency 
relation between each pair is assigned a likeli-
hood value. Second, the optimal dependency 
structure is estimated using the likelihood of the 
whole sentence under no-crossing constraint. The 
other approach, a deterministic dependency struc-
ture analysis, is proposed for Japanese (Kudo, 
2002) and for English (Yamada, 2003). We adopt 
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Yamada’s method to Chinese dependency analy-
sis.  

However, Yamada’s method still has a crucial 
ambiguity to estimate the parsing actions. Ma-
chine learner cannot estimate the actions with the 
surrounding features. To resolve the problem, we 
implement another bottom-up algorithm pro-
posed by (Nivre, 2004). Nivre’s method is ap-
plied to Norwegian and based on memory-based 
learning. In Yamada’s algorithm and Nivre’s al-
gorithm, the dependency relations are composed 
by a bottom-up schema with machine learners. 
We incorporate Support Vector Machines (here-
after SVMs) and Maximum Entropy (hereafter 
MaxEnt) models into their algorithms.  

There are many nominal compounds in Chi-
nese, which include more than three words in 
many cases. However, our analyzer cannot ana-
lyze these long nominal compounds well. Then, 
we adopt an NP-chunker based on SVMs to ex-
tract nominal compounds from the input sentence 
before dependency analysis.  

We compare the accuracy of two approaches. 
The aim is to implement a variation of the deter-
ministic method and to show how the method is 
applicable to Chinese dependency analysis. 

Our analyzer is experimented on the CKIP 
Chinese Treebank (K-J Chen et al, 1999), which 
is a phrase structured and head annotated corpus. 
The phrase structure is converted into a depend-
ency structure according to the head information. 
We perform experimental evaluations in several 
settings on the converted corpus. 

In the next section, we describe two determi-
nistic dependency structure analysis algorithms. 
Section 3 reports experimental evaluation and 
comparison with related work. Section 4 dis-
cusses the errors in our experiments and the ef-
fect of NP-chunker in the reduction of errors. 

Finally, we summarize our findings in the con-
clusion. 

2 Parsing Models 

This section presents two parsing algorithms pro-
posed by (Yamada, 2003) and (Nivre, 2004). 
Both algorithms are deterministic approaches, in 
which the dependency relations are constructed 
by a bottom-up deterministic schema. The algo-
rithm uses two major procedures:  
(i) Extract the surrounding features for the 

focused node (or node pair). 
(ii) Estimate the dependency relation opera-

tion for the focused node by a machine 
learning method. 

First, we describe these algorithms. Second, we 
discuss the difference between two algorithms. 

2.1 Parsing Algorithm 

2.1.1 Yamada’s algorithm 
In Yamada’s algorithm (Yamada, 2003), a de-
pendency relation for each word position is rep-
resented by the following three operations: Shift, 
Left and Right. The operation is determined by a 
classifier, SVMs, based on the surrounding fea-
tures. The determination is iterated until the clas-
sifier cannot make any further dependency 
relation on the whole sentence. The details of the 
three operations are as follows: 

Shift means that there is no relation between 
the focused node and the preceding (left) or the 
succeeding (right) node. In this case, the focused 
node moves to the succeeding node. The left fig-
ure in Figure 1 illustrates the shift operation, 
which the focused node is shown in a round box. 
In this operation, no dependency relation is con-
structed. 

Right means that the focused node becomes a 
child of the succeeding node. The center figure in 
Figure 1 illustrates the right operation.  

Figure 1: Three operations of Yamada’s model 
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Left means that the focused node becomes a 
child of the preceding node. The right figure in 
Figure 1  illustrates the left operation.  

Note that once either Left or Right operation 
is applied, the focused node becomes a child of 
another node and will never be considered in fu-
ture analysis. In other words, the focused node 
cannot receive any nodes as its child. To check 
the child to be complete, the classifier utilizes 
surrounding features which are discussed in the 
section 3.1.2. 

 
2.1.2 Nivre’s algorithm 
In Nivre’s algorithm (Nivre 2004), the analyzer 
configurations are represented by a triple AIS ,, . 
S is a stack, I is a list of remaining input tokens, 
and A is a list of dependency relations. Given an 
input token sequences W, the analyzer is initial-
ized the triple as φ,,Wnil . The analyzer will 
estimate the dependency relation between two 
tokens (the latest token t in S and the first token n 

in I). The algorithm will iterate until the list I be-
comes empty. When the list I becomes empty, the 
analyzer stops the iteration and outputs the word 
dependency relation.  

There are four possible operations to the next 
configuration: 

Right: In the current triple AInSt ,|,| , if 
there is a dependency relation that the word t de-
pends on word n , extend A with ( )nt → , remove 
t from S, and give the triple ( ){ }ntAInS →U,|,  

Left: In the current triple AInSt ,|,|  , if there 
is a dependency relation that the word n depends 
on the word t, extend A with ( )tn → , push n onto 
the stack S, and give the triple 

( ){ }tnAIStn →U,,|| .  
In the current triple AInSt ,|,| , if there is no 

dependency between n and t, check the condi-
tions of the  actions below; 

Reduce: If there are no more words In ∈' de-

Figure 2: Four operations of Nivre’s algorithm.  Example: 鄭成功收復臺灣的偉大功業(“The 
great triumph that Cheng Kheng-Koug recaptured Taiwan.”) 
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pends on t, and t has a parent on its left side; ana-
lyzer removes t from the stack S, and give the 
triple AInS ,|,  

Shift: If there is no dependency between n and 
t, and the triple doesn’t satisfy the conditions in 
Reduce, then push n onto the stack S, and give 
the triple AIStn ,,|| . 

These operations are depicted in Figure 2. 
Given an input sentence of length N (words), the 
analyzer is guaranteed to terminate after at most 
2N actions. The dependency structure given at 
the termination is well-formed if and only if the 
subtrees are connected (Nivre, 2004). This means 
that it is a set of connected components, each of 
which is a well-formed dependency graph for a 
subtree of the input sentence.  

It should be noted that the definition above is 
presented differently to the original algorithm 
(Nivre, 2004). Similar to Yamada’s algorithm, 
each word of input sentence becomes a token. 
The token includes the word, the POS, the infor-
mation about its children, and other useful infor-
mation. These becomes the features for the 
classifier.  
 
2.1.3 Comparison between the two algorithms 
In the Yamada’s algorithm, the operation Shift 
means not only “The focused node doesn’t de-
pendent on the preceding (left adjacent) or the 
succeeding (right adjacent) node” but also “It 
depends on the left adjacent, but the operation 
should be delayed since there is a possibility that 
some node on the right side may depend on the 
node. Therefore it should remain in token se-
quence”. If the focused node has a potential child 
on the right side and the child hasn’t been ana-
lyzed yet, the current node should wait for the 
child to be analyzed. However, if the focused 
node depends on the left node and it becomes a 
child of the preceding node, the latter nodes may 
be lost the correct dependencies. In (Cheng, 
2004), we arranged for the training data to let 
classifier predict correct operation (Left or Shift). 
However, there is high ambiguity in Shift opera-
tion. The ambiguity of Shift is a crucial error 
source in their experiment. 
  By contrast, there are four operations in Nivre’s 
algorithm. If the current triple has a dependency 
relation, it must be extended to A. Even the rela-
tion is ( )tn → , the word n will be pushed onto S. 
This approach guarantees that the succeeding 
words can depend on n and don’t lost the relation 

( )tn → . This algorithm can resolve some prob-
lems about the ambiguity of Shift operation (in 
Yamada’s algorithm). However, if the word n has 
no more children in the succeeding words, it 
should select Reduce operation after the word n 
be pushed onto S. If it doesn’t select Reduce op-
eration, the succeeding words in I supposedly 
depend on wrong word. This is a major error 
source in our experiment discussing in Section 4. 
However, the result shows that the Nivre’s algo-
rithm can get better performance. 

2.2  Machine Learning Models 
In Yamada’s method (Yamada, 2003), the opera-
tion is determined by SVMs (Vapnik, 1998). Al-
ternative, Nivre’s method uses memory-based 
learning to determine the operations. In our 
method, we use SVMs and MaxEnt method for 
machine learning in both algorithms. 
SVMs are a binary classifier based on a maxi-

mum margin strategy. In our preceding experi-
ment (Cheng, 2004), we use the polynomial 
kernel: dK )1()( zxzx, ⋅+= . To extend binary 
classifiers to multi-class classifiers, we use a 
pair-wise method which utilizes 2Cn  binary 
classifiers between all pairs of the classes (Kreel, 
1998). 
  In our experiment with Yamada’s algorithm, 
when the training data size is more than 90,000 
words, the machine leaning can’t converge. Simi-
larly, this problem exists in our experiment with 
Nivre’s algorithm. Therefore, we implement 
MaxEnt method in both algorithms. 

MaxEnt model is a statistical approach that has 
been applied to any classification task in NLP, 
such as prepositional phrase attachment classifi-
cation, part-of-speech tagging, etc. (Berger et al., 
1996; Ratnaparkhi et al. 1999)  

MaxEnt model combines evidence from dif-
ferent features without the independence assump-
tion. Using this model in our task, we can assign 
consistent probabilities to an action conditioned 
on the context in which the action takes place. 
Given an action a, the probability is calculated as 
below : 

( ) ( ) ( )












= ∑

=

k

j
jj caf

cZ
cap

1

,exp1| λ                      (1) 

In equation (1), c is the context occurring the 
action and a is the action. Z(c) is a normalization 
factor. fj(a,c) represents the jth feature for the 
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action and k is the total number of features used. 
The features used in this model are binary-valued 
features. MaxEnt model will calculate the maxi-
mum likelihood by training with annotated train-
ing data. In our experiments, we used Opennlp-
Maxent Package (Baldridge et al, 2001), which 
implements a GIS (Darroch, 1972) algorithm. 
The feature selection is presented in the next Sec-
tion. 

(Yamada, 2003) proposed that they divided 
training examples according to the target node 
(or the left target node) of POS to reduce the 
computational cost for training. We also make a 
set of pair-wise SVM classifiers or a MaxEnt 
classifier for each divided example group. 

3 Experiments 

3.1 Corpus and Features 

3.1.1 Corpus 
We use the CKIP Chinese Treebank Version 2.0 
(K-J Chen et al, 1999) to train our analyzer. The 
corpus includes 54,902 phrase structure trees and 
290,114 words in 23 files. The corpus has the 
following three properties 
(i) Word segmented, POS-tagged, parsed (phrase 

structure) and head annotated 
(ii) Balanced corpus 
(iii) Clauses segmented by punctuation marks 

(commas and full stops) 
Table 1 shows a sample phrase structure in the 
CKIP Treebank and its conversion to dependency 
structure to be used in our experiment data.  
 
NP(property:S的(head:S(agent:NP(Head:Nba:鄭成功)| 
Head:VC31:收復|theme:NP(Head:Nca:臺灣)) 
|Head:DE:的)|property:VH11:偉大|Head:Nac:功業) 

Word POS Node ID Parent 
node 

鄭成功 Nba 0 1 
收復 VC31 1 3 
臺灣 Nca 2 1 
的 DE 3 5 

偉大 VH11 4 5 
功業 Nac 5 -1 

Table 1: Tree structure conversion from phrase 
structure to dependency structure 
(“The great triumph that Cheng Kheng-Koug recap-
tured Taiwan.”) 

Figure 3: The position name of the position for 
Nivre algorithm 
 

 
 
3.1.2 Features 
The features in Yamada’s algorithm are the 
words (the focused node n) and their POS of 5 
local nodes (2 preceding nodes n-2, n-1, the fo-
cused node, and 2 succeeding nodes n+1, n+2) 
and their child nodes. The detailed description is 
in Table 2. 
  In Nivre’s algorithm, the analyzer considers the 
dependency of two nodes (n,t) which are in cur-
rent triple. Figure 3 shows the node’s name –we 
call the position – and the examples of the fea-
tures. Similar to Yamada’s algorithm, we select 
these features: 2 preceding nodes of node t (and t 
itself), 2 succeeding nodes of node n (and n 
it

 The word of the position t-2, t-1, t 
 The pos of the position t-2, t-1, t  
 The child word of the position t-2, t-1, t  
 The child pos of the position t-2, t-1, t 
 The word of the position n, n+1, n+2 
 The pos of the position n, n+1, n+2 
 The child word of the position n, n+1, n+2 
 The child pos of the position n, n+1, n+2  
 The distance between the position t and n 

Table 3: Features in Nivre’s algorithm with 
SVMs 

 The word of the position n-2,n-1, n, n+1, n+2 
 The pos of the position n-2, n-1, n, n+1, n+2  
 The child word of the position n-2, n-1, n, n+1, 
n+2 
 The child pos of the position n-2, n-1, n, n+1, 
n+2 
 The distance between the position <n-2, n>  
 The distance between the position <n-1, n> 
 The distance between the position <n, n+1> 
 The distance between the position <n, n+2> 

Table 2: Features in Yamada’s algorithm
with SVMs and MaxEnt 
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self), and their child nodes.  
In SVMs, the polynomial kernel enables the 

analyzer incorporate the combination of relevant 
features automatically. Table 3 presents the fea-
ture of Nivre’s model with SVMs. 

However, the MaxEnt cannot estimate the 
combinations. We select some useful combined 
features and add them in MaxEnt. And we select 
other features which are independent to basic 
features, for instance: the distance between node 
n,t, the preceding action…etc. These features 
used in Nivre’s algorithm with MaxEnt are 
shown in Table 4. 

3.2 Experiments and results 

3.2.1 Experiment Setting 
In our experiments, we verify the accuracy of 
Yamada’s algorithm and Nivre’s algorithm. 
Since CKIP Treebank is a balanced corpus, there 
are multi-source of articles in corpus. We select 
four testing data corresponding to the sources. 
  Experiment 1: we implemented the Yamada’s 
algorithm and Nivre’s algorithm with SVMs and 
MaxEnt. The training data has 20,211 words 

(3635 sentences) and the result is shown in Table 
5. 
Experiment 2: we increased the training data of 

MaxEnt and used the NP-chunker composed by 
“YamCha”. YamCha is a customizable text 
chunker based on SVMs. The definition of base-
NP in our experiment is a noun phrase in which 
each noun except for the last in this base-NP 
(nominal compound) should depend on the last 
noun. Before the analysis starts, we use the NP-
chunker to chunk the nominal compounds in the 
testing data. Table 6 described these results. 
Experiment 3: We estimated the efficiency in 

the case of using the NP-chunker and the effi-
ciency by different training data size. Figure 4 
described these results. 
   All these experiments are implemented on a 
Linux machine with XEON 2.4GHz dual CPUs 
and 4.0GB memory.  
3.2.2 Results 
The performance of our dependency structure 
analyzer is evaluated by the following three 
measures:  
Dependency Accuracy: 

( )
..#

..#..
reldepof

reldepanalyzedcorrectlyofAccDep =

Root Accuracy:  

( )
clausesof

nodesrootanalyzedcorrectlyof
AccRoot

#
#

.. =

Sentence Accuracy: 

( )
clausesof

clauseanalyzedcorrectlyfullyofAccSent
#

#.. =

  Table 5 shows the result of experiment 1. The 
symbols in first column means the four testing 
data (T: Textbook, N: Newspaper, A: Anthology, 
M: Magazine) and each row shows the accuracy 
described above. The result shows that Nivre’s 
algorithm has better performance than Yamada’s 
algorithm by MaxEnt. The performance of 
Nivre’s method using SVMs is not clear but we 
can deduce that the Nivre model has better per-
formance than Yamada’s method even in the case 
of using SVMs.  
  Alternatively, comparing the performance of 
different machine learning methods, we cannot 
affirm which method is better. However, in our 
SVMs experiments, the training data is too large 
to converge within reasonable time. The most 
training data size of SVMs is only 90,000 words. 
With more training data, we decide to use Max-

S I 

 The word of the position t-2, t-1, t 
 The pos of the position t-2, t-1, t  
 The child word of the position n, n+1, n+2 
 The child pos of the position n, n+1, n+2 
 The word of the position t-2, t-1, t 
 The pos of the position t-2, t-1, t 
 The child word of the position n, n+1, n+2 
 The child pos of the position n, n+1, n+2 
 The combined feature: the POS of the posi-

tion <t-1, t> 
 The combined feature: the POS of the posi-

tion <t, n> 
 The combined feature: the POS of the posi-

tion <n, n+1> 
 The combined feature: the POS of the posi-

tion <t-2, t-1, t> 
 The combined feature: the POS of the posi-

tion <t-1, t, n> 
 The combined feature: the POS of the posi-

tion <t, n, n+1> 
 The combined feature: the POS of the posi-

tion <n, n+1, n+2> 
 The distance between the position t and n 
 The distance between the position n and n+1 
 Whether the node t depends on the node t-1 

Table 4: Features in Nivre’s algorithm with 
MaxEnt 
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Ent method, and the performance of MaxEnt is 
not worse than SVMs. 

Dep. Root Sent. Dep. Root Sent.Test 
data Nivre, SVMs Yamada, SVMs 
T 86.95 92.08 72.14 87.63 93.07 74.31
N 80.28 86.99 56.88 77.39 88.98 52.87
A 87.52 92.71 74.50 86.20 94.15 70.75
M 76.67 85.41 48.61 76.34 87.55 48.78
 Nivre, MaxEnt Yamada, MaxEnt 
T 87.39 89.61 76.30 86.85 92.60 72.37
N 81.06 83.98 60.08 77.89 86.72 52.21
A 87.56 91.50 74.50 86.07 93.59 70.08
M 77.87 82.05 51.74 76.38 87.24 48.81
Table 5: The result of experiment 1 
 

Table 6 shows the result of experiment 2. This 
experiment conducts for two algorithms with the 
NP-chunker. Comparing with Table 5, the per-
formance does not jump up after using NP-
chunker. According to this result, it seems that 
we didn’t need to add the NP-chunker in our ana-
lyzer. This is because that the accuracy of our 
NP-chunker is 88.21 (Recall). There are many 
base-NP which cannot be extracted correctly. 
This is a major error source in our experiment. 

 
Dep. Root Sent. Dep. Root Sent.Test 

data Nivre, SVMs Yamada, SVMs 
T 87.07 83.87 65.98 87.67 86.32 70.24
N 80.88 77.10 49.82 79.02 72.5 46.23
A 87.61 84.16 65.43 86.67 83.12 63.31
M 77.20 72.60 41.77 77.33 71.11 42.22
 Nivre, MaxEnt Yamada, MaxEnt 
T 87.32 89.61 76.30 86.86 92.60 72.73
N 81.21 83.98 60.84 78.87 86.59 54.77
A 87.63 91.61 74.72 86.18 93.59 70.64
M 78.21 82.13 52.82 77.09 87.21 50.42
  Table 6: The result of experiment 2 
 

Figure 4 shows the result of experiment 3, 
namely the performance of using Nivre’s algo-
rithm with the NP-chunker by increasing training 
data. There are two testing data shown in the fig-
ure (Newspaper and Magazine). Each testing data 
were tested with the NP-chunker or without. Ac-
cording to this result, method using the NP-
chunker doesn’t achieve higher accuracy. But we 
trust this is caused by the low performance of 
NP-chunker and the narrow definition of our 
base-NP. Alternatively, the figure shows that the 
best performance of different training data size is 
about 185,000 words. Although the accuracy of 
testing data “Newspaper” is improved by using 
more data size, the accuracy of “Magazine” be-

comes worse according to increasing the training 
data.  

 

0.84

0.845

0.85

0.855

0.86

0.865

0.87

90000 140000 190000 240000

N noNP M noNP N NP M NP

Figure 4: The result of experiment 3: the model 
with NP-chunker among the different training 
data sizes  
 

4 Discussion 

This section shows error analysis on the experi-
mental results. 

4.1 Base NP 
The reason that we used the NP-chunker is that 
there are many nominal compounds in Chinese, 
especially in newspaper. For example: 國際/貨幣

/基金會 (IMF), 太空 /衛星 /計畫 (satellite pro-
ject)…etc. Most of nominal compounds are com-
bined from two or three noun words. Therefore, 
when a long noun sequence – namely a nominal 
compound – was analyzed, our models tend to 
separate the sequence into two or three base-NPs. 
For instance: base-NP “行政院 /經濟 /建設 /委
員會” is an organization name. Each word should 
depend on the last word “委員會”, but our ana-
lyzer separated this base-NP into two base-NPs: 
“行政院” and “經濟 /建設 /委員會”. Therefore, 
we should use the NP-chunker to avoid such er-
rors. 
  Although we used the NP-chunker in our ana-
lyzer, the result was not very good. Because the 
performance of NP-chunker is not perfect. Actu-
ally, the NP-chunker cannot extract 18% of the 
base-NPs correctly. The task of extracting base-
NP is difficult. Alternatively, our definition of 
base-NP is too restricted. There are many base-
NPs that include not only nouns but also other 
words. For example, the NP “今年(Nd)/一(Nd)/ 
到(Ca)/ 十月(Nd)” cannot be extracted by our 
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NP-chunker. We should extend the definition of 
base-NP and improve the performance of the NP-
chunker. 

4.2 PP Extraction 
The structure of prepositional phrases is “prep. + 
NP”, “prep. +VP”, or “prep. +S”. It is difficult to 
identify the boundary of PP. Sometimes the 
preposition will make a long sentence. However, 
our analyzer tends to let the preposition govern-
ing a partial subtree of the full sentence. 

Some prepositions in Chinese are not only a 
preposition but also a predicate. For example, the 
preposition “在(in, at)” can be a simple prep.—
“他(he)/在(at)/學校(school)/吃飯(eat lunch) (He 
ate lunch at school.)”. The preposition “在(at)” 
takes a PP (在/學校 at school). However, it can 
be also a predicate – “他 (he)/在 (stay at)/家
(home) He stays at home”.  
  These properties of PP cause 15% of errors in 
our experiments. There are two ways to alleviate 
these problems. First, we should identify the 
predicate prepositions from corpus. These prepo-
sitions are obstacles to the machine learning of 
normal prepositions and should be regarded as a 
different POS. Second, if the analyzer can extract 
the element that dependent on a preposition (NP, 
VP, S, etc.), the performance will improve. 

4.3 Shift and Reduce 

As described in Section 2.1, Nivre’s algorithm 
can resolve the ambiguity between of the action 
Shift and Left (in Yamada’s algorithm). The ac-
tion Reduce needs the condition that the node n 
should have no more child in I. However, it is 
difficult to identify this condition. In some long 
sentences, the children of the focused node n may 
be at the end node of the sentence. Moreover, 
some non-local dependency will cause this kind 
of error. This caused 15 % of errors in our ex-
periments. 

5 Conclusion and Future Work 

In this paper, we presented a deterministic de-
pendency structure analyzer for Chinese. This 
analyzer implements two algorithms with two 
machine learning methods, SVMs and MaxEnt. 
We compared the performance of the two models 
on a dependency tagged corpus derived from the 
CKIP Treebank corpus. The result shows that 
Nivre’s method can resolve some problems in 
Yamada’s method and the MaxEnt can obtain 

good performance. Next, we tried to add an NP-
chunker in our model. Although the result of the 
NP-chunker experiment didn’t show significantly 
better performance, we discuss that using an NP-
chunker is necessary for Chinese dependency 
analyzing.     
Future work includes three parts. First, as dis-
cussed in Section 4, we should improve our NP-
chunker to resolve the NP extracting problem.  
We should also try to establish PP-chunker to 
identify PP. Second, the ambiguity between two 
actions – Shift and Reduce – should be resolved 
by long-distance dependency resolution model. 
Third, for applying to wide region of Chinese 
texts, we will evaluate our method on the Penn 
Chinese Treebank which contains articles from 
the newspapers in mainland China. 
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