
 1

 機械学習に基づく決定性の中国語依存構造解析器

鄭育昌 浅原正幸 松本裕治
奈良先端科学技術大学院大学 情報科学研究科
{yuchan-c, masayu-a, matsu}@is.naist.jp

概要：本研究では、機械学習に基づく決定性の中国語依存構造解析器を実装する。依存構

造解析アルゴリズムとして山田モデルと Nivre モデルを用いて実装し、構造を判別する機

械学習器として最大エントロピー法と SVM 法を用いた。本稿では、CKIP treebank を用い

て各モデルの有効性について比較検証する。実験結果によると、Nivre モデルは山田モデル

で残されている曖昧性を解決できる。その他、中国語に存在する多様な複合名詞問題に対

して、chunker を用いた複合名詞抽出による精度向上についても検討する。

Machine Learning-based Dependency Analyzer for Chinese
Yuchang CHENG, Masayuki ASAHARA, Yuji MATSUMOTO

Graduate School of Information Science
Nara Institute of Science and Technology

{yuchan-c, masayu-a, matsu}@is.naist.jp

Abstract: In this paper, we present a deterministic dependency structure analyzer for Chinese. This
analyzer implements two algorithms – Yamada and Nivre model – and two sorts of classifier – SVMs
and MaxEnt. We compare the performance of two algorithms (by Yamada and by Nivre). We evalu-
ate the method on a dependency tagged corpus derived from the CKIP Treebank corpus. The result
shows that Nivre’s algorithm can resolve some problems in Yamada’s algorithm. Then we try to add
NP-chunker in our analyzer. Although the result of NP-chunker experiment doesn’t show signifi-
cantly better performance, we discuss that using NP-chunker is necessary for Chinese dependency
analyzing.

1 Introduction

Many syntactic analyzers for English have been
implemented and have demonstrated good per-
formance (Charniak, 2000; Collins, 1997; Ratna-
parkhi, 1999). However, implementation of
Chinese syntactic structure analyzers is still lim-
ited, since the structure of the Chinese language
is quite different from other languages. We are
currently developing a Chinese syntactic struc-
ture analyzer. In this paper, we present our ma-
chine learning-based syntactic structure analyzer
for Chinese.
 Our analyzer produces word dependency struc-
ture rather than phrase structures. The reason is
that dependency structures are simpler and more
comprehensible than phrase structures. Moreover,
construction of a word dependency annotated

corpus is easier than construction of a phrase
structure annotated corpus for use as the training
data. Consistency among annotators can also be
more easily achieved using the simpler depend-
ency structure.

We utilize a deterministic method for depend-
ency relation construction. One approach is a
generative dependency structure analysis consist-
ing of two steps: First, a dependency relation ma-
trix is constructed, in which each element
corresponds to a pair of tokens. The dependency
relation between each pair is assigned a likeli-
hood value. Second, the optimal dependency
structure is estimated using the likelihood of the
whole sentence under no-crossing constraint. The
other approach, a deterministic dependency struc-
ture analysis, is proposed for Japanese (Kudo,
2002) and for English (Yamada, 2003). We adopt

研究会Temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会Temp
テキストボックス
2004－ＦＩ－ 76　(13)
2004－ＮＬ－163　(13)

研究会Temp
テキストボックス
2004／9／17

研究会Temp
テキストボックス
－91－

 2

Yamada’s method to Chinese dependency analy-
sis.

However, Yamada’s method still has a crucial
ambiguity to estimate the parsing actions. Ma-
chine learner cannot estimate the actions with the
surrounding features. To resolve the problem, we
implement another bottom-up algorithm pro-
posed by (Nivre, 2004). Nivre’s method is ap-
plied to Norwegian and based on memory-based
learning. In Yamada’s algorithm and Nivre’s al-
gorithm, the dependency relations are composed
by a bottom-up schema with machine learners.
We incorporate Support Vector Machines (here-
after SVMs) and Maximum Entropy (hereafter
MaxEnt) models into their algorithms.

There are many nominal compounds in Chi-
nese, which include more than three words in
many cases. However, our analyzer cannot ana-
lyze these long nominal compounds well. Then,
we adopt an NP-chunker based on SVMs to ex-
tract nominal compounds from the input sentence
before dependency analysis.

We compare the accuracy of two approaches.
The aim is to implement a variation of the deter-
ministic method and to show how the method is
applicable to Chinese dependency analysis.

Our analyzer is experimented on the CKIP
Chinese Treebank (K-J Chen et al, 1999), which
is a phrase structured and head annotated corpus.
The phrase structure is converted into a depend-
ency structure according to the head information.
We perform experimental evaluations in several
settings on the converted corpus.

In the next section, we describe two determi-
nistic dependency structure analysis algorithms.
Section 3 reports experimental evaluation and
comparison with related work. Section 4 dis-
cusses the errors in our experiments and the ef-
fect of NP-chunker in the reduction of errors.

Finally, we summarize our findings in the con-
clusion.

2 Parsing Models

This section presents two parsing algorithms pro-
posed by (Yamada, 2003) and (Nivre, 2004).
Both algorithms are deterministic approaches, in
which the dependency relations are constructed
by a bottom-up deterministic schema. The algo-
rithm uses two major procedures:
(i) Extract the surrounding features for the

focused node (or node pair).
(ii) Estimate the dependency relation opera-

tion for the focused node by a machine
learning method.

First, we describe these algorithms. Second, we
discuss the difference between two algorithms.

2.1 Parsing Algorithm

2.1.1 Yamada’s algorithm
In Yamada’s algorithm (Yamada, 2003), a de-
pendency relation for each word position is rep-
resented by the following three operations: Shift,
Left and Right. The operation is determined by a
classifier, SVMs, based on the surrounding fea-
tures. The determination is iterated until the clas-
sifier cannot make any further dependency
relation on the whole sentence. The details of the
three operations are as follows:

Shift means that there is no relation between
the focused node and the preceding (left) or the
succeeding (right) node. In this case, the focused
node moves to the succeeding node. The left fig-
ure in Figure 1 illustrates the shift operation,
which the focused node is shown in a round box.
In this operation, no dependency relation is con-
structed.

Right means that the focused node becomes a
child of the succeeding node. The center figure in
Figure 1 illustrates the right operation.

Figure 1: Three operations of Yamada’s model

研究会Temp
テキストボックス
－92－

 3

Left means that the focused node becomes a
child of the preceding node. The right figure in
Figure 1 illustrates the left operation.

Note that once either Left or Right operation
is applied, the focused node becomes a child of
another node and will never be considered in fu-
ture analysis. In other words, the focused node
cannot receive any nodes as its child. To check
the child to be complete, the classifier utilizes
surrounding features which are discussed in the
section 3.1.2.

2.1.2 Nivre’s algorithm
In Nivre’s algorithm (Nivre 2004), the analyzer
configurations are represented by a triple AIS ,, .
S is a stack, I is a list of remaining input tokens,
and A is a list of dependency relations. Given an
input token sequences W, the analyzer is initial-
ized the triple as φ,,Wnil . The analyzer will
estimate the dependency relation between two
tokens (the latest token t in S and the first token n

in I). The algorithm will iterate until the list I be-
comes empty. When the list I becomes empty, the
analyzer stops the iteration and outputs the word
dependency relation.

There are four possible operations to the next
configuration:

Right: In the current triple AInSt ,|,| , if
there is a dependency relation that the word t de-
pends on word n , extend A with ()nt → , remove
t from S, and give the triple (){ }ntAInS →U,|,

Left: In the current triple AInSt ,|,| , if there
is a dependency relation that the word n depends
on the word t, extend A with ()tn → , push n onto
the stack S, and give the triple

(){ }tnAIStn →U,,|| .
In the current triple AInSt ,|,| , if there is no

dependency between n and t, check the condi-
tions of the actions below;

Reduce: If there are no more words In ∈' de-

Figure 2: Four operations of Nivre’s algorithm. Example: 鄭成功收復臺灣的偉大功業(“The
great triumph that Cheng Kheng-Koug recaptured Taiwan.”)

研究会Temp
テキストボックス
－93－

 4

pends on t, and t has a parent on its left side; ana-
lyzer removes t from the stack S, and give the
triple AInS ,|,

Shift: If there is no dependency between n and
t, and the triple doesn’t satisfy the conditions in
Reduce, then push n onto the stack S, and give
the triple AIStn ,,|| .

These operations are depicted in Figure 2.
Given an input sentence of length N (words), the
analyzer is guaranteed to terminate after at most
2N actions. The dependency structure given at
the termination is well-formed if and only if the
subtrees are connected (Nivre, 2004). This means
that it is a set of connected components, each of
which is a well-formed dependency graph for a
subtree of the input sentence.

It should be noted that the definition above is
presented differently to the original algorithm
(Nivre, 2004). Similar to Yamada’s algorithm,
each word of input sentence becomes a token.
The token includes the word, the POS, the infor-
mation about its children, and other useful infor-
mation. These becomes the features for the
classifier.

2.1.3 Comparison between the two algorithms
In the Yamada’s algorithm, the operation Shift
means not only “The focused node doesn’t de-
pendent on the preceding (left adjacent) or the
succeeding (right adjacent) node” but also “It
depends on the left adjacent, but the operation
should be delayed since there is a possibility that
some node on the right side may depend on the
node. Therefore it should remain in token se-
quence”. If the focused node has a potential child
on the right side and the child hasn’t been ana-
lyzed yet, the current node should wait for the
child to be analyzed. However, if the focused
node depends on the left node and it becomes a
child of the preceding node, the latter nodes may
be lost the correct dependencies. In (Cheng,
2004), we arranged for the training data to let
classifier predict correct operation (Left or Shift).
However, there is high ambiguity in Shift opera-
tion. The ambiguity of Shift is a crucial error
source in their experiment.
 By contrast, there are four operations in Nivre’s
algorithm. If the current triple has a dependency
relation, it must be extended to A. Even the rela-
tion is ()tn → , the word n will be pushed onto S.
This approach guarantees that the succeeding
words can depend on n and don’t lost the relation

()tn → . This algorithm can resolve some prob-
lems about the ambiguity of Shift operation (in
Yamada’s algorithm). However, if the word n has
no more children in the succeeding words, it
should select Reduce operation after the word n
be pushed onto S. If it doesn’t select Reduce op-
eration, the succeeding words in I supposedly
depend on wrong word. This is a major error
source in our experiment discussing in Section 4.
However, the result shows that the Nivre’s algo-
rithm can get better performance.

2.2 Machine Learning Models
In Yamada’s method (Yamada, 2003), the opera-
tion is determined by SVMs (Vapnik, 1998). Al-
ternative, Nivre’s method uses memory-based
learning to determine the operations. In our
method, we use SVMs and MaxEnt method for
machine learning in both algorithms.
SVMs are a binary classifier based on a maxi-

mum margin strategy. In our preceding experi-
ment (Cheng, 2004), we use the polynomial
kernel: dK)1()(zxzx, ⋅+= . To extend binary
classifiers to multi-class classifiers, we use a
pair-wise method which utilizes 2Cn binary
classifiers between all pairs of the classes (Kreel,
1998).
 In our experiment with Yamada’s algorithm,
when the training data size is more than 90,000
words, the machine leaning can’t converge. Simi-
larly, this problem exists in our experiment with
Nivre’s algorithm. Therefore, we implement
MaxEnt method in both algorithms.

MaxEnt model is a statistical approach that has
been applied to any classification task in NLP,
such as prepositional phrase attachment classifi-
cation, part-of-speech tagging, etc. (Berger et al.,
1996; Ratnaparkhi et al. 1999)

MaxEnt model combines evidence from dif-
ferent features without the independence assump-
tion. Using this model in our task, we can assign
consistent probabilities to an action conditioned
on the context in which the action takes place.
Given an action a, the probability is calculated as
below :

() () ()












= ∑

=

k

j
jj caf

cZ
cap

1

,exp1| λ (1)

In equation (1), c is the context occurring the
action and a is the action. Z(c) is a normalization
factor. fj(a,c) represents the jth feature for the

研究会Temp
テキストボックス
－94－

 5

action and k is the total number of features used.
The features used in this model are binary-valued
features. MaxEnt model will calculate the maxi-
mum likelihood by training with annotated train-
ing data. In our experiments, we used Opennlp-
Maxent Package (Baldridge et al, 2001), which
implements a GIS (Darroch, 1972) algorithm.
The feature selection is presented in the next Sec-
tion.

(Yamada, 2003) proposed that they divided
training examples according to the target node
(or the left target node) of POS to reduce the
computational cost for training. We also make a
set of pair-wise SVM classifiers or a MaxEnt
classifier for each divided example group.

3 Experiments

3.1 Corpus and Features

3.1.1 Corpus
We use the CKIP Chinese Treebank Version 2.0
(K-J Chen et al, 1999) to train our analyzer. The
corpus includes 54,902 phrase structure trees and
290,114 words in 23 files. The corpus has the
following three properties
(i) Word segmented, POS-tagged, parsed (phrase

structure) and head annotated
(ii) Balanced corpus
(iii) Clauses segmented by punctuation marks

(commas and full stops)
Table 1 shows a sample phrase structure in the
CKIP Treebank and its conversion to dependency
structure to be used in our experiment data.

NP(property:S的(head:S(agent:NP(Head:Nba:鄭成功)|
Head:VC31:收復|theme:NP(Head:Nca:臺灣))
|Head:DE:的)|property:VH11:偉大|Head:Nac:功業)

Word POS Node ID Parent
node

鄭成功 Nba 0 1
收復 VC31 1 3
臺灣 Nca 2 1
的 DE 3 5

偉大 VH11 4 5
功業 Nac 5 -1

Table 1: Tree structure conversion from phrase
structure to dependency structure
(“The great triumph that Cheng Kheng-Koug recap-
tured Taiwan.”)

Figure 3: The position name of the position for
Nivre algorithm

3.1.2 Features
The features in Yamada’s algorithm are the
words (the focused node n) and their POS of 5
local nodes (2 preceding nodes n-2, n-1, the fo-
cused node, and 2 succeeding nodes n+1, n+2)
and their child nodes. The detailed description is
in Table 2.
 In Nivre’s algorithm, the analyzer considers the
dependency of two nodes (n,t) which are in cur-
rent triple. Figure 3 shows the node’s name –we
call the position – and the examples of the fea-
tures. Similar to Yamada’s algorithm, we select
these features: 2 preceding nodes of node t (and t
itself), 2 succeeding nodes of node n (and n
it

 The word of the position t-2, t-1, t
 The pos of the position t-2, t-1, t
 The child word of the position t-2, t-1, t
 The child pos of the position t-2, t-1, t
 The word of the position n, n+1, n+2
 The pos of the position n, n+1, n+2
 The child word of the position n, n+1, n+2
 The child pos of the position n, n+1, n+2
 The distance between the position t and n

Table 3: Features in Nivre’s algorithm with
SVMs

 The word of the position n-2,n-1, n, n+1, n+2
 The pos of the position n-2, n-1, n, n+1, n+2
 The child word of the position n-2, n-1, n, n+1,
n+2
 The child pos of the position n-2, n-1, n, n+1,
n+2
 The distance between the position <n-2, n>
 The distance between the position <n-1, n>
 The distance between the position <n, n+1>
 The distance between the position <n, n+2>

Table 2: Features in Yamada’s algorithm
with SVMs and MaxEnt

研究会Temp
テキストボックス
－95－

 6

self), and their child nodes.
In SVMs, the polynomial kernel enables the

analyzer incorporate the combination of relevant
features automatically. Table 3 presents the fea-
ture of Nivre’s model with SVMs.

However, the MaxEnt cannot estimate the
combinations. We select some useful combined
features and add them in MaxEnt. And we select
other features which are independent to basic
features, for instance: the distance between node
n,t, the preceding action…etc. These features
used in Nivre’s algorithm with MaxEnt are
shown in Table 4.

3.2 Experiments and results

3.2.1 Experiment Setting
In our experiments, we verify the accuracy of
Yamada’s algorithm and Nivre’s algorithm.
Since CKIP Treebank is a balanced corpus, there
are multi-source of articles in corpus. We select
four testing data corresponding to the sources.
 Experiment 1: we implemented the Yamada’s
algorithm and Nivre’s algorithm with SVMs and
MaxEnt. The training data has 20,211 words

(3635 sentences) and the result is shown in Table
5.
Experiment 2: we increased the training data of

MaxEnt and used the NP-chunker composed by
“YamCha”. YamCha is a customizable text
chunker based on SVMs. The definition of base-
NP in our experiment is a noun phrase in which
each noun except for the last in this base-NP
(nominal compound) should depend on the last
noun. Before the analysis starts, we use the NP-
chunker to chunk the nominal compounds in the
testing data. Table 6 described these results.
Experiment 3: We estimated the efficiency in

the case of using the NP-chunker and the effi-
ciency by different training data size. Figure 4
described these results.
 All these experiments are implemented on a
Linux machine with XEON 2.4GHz dual CPUs
and 4.0GB memory.
3.2.2 Results
The performance of our dependency structure
analyzer is evaluated by the following three
measures:
Dependency Accuracy:

()
..#

..#..
reldepof

reldepanalyzedcorrectlyofAccDep =

Root Accuracy:

()
clausesof

nodesrootanalyzedcorrectlyof
AccRoot

#
#

.. =

Sentence Accuracy:

()
clausesof

clauseanalyzedcorrectlyfullyofAccSent
#

#.. =

 Table 5 shows the result of experiment 1. The
symbols in first column means the four testing
data (T: Textbook, N: Newspaper, A: Anthology,
M: Magazine) and each row shows the accuracy
described above. The result shows that Nivre’s
algorithm has better performance than Yamada’s
algorithm by MaxEnt. The performance of
Nivre’s method using SVMs is not clear but we
can deduce that the Nivre model has better per-
formance than Yamada’s method even in the case
of using SVMs.
 Alternatively, comparing the performance of
different machine learning methods, we cannot
affirm which method is better. However, in our
SVMs experiments, the training data is too large
to converge within reasonable time. The most
training data size of SVMs is only 90,000 words.
With more training data, we decide to use Max-

S I

 The word of the position t-2, t-1, t
 The pos of the position t-2, t-1, t
 The child word of the position n, n+1, n+2
 The child pos of the position n, n+1, n+2
 The word of the position t-2, t-1, t
 The pos of the position t-2, t-1, t
 The child word of the position n, n+1, n+2
 The child pos of the position n, n+1, n+2
 The combined feature: the POS of the posi-

tion <t-1, t>
 The combined feature: the POS of the posi-

tion <t, n>
 The combined feature: the POS of the posi-

tion <n, n+1>
 The combined feature: the POS of the posi-

tion <t-2, t-1, t>
 The combined feature: the POS of the posi-

tion <t-1, t, n>
 The combined feature: the POS of the posi-

tion <t, n, n+1>
 The combined feature: the POS of the posi-

tion <n, n+1, n+2>
 The distance between the position t and n
 The distance between the position n and n+1
 Whether the node t depends on the node t-1

Table 4: Features in Nivre’s algorithm with
MaxEnt

研究会Temp
テキストボックス
－96－

 7

Ent method, and the performance of MaxEnt is
not worse than SVMs.

Dep. Root Sent. Dep. Root Sent.Test
data Nivre, SVMs Yamada, SVMs
T 86.95 92.08 72.14 87.63 93.07 74.31
N 80.28 86.99 56.88 77.39 88.98 52.87
A 87.52 92.71 74.50 86.20 94.15 70.75
M 76.67 85.41 48.61 76.34 87.55 48.78
 Nivre, MaxEnt Yamada, MaxEnt
T 87.39 89.61 76.30 86.85 92.60 72.37
N 81.06 83.98 60.08 77.89 86.72 52.21
A 87.56 91.50 74.50 86.07 93.59 70.08
M 77.87 82.05 51.74 76.38 87.24 48.81
Table 5: The result of experiment 1

Table 6 shows the result of experiment 2. This
experiment conducts for two algorithms with the
NP-chunker. Comparing with Table 5, the per-
formance does not jump up after using NP-
chunker. According to this result, it seems that
we didn’t need to add the NP-chunker in our ana-
lyzer. This is because that the accuracy of our
NP-chunker is 88.21 (Recall). There are many
base-NP which cannot be extracted correctly.
This is a major error source in our experiment.

Dep. Root Sent. Dep. Root Sent.Test

data Nivre, SVMs Yamada, SVMs
T 87.07 83.87 65.98 87.67 86.32 70.24
N 80.88 77.10 49.82 79.02 72.5 46.23
A 87.61 84.16 65.43 86.67 83.12 63.31
M 77.20 72.60 41.77 77.33 71.11 42.22
 Nivre, MaxEnt Yamada, MaxEnt
T 87.32 89.61 76.30 86.86 92.60 72.73
N 81.21 83.98 60.84 78.87 86.59 54.77
A 87.63 91.61 74.72 86.18 93.59 70.64
M 78.21 82.13 52.82 77.09 87.21 50.42
 Table 6: The result of experiment 2

Figure 4 shows the result of experiment 3,
namely the performance of using Nivre’s algo-
rithm with the NP-chunker by increasing training
data. There are two testing data shown in the fig-
ure (Newspaper and Magazine). Each testing data
were tested with the NP-chunker or without. Ac-
cording to this result, method using the NP-
chunker doesn’t achieve higher accuracy. But we
trust this is caused by the low performance of
NP-chunker and the narrow definition of our
base-NP. Alternatively, the figure shows that the
best performance of different training data size is
about 185,000 words. Although the accuracy of
testing data “Newspaper” is improved by using
more data size, the accuracy of “Magazine” be-

comes worse according to increasing the training
data.

0.84

0.845

0.85

0.855

0.86

0.865

0.87

90000 140000 190000 240000

N noNP M noNP N NP M NP

Figure 4: The result of experiment 3: the model
with NP-chunker among the different training
data sizes

4 Discussion

This section shows error analysis on the experi-
mental results.

4.1 Base NP
The reason that we used the NP-chunker is that
there are many nominal compounds in Chinese,
especially in newspaper. For example: 國際/貨幣

/基金會 (IMF), 太空 /衛星 /計畫 (satellite pro-
ject)…etc. Most of nominal compounds are com-
bined from two or three noun words. Therefore,
when a long noun sequence – namely a nominal
compound – was analyzed, our models tend to
separate the sequence into two or three base-NPs.
For instance: base-NP “行政院 /經濟 /建設 /委
員會” is an organization name. Each word should
depend on the last word “委員會”, but our ana-
lyzer separated this base-NP into two base-NPs:
“行政院” and “經濟 /建設 /委員會”. Therefore,
we should use the NP-chunker to avoid such er-
rors.
 Although we used the NP-chunker in our ana-
lyzer, the result was not very good. Because the
performance of NP-chunker is not perfect. Actu-
ally, the NP-chunker cannot extract 18% of the
base-NPs correctly. The task of extracting base-
NP is difficult. Alternatively, our definition of
base-NP is too restricted. There are many base-
NPs that include not only nouns but also other
words. For example, the NP “今年(Nd)/一(Nd)/
到(Ca)/ 十月(Nd)” cannot be extracted by our

研究会Temp
テキストボックス
－97－

 8

NP-chunker. We should extend the definition of
base-NP and improve the performance of the NP-
chunker.

4.2 PP Extraction
The structure of prepositional phrases is “prep. +
NP”, “prep. +VP”, or “prep. +S”. It is difficult to
identify the boundary of PP. Sometimes the
preposition will make a long sentence. However,
our analyzer tends to let the preposition govern-
ing a partial subtree of the full sentence.

Some prepositions in Chinese are not only a
preposition but also a predicate. For example, the
preposition “在(in, at)” can be a simple prep.—
“他(he)/在(at)/學校(school)/吃飯(eat lunch) (He
ate lunch at school.)”. The preposition “在(at)”
takes a PP (在/學校 at school). However, it can
be also a predicate – “他 (he)/在 (stay at)/家
(home) He stays at home”.
 These properties of PP cause 15% of errors in
our experiments. There are two ways to alleviate
these problems. First, we should identify the
predicate prepositions from corpus. These prepo-
sitions are obstacles to the machine learning of
normal prepositions and should be regarded as a
different POS. Second, if the analyzer can extract
the element that dependent on a preposition (NP,
VP, S, etc.), the performance will improve.

4.3 Shift and Reduce

As described in Section 2.1, Nivre’s algorithm
can resolve the ambiguity between of the action
Shift and Left (in Yamada’s algorithm). The ac-
tion Reduce needs the condition that the node n
should have no more child in I. However, it is
difficult to identify this condition. In some long
sentences, the children of the focused node n may
be at the end node of the sentence. Moreover,
some non-local dependency will cause this kind
of error. This caused 15 % of errors in our ex-
periments.

5 Conclusion and Future Work

In this paper, we presented a deterministic de-
pendency structure analyzer for Chinese. This
analyzer implements two algorithms with two
machine learning methods, SVMs and MaxEnt.
We compared the performance of the two models
on a dependency tagged corpus derived from the
CKIP Treebank corpus. The result shows that
Nivre’s method can resolve some problems in
Yamada’s method and the MaxEnt can obtain

good performance. Next, we tried to add an NP-
chunker in our model. Although the result of the
NP-chunker experiment didn’t show significantly
better performance, we discuss that using an NP-
chunker is necessary for Chinese dependency
analyzing.
Future work includes three parts. First, as dis-
cussed in Section 4, we should improve our NP-
chunker to resolve the NP extracting problem.
We should also try to establish PP-chunker to
identify PP. Second, the ambiguity between two
actions – Shift and Reduce – should be resolved
by long-distance dependency resolution model.
Third, for applying to wide region of Chinese
texts, we will evaluate our method on the Penn
Chinese Treebank which contains articles from
the newspapers in mainland China.

References
Adam Berger, Stephen Della Pietra, and Vincent Della

Pietra, 1996. A Maximum Entropy Approach to
Natural Language Processing, Computational Lin-
guistics, vol. 22, no. 1

Jason Baldridge, Tom Morton, and Gann Bierner,
2001, http://maxent.sourceforge.net/

Eugene Charniak, 2000. A Maximum-Entropy-
Inspired Parser. In Proc. of NAACL2000, pages
132–139.

Keh-Jiann Chen, Chin-Ching Luo, Zhao-Ming Gao,
Ming-Chung Chang, Feng-Yi Chen, Chao-Jan Chen,
1999, The CKIP Tree-bank: Guidelines for Annota-
tion, Presented at ATALA Workshop, Paris, June
18-19.

Yuchang Cheng , Masayuki, Asahara and Yuji Ma-
tsumoto, 2004. Deterministic dependency structure
analyzer for Chinese, IJCNLP 2004.

Michael Collins, 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proc.of ACL-
EACL 1997, pages 16–23.

Darroch, J. Ratcli , D. 1972. Generlized Iterative Scal-
ing for Log-linear Models. In Annals of Mathe-
matical Statistics, volume 43, Issue 5, pages 1470-
1480

Ulrich. H.-G. Kreβel, 1998. Pairwise classification
and support vector machines. In Advances in Ker-
nel Methods, pages 255–268. The MIT Press.

Taku Kudo, Yuji Matsumoto, 2002. Japanese De-
pendency Analyisis using Cascaded Chunking,
CONLL 2002

Joakim Nivre, 2004. Incrementality in Deterministic
Dependency Parsing. ACL-2004.

Adwait Ratnaparkhi, 1999. Learning to parse natural
language with maximum entropy models. Machine
Learning, 34(1-3):151–175

Vladimir N. Vapnik, 1998. Statistical Learning The-
ory. A Wiley-Interscience Publication.

Hiroyasu Yamada and Yuji Matsumoto, 2003. Sta-
tistical Dependency Analysis with Support Vector
Machines, IWPT 2003.

研究会Temp
テキストボックス
－98－

